1
|
Sun Q, Lei X, Yang X. The crosstalk between non-coding RNAs and oxidative stress in cancer progression. Genes Dis 2025; 12:101286. [PMID: 40028033 PMCID: PMC11870203 DOI: 10.1016/j.gendis.2024.101286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2025] Open
Abstract
As living standards elevate, cancers are appearing in growing numbers among younger individuals globally and these risks escalate with advancing years. One of the reasons is that instability in the cancer genome reduces the effectiveness of conventional drug treatments and chemotherapy, compared with more targeted therapies. Previous research has discovered non-coding RNAs' crucial role in shaping genetic networks involved in cancer cell growth and invasion through their influence on messenger RNA production or protein binding. Additionally, the interaction between non-coding RNAs and oxidative stress, a crucial process in cancer advancement, cannot be overlooked. Essentially, oxidative stress results from the negative effects of radicals within the body and ties directly to cancer gene expression and signaling. Therefore, this review focuses on the mechanism between non-coding RNAs and oxidative stress in cancer progression, which is conducive to finding new cancer treatment strategies.
Collapse
Affiliation(s)
- Qiqi Sun
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
2
|
ZHENG WENYING, SHANG YANYAN, DU KAI, LUO AILING, PEI LIJUN, LI MEIQI, ZHANG GUOPING, DENG MIN. Splicing factor PTBP1 promotes hepatocarcinogenesis via oncogenic splice-switching of MAPT. Oncol Res 2025; 33:1121-1133. [PMID: 40296916 PMCID: PMC12034000 DOI: 10.32604/or.2025.060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
Background Alterations in splicing factors contribute to aberrant alternative splicing (AS), which subsequently promotes tumor progression. The splicing factor polypyrimidine tract binding protein 1 (PTBP1) has been shown to facilitate cancer progression by modulating oncogenic variants. However, its specific role and underlying mechanisms in hepatocellular carcinoma (HCC) remain to be elucidated. Methods PTBP1 expression was evaluated in HCC tissues and cell lines. Subsequently, cells were transfected with vectors designed for PTBP1 overexpression or downregulation. The biological function of PTBP1 was assessed in vitro and in vivo using MTS assays, colony formation assays, transwell assays, xenograft formation, tail vein injection, and orthotopic models. Transcriptome analysis was conducted to elucidate the underlying molecular mechanisms. Results Our findings demonstrated that PTBP1 exhibited elevated expression in HCC cell lines and tissues. Furthermore, its expression positively correlated with overall and disease-free survival rates, as well as tumor grade and stage. PTBP1 knockdown reduced HCC cell proliferation, migration, and invasion in vitro and suppressed hepatocarcinoma xenograft growth and infiltration in vivo. RNA sequencing (RNA-Seq) analysis identified the AS events associated with PTBP1. PTBP1 functionally enhanced cell proliferation, invasion, and migration by modulating the AS of the microtubule-associated protein tau (MAPT) gene and promoting oncogene expression. Notably, the dysregulation of MAPT splicing coincided with increased PTBP1 expression in HCC. Conclusions PTBP1-guided AS of the MAPT gene enhances tumorigenicity in HCC through activation of the MAPK/ERK pathways.
Collapse
Affiliation(s)
- WENYING ZHENG
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
| | - YANYAN SHANG
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
| | - KAI DU
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
| | - AILING LUO
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
| | - LIJUN PEI
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
| | - MEIQI LI
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
| | - GUOPING ZHANG
- Medical Oncology, Yuebei People Hospital, Shaoguan, 512026, China
| | - MIN DENG
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
| |
Collapse
|
3
|
Xu W, Zhou B, Wang P, Ma Y, Jiang Y, Mo D, Wu J, Ma J, Wang X, Miao Y, Nian Y, Zheng J, Li J, Yan F, Li G. N6-methyladenosine modification of 3'tRF-AlaAGC impairs PD-1 blockade efficacy by promoting lactic acid accumulation in the tumor microenvironment of gastric carcinoma. Drug Resist Updat 2025; 79:101197. [PMID: 39752904 DOI: 10.1016/j.drup.2024.101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/05/2024] [Accepted: 12/21/2024] [Indexed: 02/24/2025]
Abstract
The balance between CD8+ T cells and regulatory T (Treg) cells in the tumor microenvironment (TME) plays a crucial role in the immune checkpoint inhibition (ICI) therapy in gastric carcinoma (GC). However, related factors leading to the disturbance of TME and resistance to ICI therapy remain unknown. In this study, we applied N6-methyladenosine (m6A) small RNA Epitranscriptomic Microarray and screened out 3'tRF-AlaAGC based on its highest differential expression level and lowest inter-group variance. N6-methyladenosine modification significantly enhanced the stability of 3'tRF-AlaAGC, which strengthened glycolysis and lactic acid (LA) production in GC cells by binding to PTBP1 (Polypyrimidine Tract Binding Protein 1). In the peritoneal GC implantation model established in huPBMC-NCG mice, 3'tRF-AlaAGC significantly increased the proportion of PD1+ Treg cells. Furthermore, in high-LA environments driven by glucose consumption of GC cells, Treg cells actively uptake LA through MCT1, facilitating NFAT1 translocation into the nucleus and enhancing PD1 expression, whereas PD1 expression by effector T cell is diminished. Meanwhile, T cell suppression assays were performed under low-LA or high-LA conditions, and the proliferation of CD8+ T cells was dampened by adding Sintilimab in a high-LA but not in a low-LA environment, suggesting the preferential activation of PD1+ Treg cell. These findings deciphered the complexities of the immune microenvironment in GC, providing prospects for identifying robust biomarkers that could improve the evaluation of therapeutic effectiveness and prognosis in immune therapy for GC.
Collapse
Affiliation(s)
- Weiguo Xu
- Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Bin Zhou
- Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Ping Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Shanghai, China
| | - Yuyan Ma
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yu Jiang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Dongping Mo
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jun Wu
- Department of Clinical Laboratory, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Ma
- Institute of Agri-products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiao Wang
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yinxing Miao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yong Nian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junyu Zheng
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jie Li
- Department of General Surgery, Huaian Hospital, Huaian, China
| | - Feng Yan
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Gang Li
- Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
4
|
Sun Z, Zhao T, Bai X, Li H, Gao J, Hao Y, Li Y, Xie Y, Hu A, Huang Q, Liu X, Zhang Y. Berberine Targets PKM2 to Activate the t-PA-Induced Fibrinolytic System and Improves Thrombosis. Pharmaceuticals (Basel) 2024; 17:1219. [PMID: 39338381 PMCID: PMC11434879 DOI: 10.3390/ph17091219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Arterial thrombosis, a condition in which thrombi form in arteries, can lead to various acute cardiovascular diseases and impact the quality of life and survival of patients. Berberine (BBR), a quaternary ammonium alkaloid, has been shown to treat these diseases. However, further exploration is needed to understand underlying mechanisms of BBR. METHODS AND RESULTS Rats were administered BBR via intramuscular injection. Then, an FeCl3-coated filter paper was applied to a carotid artery to induce thrombosis. The size of the thrombus and the blood flow velocity were evaluated by carotid ultrasound. The shape of the thrombus was observed using staining and microscopy. The expression levels of mRNA and proteins were verified. Additionally, mass spectrometry and single-cell RNA sequencing analysis were conducted. The administration of BBR resulted in a significant reduction in the thrombus area and an extension of the thrombus-clogging time. Furthermore, BBR administration effectively reversed the decreasing tissue-plasminogen activator (t-PA) expression and alterations in fibrinolysis system of model group. Additionally, the expression of PKM2 was suppressed following BBR administration, and the overexpression of PKM2 inhibited t-PA expression. CONCLUSIONS BBR ameliorates thrombosis by modulating expression of PKM2, subsequently impacting the expression of t-PA within fibrinolytic system. These preliminary findings suggest that BBR could be a potential preventive and therapeutic strategy for arterial thromboembolic diseases.
Collapse
Affiliation(s)
- Zeqi Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Tong Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Xue Bai
- College of Pharmacy, Hainan University, Haikou 570228, China
| | - Huimin Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Jin Gao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yutong Hao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yiyang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yanli Xie
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Ange Hu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Qiang Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
5
|
Shima T, Taniguchi K, Inomata Y, Arima J, Lee SW. Glycolysis in gastrointestinal stromal tumor: a brief overview. Neoplasia 2024; 55:101022. [PMID: 38943997 PMCID: PMC11261875 DOI: 10.1016/j.neo.2024.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Gastrointestinal stromal tumor (GIST) is the most prevalent mesenchymal tumor of the digestive tract. Its growth is primarily influenced by mutations in KIT or PDGFRA. Surgery is the primary treatment option for GIST; however, KIT inhibitors, such as imatinib, are used for inoperable cases. Resistance to imatinib is an upcoming challenge, especially because the effectiveness of alternative drugs is limited. Enhancement of the glycolysis pathway in cancer cells has been identified as a key feature in cancer. This unique metabolic activity has implications on tumor growth, prognosis, and resistance to therapy, even in GIST. Members of the glucose transporter (GLUT) family (particularly GLUT-1) play a significant role in GIST progression and response to treatment. Diagnostic imaging using 18F-fluorodeoxyglucose positron emission tomography/computed tomography, which enables visualization of glucose metabolism, can aid in GIST diagnosis and risk assessment. The interplay between glycolysis and GIST can lead to the development of various therapeutic strategies, especially those involving glycolysis-related molecules, such as hexokinase and lactate dehydrogenase. However, further research is required to understand the full spectrum of glycolysis in GIST and its therapeutic potential. Herein, we present an exhaustive overview and analysis of the role of glycolysis in GIST, especially as a therapeutic target.
Collapse
Affiliation(s)
- Takafumi Shima
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Kohei Taniguchi
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan; Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Yosuke Inomata
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Jun Arima
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Sang-Woong Lee
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
6
|
Ismaeel A, Peck BD, Montgomery MM, Burke BI, Goh J, Kang G, Franco AB, Xia Q, Goljanek-Whysall K, McDonagh B, McLendon JM, Koopmans PJ, Jacko D, Schaaf K, Bloch W, Gehlert S, Wen Y, Murach KA, Peterson CA, Boudreau RL, Fisher-Wellman KH, McCarthy JJ. microRNA-1 Regulates Metabolic Flexibility in Skeletal Muscle via Pyruvate Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607377. [PMID: 39149347 PMCID: PMC11326265 DOI: 10.1101/2024.08.09.607377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
MicroRNA-1 (miR-1) is the most abundant miRNA in adult skeletal muscle. To determine the function of miR-1 in adult skeletal muscle, we generated an inducible, skeletal muscle-specific miR-1 knockout (KO) mouse. Integration of RNA-sequencing (RNA-seq) data from miR-1 KO muscle with Argonaute 2 enhanced crosslinking and immunoprecipitation sequencing (AGO2 eCLIP-seq) from human skeletal muscle identified miR-1 target genes involved with glycolysis and pyruvate metabolism. The loss of miR-1 in skeletal muscle induced cancer-like metabolic reprogramming, as shown by higher pyruvate kinase muscle isozyme M2 (PKM2) protein levels, which promoted glycolysis. Comprehensive bioenergetic and metabolic phenotyping combined with skeletal muscle proteomics and metabolomics further demonstrated that miR-1 KO induced metabolic inflexibility as a result of pyruvate oxidation resistance. While the genetic loss of miR-1 reduced endurance exercise performance in mice and in C. elegans, the physiological down-regulation of miR-1 expression in response to a hypertrophic stimulus in both humans and mice causes a similar metabolic reprogramming that supports muscle cell growth. Taken together, these data identify a novel post-translational mechanism of adult skeletal muscle metabolism regulation mediated by miR-1.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Bailey D Peck
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - McLane M Montgomery
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | - Benjamin I Burke
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Jensen Goh
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Gyumin Kang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Abigail B Franco
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Mass Spectrometry and Proteomics Core, University of Kentucky, Lexington, KY, USA
| | - Qin Xia
- Discipline of Physiology, School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Discipline of Physiology, School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Jared M McLendon
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Pieter J Koopmans
- Department Health, Human Performance, & Recreation, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
| | - Daniel Jacko
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
- Olympic Base Center, North Rhine-Westphalia/Rhineland, Cologne, Germany
| | - Kirill Schaaf
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
- Olympic Base Center, North Rhine-Westphalia/Rhineland, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
| | - Sebastian Gehlert
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
- Department for the Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Hildesheim, Germany
| | - Yuan Wen
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department Health, Human Performance, & Recreation, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
| | - Charlotte A Peterson
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Ryan L Boudreau
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kelsey H Fisher-Wellman
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
7
|
Ma L, Zhang X, Liu Y, Jin H, Li D, Zhang H, Feng L, Zuo J, Wang Y, Liu J, Han J. The ratio of PKM1/PKM2 is the key factor affecting the glucose metabolism and biological function of colorectal cancer cells. Transl Cancer Res 2024; 13:3522-3535. [PMID: 39145079 PMCID: PMC11319957 DOI: 10.21037/tcr-24-154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/30/2024] [Indexed: 08/16/2024]
Abstract
Background Despite evidence suggesting a significant role of pyruvate kinase muscle isozyme (PKM) in cancer development, its particular function in colorectal cancer (CRC) remains unclear. This study aimed to elucidate the specific role and mechanism of PKM and its isoforms, PKM1 and PKM2, in the progression of CRC. Methods We analyzed PKM, PKM1, and PKM2 expression in CRC tissues and their correlation with clinicopathological features. Plasmids were constructed to modulate these isoforms' expression in CRC cells. Cellular behavior changes, including glucose metabolism alterations, were assessed using the Seahorse Energy Meter, and the Cell Counting Kit-8 (CCK8) assay to determine the inhibitory concentration of 5-fluorouracil (5-FU) on different CRC cell groups. Results Our results showed significant PKM overexpression in CRC tissues, which was correlated with negative prognostic factors such as advanced T stages and lymph node metastasis. A lower PKM1/PKM2 ratio was associated with these adverse outcomes. Functionally, PKM1 overexpression decreased cell migration and invasion, increasing 5-FU sensitivity. Conversely, PKM2 overexpression promoted malignant traits and reduced 5-FU sensitivity. Intriguingly, the introduction of glycolysis inhibitors attenuated the impact of PKM on the biological functions of CRC cells, suggesting a glycolysis-dependent mechanism. Conclusions This study establishes the PKM1/PKM2 ratio as crucial in CRC progression and 5-FU response. PKM1 overexpression reduces CRC malignancy and increases 5-FU sensitivity, while PKM2 does the opposite. Notably, glycolysis inhibitors lessen PKM's impact on CRC cells, highlighting a glycolysis-dependent mechanism. These insights suggest targeting PKM isoforms and glycolysis pathways as a promising CRC therapeutic strategy, potentially enhancing treatment efficacy.
Collapse
Affiliation(s)
- Liang Ma
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue Zhang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Liu
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Jin
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan Li
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Zhang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Feng
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Zuo
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yudong Wang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiayin Liu
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Han
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
Huang C, Yang Y, Wang X, Chen S, Liu Z, Li Z, Tang X, Zhang Q. PTBP1-mediated biogenesis of circATIC promotes progression and cisplatin resistance of bladder cancer. Int J Biol Sci 2024; 20:3570-3589. [PMID: 38993556 PMCID: PMC11234215 DOI: 10.7150/ijbs.96671] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Background: Cisplatin (DDP) based combination chemotherapy is a vital method for the treatment of bladder cancer (BLca). Chemoresistance easily occurs in the course of cisplatin chemotherapy, which is one of the important reasons for the unfavorable prognosis of BLca patients. Circular RNAs (circRNAs) are widely recognized for their role in the development and advancement of BLca. Nevertheless, the precise role of circRNAs in DDP resistance for BLca remains unclear. Methods: To study the properties of circATIC, sanger sequencing, agarose gel electrophoresis and treatment with RNase R/Actinomycin D were utilized. RT-qPCR assay was utilized to assess the expression levels of circRNA, miRNA and mRNA in BLca tissues and cells. Functional experiments were conducted to assess the function of circATIC in BLca progression and chemosensitivity in vitro. Various techniques such as FISH, Dual-luciferase reporter assay, TRAP, RNA digestion assay, RIP and ChIRP assay were used to investigate the relationships between PTBP1, circATIC, miR-1247-5p and RCC2. Orthotopic bladder cancer model, xenograft subcutaneous tumor model and xenograft lung metastasis tumor model were performed to indicate the function and mechanism of circATIC in BLca progression and chemosensitivity in vivo. Results: In our study, we observed that circATIC expression was significantly enhanced in BLca tissues and cells and DDP resistant cells. Patients with higher circATIC expression have larger tumor diameter, higher incidence of postoperative metastasis and lower overall survival rate. Further experiments showed that circATIC accelerated BLca cell growth and metastasis and induced DDP resistance. Mechanistically, alternative splicing enzyme PTBP1 mediated the synthesis of circATIC. circATIC could enhance RCC2 mRNA stability via sponging miR-1247-5p or constructing a circATIC/LIN28A/RCC2 RNA-protein ternary complex. Finally, circATIC promotes RCC2 expression to enhance Epithelial-Mesenchymal Transition (EMT) progression and activate JNK signal pathway, thus strengthening DDP resistance in BLca cells. Conclusion: Our study demonstrated that circATIC promoted BLca progression and DDP resistance, and could serve as a potential target for BLca treatment.
Collapse
Affiliation(s)
- Chenchen Huang
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Yang Yang
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Xiaofei Wang
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Shuangchen Chen
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Peking University Shenzhen Hospital, China
| | - Zhifu Liu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Zheng Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Xingxing Tang
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Qian Zhang
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Peking University Binhai Hospital, Tianjin, China
| |
Collapse
|
9
|
Wang X, Liang C, Wang S, Ma Q, Pan X, Ran A, Qin C, Huang B, Yang F, Liu Y, Zhang Y, Ren J, Ning H, Li H, Jiang Y, Xiao B. RNA Binding Protein PTBP1 Promotes the Metastasis of Gastric Cancer by Stabilizing PGK1 mRNA. Cells 2024; 13:140. [PMID: 38247832 PMCID: PMC10814388 DOI: 10.3390/cells13020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Gastric cancer (GC) is the most common type of malignant tumor within the gastrointestinal tract, and GC metastasis is associated with poor prognosis. Polypyrimidine tract binding protein 1 (PTBP1) is an RNA-binding protein implicated in various types of tumor development and metastasis. However, the role of PTBP1 in GC metastasis remains elusive. In this study, we verified that PTBP1 was upregulated in GC tissues and cell lines, and higher PTBP1 level was associated with poorer prognosis. It was shown that PTBP1 knockdown in vitro inhibited GC cell migration, whereas PTBP1 overexpression promoted the migration of GC cells. In vivo, the knockdown of PTBP1 notably reduced both the size and occurrence of metastatic nodules in a nude mice liver metastasis model. We identified phosphoglycerate kinase 1 (PGK1) as a downstream target of PTBP1 and found that PTBP1 increased the stability of PGK1 by directly binding to its mRNA. Furthermore, the PGK1/SNAIL axis could be required for PTBP1's function in the promotion of GC cell migration. These discoveries suggest that PTBP1 could be a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Xiaolin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Ce Liang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Shimin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Qiang Ma
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Xiaojuan Pan
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Ai Ran
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Changhong Qin
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Bo Huang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Feifei Yang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Yuying Liu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Yuying Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Junwu Ren
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Hao Ning
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Haiping Li
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Yan Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Bin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| |
Collapse
|
10
|
Xie R, Liu L, Lu X, He C, Yao H, Li G. N6-methyladenosine modification of OIP5-AS1 promotes glycolysis, tumorigenesis, and metastasis of gastric cancer by inhibiting Trim21-mediated hnRNPA1 ubiquitination and degradation. Gastric Cancer 2024; 27:49-71. [PMID: 37897508 PMCID: PMC10761432 DOI: 10.1007/s10120-023-01437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/01/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Opa-interacting protein 5 antisense transcript 1 (OIP5-AS1) has been demonstrated to play vital roles in development and progression of tumors such as gastric cancer (GC). However, the detailed molecular mechanism of OIP5-AS1 has not been completely elucidated. Our study aimed to investigate the role and the epigenetic regulation mechanism of OIP5-AS1 in GC. METHODS OIP5-AS1 expression in GC tissues was detected by RT-qPCR. Loss- and gain-of-function experiments were conducted to assess the biological function of OIP5-AS1 in vitro and in vivo. The interaction of OIP5-AS1 with insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) or heterogeneous nuclear nucleoprotein A1 (hnRNPA1) was verified by bioinformatics analysis, RNA pull-down assays, and RNA immunoprecipitation assays. RESULTS In this study, we identified that OIP5-AS1 is specifically overexpressed in GC tumor tissues and cell lines and correlated with a poor prognosis. The loss of OIP5-AS1 suppressed the proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and glycolysis of GC cells, but the ectopic expression of OIP5-AS1 had the opposite impact. Meanwhile, knockdown of OIP5-AS1 inhibited tumor growth in patient-derived xenograft models, as well as repressed tumor metastasis. Mechanistically, IGF2BP3 could bind to OIP5-AS1 by N6-methyladenosine (m6A) modification sites on OIP5-AS1, thereby stabilizing OIP5-AS1. Moreover, OIP5-AS1 prevented Trim21-mediated ubiquitination and degradation of hnRNPA1, stabilizing hnRNPA1 protein and promoting the malignant progression of GC by regulating PKM2 signaling pathway. CONCLUSIONS In conclusion, this study highlighted that OIP5-AS1 is an oncogenic m6A-modified long non-coding RNA (lncRNA) in GC and that IGF2BP3/OIP5-AS1/hnRNPA1 axis may provide a potential diagnostic or prognostic target for GC.
Collapse
Affiliation(s)
- Rongjun Xie
- Department of General Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Zhuhui District, 336, Dongfeng South Road, Hengyang, 421002, China
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Baiyun District, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Longfei Liu
- Department of General Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Zhuhui District, 336, Dongfeng South Road, Hengyang, 421002, China
| | - Xianzhou Lu
- Department of General Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Zhuhui District, 336, Dongfeng South Road, Hengyang, 421002, China
| | - Chengjian He
- Department of Intensive Care Medicine, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Zhuhui District, 336, Dongfeng South Road, Hengyang, 421002, China
| | - Hongyi Yao
- Department of Intensive Care Medicine, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Zhuhui District, 336, Dongfeng South Road, Hengyang, 421002, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Baiyun District, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Gonzalez E, Flatt TG, Farooqi M, Johnson L, Ahmed AA. Polypyrimidine Tract Binding Protein: A Universal Player in Cancer Development. Curr Mol Med 2024; 24:1450-1460. [PMID: 37877563 DOI: 10.2174/0115665240251370231017053236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVES Polypyrimidine tract binding protein is a 57-Kda protein located in the perinucleolar compartment where it binds RNA and regulates several biological functions through the regulation of RNA splicing. Numerous research articles have been published that address the cellular network and functions of PTB and its isoforms in various disease states. METHODOLOGY Through an extensive PubMed search, we attempt to summarize the relevant research into this biomolecule. RESULTS Besides its roles in embryonic development, neuronal cell growth, RNA metabolism, apoptosis, and hematopoiesis, PTB can affect cancer growth via several metabolic, proliferative, and structural mechanisms. PTB overexpression has been documented in several cancers where it plays a role as a novel prognostic factor. CONCLUSION The diverse carcinogenic effect opens an argument into its potential role in inhibitory targeted therapy.
Collapse
Affiliation(s)
- Elizabeth Gonzalez
- Pediatric Hematology Oncology, Children Mercy Hospital, Kansas City, Missouri, USA
| | - Terrie G Flatt
- Pediatric Hematology Oncology, Children Mercy Hospital, Kansas City, Missouri, USA
| | - Midhat Farooqi
- Departments of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Lisa Johnson
- Pathology and Laboratory Medicine, Seattle Children's Hospital/University of Washington, Seattle, Washington, USA
| | - Atif A Ahmed
- Pathology and Laboratory Medicine, Seattle Children's Hospital/University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Arima J, Taniguchi K, Sugito N, Heishima K, Tokumaru Y, Inomata Y, Komura K, Tanaka T, Shibata MA, Lee SW, Akao Y. Antitumor effects of chemically modified miR-143 lipoplexes in a mouse model of pelvic colorectal cancer via myristoylated alanine-rich C kinase substrate downregulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102079. [PMID: 38213952 PMCID: PMC10783569 DOI: 10.1016/j.omtn.2023.102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/13/2023] [Indexed: 01/13/2024]
Abstract
Replenishing tumor-suppressor miRNAs (TS-miRNAs) is a potential next-generation nucleic acid-based therapeutic approach. Establishing an effective miRNA delivery system is essential to successful TS-miRNA therapy. To overcome vulnerability to RNA nucleases, we previously developed a chemically modified miRNA143-3p (CM-miR-143). In clinical practice, colorectal cancer (CRC) pelvic recurrence is an occasional challenge following curative resection, requiring a novel therapy because reoperative surgery poses a significant burden to the patient. Hence, we considered the use of CM-miR-143 as an alternative treatment. In this study, we used a mouse model bearing pelvic CRC adjacent to the rectum and investigated the anticancer effects of CM-miR-143 lipoplexes formulated from miRNA and a cationic liposome. Compared with commercial synthetic miR-143, CM-miR-143 lipoplexes accumulated heavily in regions of the pelvic CRC tumor where the blood flow was high. As a result, systemic administration of CM-miR-143 lipoplexes improved animal survival by significantly suppressing pelvic CRC tumors and relieving a lethal bowel obstruction caused by rectal compression. Detailed protein analysis revealed that the myristoylated alanine-rich C kinase is a novel target for CM-miR-143 lipoplexes. Our results suggest that CM-miR-143 is a potential next-generation drug candidate in the treatment of CRC pelvic recurrence.
Collapse
Affiliation(s)
- Jun Arima
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Kohei Taniguchi
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yosuke Inomata
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Kazumasa Komura
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Tomohito Tanaka
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Masa-Aki Shibata
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Sang-Woong Lee
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
13
|
Feng Y, Dong Y, Rao B, Yu Y, Su W, Zeng J, Zhao E, Chen Y, Fang S, Zhou Y, Lu J, Qiu F. A novel LINC00478 serves as a tumor suppressor in endometrial carcinoma progression. J Cancer Res Clin Oncol 2023; 149:14927-14940. [PMID: 37603104 DOI: 10.1007/s00432-023-05282-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are involved in the pathogenesis and progression of various cancers, but their roles in endometrial cancer (EC) are largely unknown. METHODS The expressions of LINC00478 and PTBP1 in EC tissues were determined by RT-qPCR. Cell counting kit-8, flow cytometry and Transwell assays were executed for detecting the roles of LINC00478 in EC cells proliferation, migration and invasion. The mouse-xenograft models were established by subcutaneous injection in vivo. The interaction between LINC00478 and PTBP1 was confirmed by RNA pull-down assay and RNA-binding protein immunoprecipitation assay. RESULTS LINC00478 was significantly down-regulated in EC tissues while compared to that in their paracancerous samples, and a higher expression level of LINC00478 was negatively correlated with clinical progress of EC patients. Functional experiments in vivo and in vitro revealed that LINC00478 overexpression could dramatically retard the proliferation of EC cells, decrease the rate of colony formation, suppress the migration and invasion abilities of EC cells in vitro and inhibit tumor growth in vivo. Mechanistically, LINC00478 regulated the expression of PTBP1, a key factor in the Warburg effect, and affected the metabolic process of EC cells. CONCLUSIONS LINC00478 acts as a tumor suppressor in EC by negatively controlling PTBP1 expression and influencing the Warburg effect, providing a potential biomarker and therapeutic target for patients with EC.
Collapse
Affiliation(s)
- Yingyi Feng
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Yongshun Dong
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Boqi Rao
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Yonghui Yu
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Wenpeng Su
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Jie Zeng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150, People's Republic of China
| | - Eryong Zhao
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, 510000, People's Republic of China
| | - Yongxiu Chen
- Department of Gynaecology and Obstetrics, Guangdong Women's and Children's Hospital, Guangzhou, 511400, People's Republic of China
| | - Shenying Fang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, People's Republic of China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, 215123, People's Republic of China
| | - Jiachun Lu
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Fuman Qiu
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
14
|
Zhu Q, Hu Y, Jiang W, Ou ZL, Yao YB, Zai HY. Circ-CCT2 Activates Wnt/β-catenin Signaling to Facilitate Hepatoblastoma Development by Stabilizing PTBP1 mRNA. Cell Mol Gastroenterol Hepatol 2023; 17:175-197. [PMID: 37866478 PMCID: PMC10758885 DOI: 10.1016/j.jcmgh.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND & AIMS Circ-CCT2 (hsa_circ_0000418) is a novel circular RNA that stems from the CCT2 gene. However, the expression of circ-CCT2 and its roles in hepatoblastoma are unknown. Our study aims to study the circ-CCT2 roles in hepatoblastoma development. METHODS Hepatoblastoma specimens were collected for examining the expression of circ-CCT2, TAF15, and PTBP1. CCK-8 and colony formation assays were applied for cell proliferation analysis. Migratory and invasive capacities were evaluated through wound healing and Transwell assays. The interaction between circ-CCT2, TAF15, and PTBP1 was validated by fluorescence in situ hybridization, RNA pull-down, and RNA immunoprecipitation. SKL2001 was used as an agonist of the Wnt/β-catenin pathway. A subcutaneous mouse model of hepatoblastoma was established for examining the function of circ-CCT2 in hepatoblastoma in vivo. RESULTS Circ-CCT2 was significantly up-regulated in hepatoblastoma. Overexpression of circ-CCT2 activated Wnt/β-catenin signaling and promoted hepatoblastoma progression, whereas knockdown of circ-CCT2 exerted opposite effects. Moreover, both TAF15 and PTBP1 were up-regulated in hepatoblastoma tissues and cells. TAF15 was positively correlated with the expression of circ-CCT2 and PTBP1 in hepatoblastoma. Furthermore, circ-CCT2 recruited and up-regulated TAF15 protein to stabilize PTBP1 mRNA and trigger Wnt/β-catenin signaling in hepatoblastoma. Overexpression of TAF15 or PTBP1 reversed knockdown of circ-CCT2-mediated suppression of hepatoblastoma progression. SKL2001-mediated activation of Wnt/β-catenin signaling reversed the anti-tumor effects of silencing of circ-CCT2, TAF15, or PTBP1. CONCLUSIONS Circ-CCT2 stabilizes PTBP1 mRNA and activates Wnt/β-catenin signaling through recruiting and up-regulating TAF15 protein, thus promoting hepatoblastoma progression. Our findings deepen the understanding of hepatoblastoma pathogenesis and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Qin Zhu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Wei Jiang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Zheng-Lin Ou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Yuan-Bing Yao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Hong-Yan Zai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China.
| |
Collapse
|
15
|
Lee Y, Ito Y, Taniguchi K, Nuri T, Lee S, Ueda K. Experimental Study of Warburg Effect in Keloid Nodules: Implication for Downregulation of miR-133b. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e5202. [PMID: 37593704 PMCID: PMC10431320 DOI: 10.1097/gox.0000000000005202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/06/2023] [Indexed: 08/19/2023]
Abstract
Background A keloid is composed of several nodules, which are divided into two zones: the central zone (CZ; a hypoxic region) and the marginal zone (MZ; a normoxic region). Keloid nodules play a key role in energy metabolic activity for continuous growth by increasing in number and total area. In this study, we aimed to investigate the roles of the zones in the execution of the Warburg effect and identify which microRNAs regulate this phenomenon in keloid tissue. Methods Eleven keloids from patients were used. Using immunohistochemical analysis, 179 nodules were randomly chosen from these keloids to identify glycolytic enzymes, autophagic markers, pyruvate kinase M (PKM) 1/2, and polypyrimidine tract binding protein 1 (PTBP1). Western blot and qRT-PCR tests were also performed for PKM, PTBP1, and microRNAs (miR-133b and miR-200b, c). Results Immunohistochemical analysis showed that the expression of the autophagic (LC3, p62) and glycolytic (GLUT1, HK2) were significantly higher in the CZ than in the MZ. PKM2 expression was significantly higher than PKM1 expression in keloid nodules. Furthermore, PKM2 expression was higher in the CZ than in the MZ. However, PKM1 and PTBP1 expression levels were higher in the MZ than in the CZ. The qRT-PCR analysis showed that miR-133b-3p was moderately downregulated in the keloids compared with its expression in the normal skin tissue. Conclusions The Warburg effect occurred individually in nodules. The MZ presented PKM2-positive fibroblasts produced by activated PTBP1. In the CZ, PKM2-positive fibroblasts produced lactate. MiR-133b-3p was predicted to control the Warburg effect in keloids.
Collapse
Affiliation(s)
- Yuumi Lee
- From the Department of Plastic and Reconstructive Surgery, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Kohei Taniguchi
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Takashi Nuri
- From the Department of Plastic and Reconstructive Surgery, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - SangWoong Lee
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Koichi Ueda
- From the Department of Plastic and Reconstructive Surgery, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
16
|
Zong Y, Wang X, Cui B, Xiong X, Wu A, Lin C, Zhang Y. Decoding the regulatory roles of non-coding RNAs in cellular metabolism and disease. Mol Ther 2023; 31:1562-1576. [PMID: 37113055 PMCID: PMC10277898 DOI: 10.1016/j.ymthe.2023.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
Non-coding RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are being studied extensively in a variety of fields. Their roles in metabolism have received increasing attention in recent years but are not yet clear. The regulation of glucose, fatty acid, and amino acid metabolism is an imperative physiological process that occurs in living organisms and takes part in cancer and cardiovascular diseases. Here, we summarize the important roles played by non-coding RNAs in glucose metabolism, fatty acid metabolism, and amino acid metabolism, as well as the mechanisms involved. We also summarize the therapeutic advances for non-coding RNAs in diseases such as obesity, cardiovascular disease, and some metabolic diseases. Overall, non-coding RNAs are indispensable factors in metabolism and have a significant role in the three major metabolisms, which may be exploited as therapeutic targets in the future.
Collapse
Affiliation(s)
- Yuru Zong
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Xuliang Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Bing Cui
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Xiaowei Xiong
- Department of Cardiology and Macrovascular Disease, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Andrew Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Yaohua Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
17
|
Zhou Q, Kong D, Li W, Shi Z, Liu Y, Sun R, Ma X, Qiu C, Liu Z, Hou Y, Jiang J. LncRNA HOXB-AS3 binding to PTBP1 protein regulates lipid metabolism by targeting SREBP1 in endometrioid carcinoma. Life Sci 2023; 320:121512. [PMID: 36858312 DOI: 10.1016/j.lfs.2023.121512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Endometrial cancer (EC) is a malignant tumor with a high incidence in women, and the survival rate of high-risk patients decreases significantly after disease progression. The regulatory role of long non-coding RNAs (LncRNAs) in tumors has been widely appreciated, but there have been few studies in EC. To investigate the effect of HOXB-AS3 in EC, we used bioinformatics tools for prediction and collected clinical samples to detect the expression of HOXB-AS3. Colony formation assay, MTT assay, flow cytometry and apoptosis assay, and transwell assay were used to verify the role of HOXB-AS3 in EC. HOXB-AS3 was upregulated in EC, promoted the proliferation and invasive ability of EC cells, and inhibited apoptosis. In addition, the ROC curve illustrated its diagnostic value. We explored experiments via lentiviral transduction, FISH, Oil Red O staining, TC and FFA content detection, RNA-pulldown, RIP, and other mechanisms to reveal that HOXB-AS3 can bind to PTBP1 and co-regulate the expression of SREBP1, thereby regulating lipid metabolism in EC cells. To the best of our knowledge, this is the first study on HOXB-AS3 in disorders of lipid metabolism in EC. In addition, we believe HOXB-AS3 has the potential to be a neoplastic marker or a therapeutic target.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Deshui Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, PR China
| | - Wenzhi Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Zhengzheng Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yao Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Rui Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiaohong Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Chunping Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Zhiming Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Yixin Hou
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
18
|
Gonzalez E, Ahmed AA, McCarthy L, Chastain K, Habeebu S, Zapata-Tarres M, Cardenas-Cardos R, Velasco-Hidalgo L, Corcuera-Delgado C, Rodriguez-Jurado R, García-Rodríguez L, Parrales A, Iwakuma T, Farooqi MS, Lee B, Weir SJ, Flatt TG. Perinucleolar Compartment (PNC) Prevalence as an Independent Prognostic Factor in Pediatric Ewing Sarcoma: A Multi-Institutional Study. Cancers (Basel) 2023; 15:cancers15082230. [PMID: 37190159 DOI: 10.3390/cancers15082230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
The perinucleolar compartment (PNC) is a small nuclear body that plays important role in tumorigenesis. PNC prevalence correlates with poor prognosis and cancer metastasis. Its expression in pediatric Ewing sarcoma (EWS) has not previously been documented. In this study, we analyzed 40 EWS tumor cases from Caucasian and Hispanic patients for PNC prevalence by immunohistochemical detection of polypyrimidine tract binding protein and correlated the prevalence with dysregulated microRNA profiles. EWS cases showed staining ranging from 0 to 100%, which were categorized as diffuse (≥77%, n = 9, high PNC) or not diffuse (<77%, n = 31) for low PNC. High PNC prevalence was significantly higher in Hispanic patients from the US (n = 6, p = 0.017) and in patients who relapsed with metastatic disease (n = 4; p = 0.011). High PNC was associated with significantly shorter disease-free survival and early recurrence compared to those with low PNC. Using NanoString digital profiling, high PNC tumors revealed upregulation of eight and downregulation of 18 microRNAs. Of these, miR-320d and miR-29c-3p had the most significant differential expression in tumors with high PNC. In conclusion, this is the first study that demonstrates the presence of PNC in EWS, reflecting its utility as a predictive biomarker associated with tumor metastasis, specific microRNA profile, Hispanic ethnic origin, and poor prognosis.
Collapse
Affiliation(s)
- Elizabeth Gonzalez
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico
| | - Atif A Ahmed
- Department of Pathology, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Laura McCarthy
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Katherine Chastain
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Sahibu Habeebu
- Department of Pathology & Laboratory Medicine, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Marta Zapata-Tarres
- Research Coordination Mexican Institute of Social Security Foundation, Mexico City 06600, Mexico
| | - Rocio Cardenas-Cardos
- Departamento de Oncología Pediátrica, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Liliana Velasco-Hidalgo
- Departamento de Oncología Pediátrica, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Celso Corcuera-Delgado
- Departamento de Patología Pediátrica, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Rodolfo Rodriguez-Jurado
- Departamento de Patología Pediátrica, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | | | - Alejandro Parrales
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Tomoo Iwakuma
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Midhat S Farooqi
- Department of Pathology & Laboratory Medicine, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Brian Lee
- Department of Health Services and Outcomes Research, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Scott J Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Institute for Advancing Medical Innovation, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Terrie G Flatt
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
19
|
PTB Regulates the Metabolic Pathways and Cell Function of Keloid Fibroblasts through Alternative Splicing of PKM. Int J Mol Sci 2023; 24:ijms24065162. [PMID: 36982238 PMCID: PMC10049504 DOI: 10.3390/ijms24065162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Keloids, benign fibroproliferative cutaneous lesions, are characterized by abnormal growth and reprogramming of the metabolism of keloid fibroblasts (KFb). However, the underlying mechanisms of this kind of metabolic abnormality have not been identified. Our study aimed to investigate the molecules involved in aerobic glycolysis and its exact regulatory mechanisms in KFb. We discovered that polypyrimidine tract binding (PTB) was significantly upregulated in keloid tissues. siRNA silencing of PTB decreased the mRNA levels and protein expression levels of key glycolytic enzymes and corrected the dysregulation of glucose uptake and lactate production. In addition, mechanistic studies demonstrated that PTB promoted a change from pyruvate kinase muscle 1 (PKM1) to PKM2, and silencing PKM2 substantially reduced the PTB-induced increase in the flow of glycolysis. Moreover, PTB and PKM2 could also regulate the key enzymes in the tricarboxylic acid (TCA) cycle. Assays of cell function demonstrated that PTB promoted the proliferation and migration of KFb in vitro, and this phenomenon could be interrupted by PKM2 silencing. In conclusion, our findings indicate that PTB regulates aerobic glycolysis and the cell functions of KFb via alternative splicing of PKM.
Collapse
|
20
|
Zhao W, Li M, Wang S, Li Z, Li H, Li S. CircRNA SRRM4 affects glucose metabolism by regulating PKM alternative splicing via SRSF3 deubiquitination in epilepsy. Neuropathol Appl Neurobiol 2023; 49:e12850. [PMID: 36168302 DOI: 10.1111/nan.12850] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/10/2022] [Accepted: 07/23/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Several reports suggest that epigenetic therapy may be a potential method for treating epilepsy, and circular RNAs (circRNAs) play important roles in mediating the epigenetic mechanisms associated with epilepsy; however, currently there are no effective treatment methods to prevent the progression of epileptogenesis. The circRNA serine/arginine repetitive matrix 4 (circSRRM4) was found to exert regulatory effects in temporal lobe epilepsy (TLE); however, the mechanisms involved are still unknown. MATERIALS AND METHODS To elucidate the molecular mechanism of circSRRM4, we investigated human epileptic brain tissue, epileptic rats, neuron and astrocyte cell lines using RT-qPCR, western blot, fluorescence in situ hybridisation, immunofluorescence staining, Nissl stain, micro-PET-CT, RNA-pulldown, liquid chromatography-mass spectrometry, and RBP immunoprecipitation techniques. Furthermore, we evaluated the pyruvate kinase M1/2 (PKM) expression patterns in the human and rat models of TLE. RESULTS We detected the increased circSRRM4 expression in the hypometabolic lesions of patients with TLE and discovered that circSrrm4 has specific spatiotemporal characteristics in rats with kainic acid-induced epilepsy. The decreased PKM1 expression and increased PKM2 expression were similar to the Warburg effect in tumours. Notably, circSrrm4 silencing reduced the incidence and frequency of epilepsy, improved local hypometabolism, and prevented neuronal loss and astrocyte activation. CONCLUSION PKM2 promotes lactic acid production in the astrocytes by inducing glycolysis, thereby contributing to the energy source for epileptic seizures. Notably, circSRRM4 combines with and inhibits serine and arginine rich splicing factor 3 (SRSF3) from joining the ubiquitin-proteasome pathway, improving the SRSF3-regulated alternative splicing of PKM, and consequently stimulating glycolysis in cells.
Collapse
Affiliation(s)
- Wujun Zhao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Miaomiao Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuai Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhuang Li
- The Third Department of Neurosurgery, The People's Hospital of Liaoning Province, Shenyang, China
| | - Han Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shaoyi Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Yu X, Tong H, Chen J, Tang C, Wang S, Si Y, Wang S, Tang Z. CircRNA MBOAT2 promotes intrahepatic cholangiocarcinoma progression and lipid metabolism reprogramming by stabilizing PTBP1 to facilitate FASN mRNA cytoplasmic export. Cell Death Dis 2023; 14:20. [PMID: 36635270 PMCID: PMC9837196 DOI: 10.1038/s41419-022-05540-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023]
Abstract
The carcinogenic role of FASN by regulating lipid metabolism reprogramming has been well-established in multiple tumors. However, whether mechanisms during intrahepatic cholangiocarcinoma (ICC) progression, such as circRNAs, regulate FASN expression remains unknown. Here we demonstrate a lipid metabolism-related circRNA, circMBOAT2 (hsa_circ_0007334 in circBase), frequently upregulated in ICC tissues, and positively correlated with ICC malignant features. CircMBOAT2 knockdown inhibits the growth and metastasis of ICC cells. Mechanistically, circMBOAT2 combines with PTBP1 and protects PTBP1 from ubiquitin/proteasome-dependent degradation, impairing the function of PTBP1 to transfer FASN mRNA from the nucleus to the cytoplasm. Moreover, circMBOAT2 and FASN have the same effect on fatty acid profile, unsaturated fatty acids instead of saturated fatty acids are primarily regulated and associated with malignant behaviors of ICC cells. The levels of lipid peroxidation and ROS were significantly higher when FASN was knocked down and recovered when circMBOAT2 was overexpressed. Our results identified that circMBOAT2 was upregulated in ICC and promoted progression by stabilizing PTBP1 to facilitate FASN mRNA cytoplasmic export, which altered lipid metabolic profile and regulated redox homeostasis in ICC, suggesting that circMBOAT2 may serve as an available therapeutic target for ICC with active lipid metabolism.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Huanjun Tong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jialu Chen
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chenwei Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shuqing Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yu Si
- Department of Blood Transfusion, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shouhua Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Zhaohui Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Department of Blood Transfusion, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
22
|
Ding Y, Gao S, Zheng J, Chen X. Blocking lncRNA-SNHG16 sensitizes gastric cancer cells to 5-Fu through targeting the miR-506-3p-PTBP1-mediated glucose metabolism. Cancer Metab 2022; 10:20. [PMID: 36447254 PMCID: PMC9707261 DOI: 10.1186/s40170-022-00293-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a commonly occurring human malignancy. The 5-fluorouracil (5-Fu) is a first-line anti-gastric cancer agent. However, a large number of GC patients developed 5-Fu resistance. Currently, the roles and molecular mechanisms of the lncRNA-SNHG16-modulated 5-Fu resistance in gastric cancer remain elusive. METHODS Expressions of lncRNA, miRNA, and mRNA were detected by qRT-PCR and Western blot. RNA-RNA interaction was examined by RNA pull-down and luciferase assay. Cell viability and apoptosis rate under 5-Fu treatments were determined by MTT assay and Annexin V assay. The glycolysis rate of GC cells was evaluated by glucose uptake and ECAR. RESULTS Here, we report that SNHG16 as well as PTBP1, which is an RNA-binding protein, are positively associated with 5-Fu resistance to gastric cancer. SNHG16 and PTBP1 were significantly upregulated in gastric tumors and cell lines. Silencing SNHG16 or PTBP1 effectively sensitized GC cells to 5-Fu. Furthermore, glucose metabolism was remarkedly elevated in 5-Fu-resistant GC cells. Under low glucose supply, 5-Fu-resistant cells displayed higher vulnerability than parental GC cells. Bioinformatic analysis and luciferase assay demonstrated that SNHG16 downregulated miR-506-3p by sponging it to form a ceRNA network. We identified PTBP1 as a direct target of miR-506-3p in GC cells. RNA-seq results unveiled that PTBP1 positively regulated expressions of multiple glycolysis enzymes, including GLUT1, HK2, and LDHA. Bioinformatic analysis illustrated the 3'UTRs of glycolysis enzymes contained multiple PTBP1 binding sites, which were further verified by RNA pull-down and RNA immunoprecipitation assays. Consequently, we demonstrated that PTBP1 upregulated the mRNAs of glycolysis enzymes via promoting their mRNA stabilities. Finally, in vivo xenograft experiments validated that blocking the SNHG16-mediated miR-506-3p-PTBP1 axis effectively limited 5-Fu-resistant GC cell originated-xenograft tumor growth under 5-Fu treatments. CONCLUSIONS Our study demonstrates molecular mechanisms of the SNHG16-mediated 5-Fu resistance of GC cells through modulating the miR-506-3p-PTBP1-glucose metabolism axis, presenting a promising approach for anti-chemoresistance therapy.
Collapse
Affiliation(s)
- Yan Ding
- grid.265219.b0000 0001 2217 8588Department of Cellular and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA 70118 USA
| | - Sujie Gao
- grid.415954.80000 0004 1771 3349Department of Anesthesia, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033 P.R. China
| | - Jiabin Zheng
- grid.415954.80000 0004 1771 3349Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033 P.R. China
| | - Xuebo Chen
- grid.415954.80000 0004 1771 3349Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033 P.R. China
| |
Collapse
|
23
|
Tang X, Lin Y, He J, Luo X, Liang J, Zhu X. Downregulated miRNA-491-3p accelerates colorectal cancer growth by increasing uMtCK expression. PeerJ 2022; 10:e14285. [PMID: 36518289 PMCID: PMC9744150 DOI: 10.7717/peerj.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/02/2022] [Indexed: 11/29/2022] Open
Abstract
Colorectal carcinoma (CRC) is the second most frequent cancer worldwide. MiR-491-3p, a tumor-suppressive microRNA (miRNA, miR), has been revealed to be abnormally expressed in CRC tissues. Meanwhile, up-regulated ubiquitous mitochondrial creatine kinase (uMtCK) contributes to CRC cell proliferation. Here we aim to explore whether aberrant miR-491-3p expression promotes CRC progression through regulating uMtCK. To this end, miR-491-3p and uMtCK levels were assessed in CRC tissues using quantitative real-time PCR (qRT-PCR). The biological roles of miR-491-3p and uMtCK in regulating CRC growth were evaluated using colony formation assay and mouse Xenograft tumour model. We found that miR-491-3p expression was decreased in CRC tissues compared with matched para-cancerous tissues, whereas uMtCK expression was increased. Functionally, miR-491-3p overexpression repressed SW480 cell growth, whereas miR-491-3p depletion accelerated SW620 cell proliferation and growth. Inversely, uMtCK positively regulated CRC cell proliferation. Mechanistically, miR-491-3p post-transcriptionally downregulated uMtCK expression by binding to 3'-UTR of uMtCK. Consequently, restoring uMtCK expression markedly eliminated the role of miR-491-3p in suppressing CRC growth. Collectively, miR-491-3p functions as a tumour suppressor gene by repressing uMtCK, and may be a potential target for CRC treatment.
Collapse
Affiliation(s)
- Xingkui Tang
- Department of General Surgery, Panyu District Central Hospital, Guangzhou, China
| | - Yukun Lin
- Department of Electron Microscopy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jialin He
- Department of General Surgery, Panyu District Central Hospital, Guangzhou, China
| | - Xijun Luo
- Department of General Surgery, Panyu District Central Hospital, Guangzhou, China
| | - Junjie Liang
- Department of General Surgery, Panyu District Central Hospital, Guangzhou, China
| | - Xianjun Zhu
- Department of General Surgery, Panyu District Central Hospital, Guangzhou, China
| |
Collapse
|
24
|
Wang ZL, Huang RY, Han B, Wu F, Sun ZY, Li GZ, Zhang W, Zhao Z, Liu X. Identification of tumor-associated antigens and immune subtypes of lower-grade glioma and glioblastoma for mRNA vaccine development. Chin Neurosurg J 2022; 8:34. [PMID: 36307882 PMCID: PMC9614757 DOI: 10.1186/s41016-022-00301-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
Background mRNA became a promising therapeutic approach in many diseases. This study aimed to identify the tumor antigens specifically expressed in tumor cells for lower-grade glioma (LGG) and glioblastoma (GBM) patients. Methods In this work, the mRNA microarray expression profile and clinical data were obtained from 301 samples in the Chinese Glioma Genome Atlas (CGGA) database, the mRNA sequencing data and clinical data of 701 samples were downloaded from The Cancer Genome Atlas (TCGA) database. Genetic alterations profiles were extracted from CGGA and cBioPortal datasets. R language and GraphPad Prism software were applied for the statistical analysis and graph work. Results PTBP1 and SLC39A1, which were overexpressed and indicated poor prognosis in LGG patients, were selected as tumor-specific antigens for LGG patients. Meanwhile, MMP9 and SLC16A3, the negative prognostic factors overexpressed in GBM, were identified as tumor-specific antigens for GBM patients. Besides, three immune subtypes (LGG1-LGG3) and eight WGCNA modules were identified in LGG patients. Meanwhile, two immune subtypes (GBM1–GBM2) and 10 WGCNA modules were selected in GBM. The immune characteristics and potential functions between different subtypes were diversity. LGG2 and GBM1 immune subtype were associated with longer overall survival than other subtypes. Conclusion In this study, PTBP1 and SLC39A1 are promising antigens for mRNA vaccines development in LGG, and MMP9 and SLC16A3 were potential antigens in GBM. Our analyses indicated that mRNA vaccine immunotherapy was more suitable for LGG2 and GBM1 subtypes. This study was helpful for the development of glioma immunotherapies. Supplementary Information The online version contains supplementary material available at 10.1186/s41016-022-00301-4.
Collapse
Affiliation(s)
- Zhi-liang Wang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Ruo-yu Huang
- grid.411617.40000 0004 0642 1244Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Beijing, 100070 People’s Republic of China
| | - Bo Han
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Fan Wu
- grid.411617.40000 0004 0642 1244Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Beijing, 100070 People’s Republic of China
| | - Zhi-yan Sun
- grid.411617.40000 0004 0642 1244Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Beijing, 100070 People’s Republic of China
| | - Guan-zhang Li
- grid.411617.40000 0004 0642 1244Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Beijing, 100070 People’s Republic of China
| | - Wei Zhang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zheng Zhao
- grid.411617.40000 0004 0642 1244Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Beijing, 100070 People’s Republic of China
| | - Xing Liu
- grid.411617.40000 0004 0642 1244Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Beijing, 100070 People’s Republic of China
| |
Collapse
|
25
|
Chen XX, Zhang BH, Lu YC, Li ZQ, Chen CY, Yang YC, Chen YJ, Ma D. A novel 16-gene alternative mRNA splicing signature predicts tumor relapse and indicates immune activity in stage I–III hepatocellular carcinoma. Front Pharmacol 2022; 13:939912. [PMID: 36147313 PMCID: PMC9485890 DOI: 10.3389/fphar.2022.939912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a lethal disease with high relapse and dismal survival rates. Alternative splicing (AS) plays a crucial role in tumor progression. Herein, we aim to integratedly analyze the relapse-associated AS events and construct a signature predicting tumor relapse in stage I–III HCC. Methods: AS events of stage I–III HCC with tumor relapse or long-term relapse-free survival were profiled to identify the relapse-associated AS events. A splicing network was set up to analyze the correlation between the relapse-associated AS events and splicing factors. Cox regression analysis and receiver operating characteristic curve were performed to develop and validate the relapse-predictive AS signature. Single-sample gene set enrichment analysis (ssGSEA) and the ESTIMATE algorithm were used to assess the immune infiltration status of the HCC microenvironment between different risk subgroups. Unsupervised cluster analysis was conducted to assess the relationship between molecular subtypes and local immune status and clinicopathological features. Results: In total, 2441 ASs derived from 1634 mRNA were identified as relapse-associated AS events. By analyzing the proteins involved in the relapse-associated AS events, 1573 proteins with 11590 interactions were included in the protein–protein interaction (PPI) network. In total, 16 splicing factors and 61 relapse-associated AS events with 85 interactions were involved in the splicing network. The relevant genes involved in the PPI network and splicing network were also analyzed by Gene Ontology enrichment analysis. Finally, we established a robust 16-gene AS signature for predicting tumor relapse in stage I–III HCC with considerable AUC values in all of the training cohort, testing cohort, and entire cohort. The ssGSEA and ESTIMATE analyses showed that the AS signature was significantly associated with the immune status of the HCC microenvironment. Moreover, four molecular subgroups with distinguishing tumor relapse modes and local immune status were also revealed. Conclusion: Our study built a novel 16-gene AS signature that robustly predicts tumor relapse and indicates immune activity in stage I–III HCC, which may facilitate the deep mining of the mechanisms associated with tumor relapse and tumor immunity and the development of novel individualized treatment targets for HCC.
Collapse
Affiliation(s)
- Xu-Xiao Chen
- Department of General Surgery, Hepatobiliary Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xu-Xiao Chen, ; Yong-Jun Chen, ; Di Ma,
| | - Bao-Hua Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Yan-Cen Lu
- Department of General Surgery, Hepatobiliary Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Qiang Li
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong-Yan Chen
- Department of General Surgery, Hepatobiliary Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Chen Yang
- Department of General Surgery, Hepatobiliary Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Jun Chen
- Department of General Surgery, Hepatobiliary Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xu-Xiao Chen, ; Yong-Jun Chen, ; Di Ma,
| | - Di Ma
- Department of General Surgery, Hepatobiliary Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xu-Xiao Chen, ; Yong-Jun Chen, ; Di Ma,
| |
Collapse
|
26
|
Wang J, Sun D, Wang M, Cheng A, Zhu Y, Mao S, Ou X, Zhao X, Huang J, Gao Q, Zhang S, Yang Q, Wu Y, Zhu D, Jia R, Chen S, Liu M. Multiple functions of heterogeneous nuclear ribonucleoproteins in the positive single-stranded RNA virus life cycle. Front Immunol 2022; 13:989298. [PMID: 36119073 PMCID: PMC9478383 DOI: 10.3389/fimmu.2022.989298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RNA binding proteins that are implicated in RNA metabolism, such as alternative splicing, mRNA stabilization and translational regulation. According to their different cellular localization, hnRNPs display multiple functions. Most hnRNPs were predominantly located in the nucleus, but some of them could redistribute to the cytoplasm during virus infection. HnRNPs consist of different domains and motifs that enable these proteins to recognize predetermined nucleotide sequences. In the virus-host interactions, hnRNPs specifically bind to viral RNA or proteins. And some of the viral protein-hnRNP interactions require the viral RNA or other host factors as the intermediate. Through various mechanisms, hnRNPs could regulate viral translation, viral genome replication, the switch of translation to replication and virion release. This review highlights the common features and the distinguish roles of hnRNPs in the life cycle of positive single-stranded RNA viruses.
Collapse
Affiliation(s)
- Jingming Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- *Correspondence: Anchun Cheng,
| | - Yukun Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
27
|
Fan N, Fu H, Feng X, Chen Y, Wang J, Wu Y, Bian Y, Li Y. Long non-coding RNAs play an important regulatory role in tumorigenesis and tumor progression through aerobic glycolysis. Front Mol Biosci 2022; 9:941653. [PMID: 36072431 PMCID: PMC9441491 DOI: 10.3389/fmolb.2022.941653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Compared to normal cells, cancer cells generate ATP mainly through aerobic glycolysis, which promotes tumorigenesis and tumor progression. Long non-coding RNAs (LncRNAs) are a class of transcripts longer than 200 nucleotides with little or without evident protein-encoding function. LncRNAs are involved in the ten hallmarks of cancer, interestingly, they are also closely associated with aerobic glycolysis. However, the mechanism of this process is non-transparent to date. Demonstrating the mechanism of lncRNAs regulating tumorigenesis and tumor progression through aerobic glycolysis is particularly critical for cancer therapy, and may provide novel therapeutic targets or strategies in cancer treatment. In this review, we discuss the role of lncRNAs and aerobic glycolysis in tumorigenesis and tumor progression, and further explore their interaction, in hope to provide a novel therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Ni Fan
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuchen Feng
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yatong Chen
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyu Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuqi Wu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Bian
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Yuhong Bian, ; Yingpeng Li,
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Yuhong Bian, ; Yingpeng Li,
| |
Collapse
|
28
|
Pyruvate kinase M1 regulates butyrate metabolism in cancerous colonocytes. Sci Rep 2022; 12:8771. [PMID: 35610475 PMCID: PMC9130307 DOI: 10.1038/s41598-022-12827-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/05/2022] [Indexed: 11/08/2022] Open
Abstract
Colorectal cancer (CRC) cells shift metabolism toward aerobic glycolysis and away from using oxidative substrates such as butyrate. Pyruvate kinase M1/2 (PKM) is an enzyme that catalyzes the last step in glycolysis, which converts phosphoenolpyruvate to pyruvate. M1 and M2 are alternatively spliced isoforms of the Pkm gene. The PKM1 isoform promotes oxidative metabolism, whereas PKM2 enhances aerobic glycolysis. We hypothesize that the PKM isoforms are involved in the shift away from butyrate oxidation towards glycolysis in CRC cells. Here, we find that PKM2 is increased and PKM1 is decreased in human colorectal carcinomas as compared to non-cancerous tissue. To test whether PKM1/2 alter colonocyte metabolism, we created a knockdown of PKM2 and PKM1 in CRC cells to analyze how butyrate oxidation and glycolysis would be impacted. We report that butyrate oxidation in CRC cells is regulated by PKM1 levels, not PKM2. Decreased butyrate oxidation observed through knockdown of PKM1 and PKM2 is rescued through re-addition of PKM1. Diminished PKM1 lowered mitochondrial basal respiration and decreased mitochondrial spare capacity. We demonstrate that PKM1 suppresses glycolysis and inhibits hypoxia-inducible factor-1 alpha. These data suggest that reduced PKM1 is, in part, responsible for increased glycolysis and diminished butyrate oxidation in CRC cells.
Collapse
|
29
|
PTBP1 as a Promising Predictor of Poor Prognosis by Regulating Cell Proliferation, Immunosuppression, and Drug Sensitivity in SARC. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5687238. [PMID: 35651729 PMCID: PMC9151003 DOI: 10.1155/2022/5687238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022]
Abstract
Background. Sarcomas (SARC) have been found as rare and heterogeneous malignancies with poor prognosis. PTBP1, belonging to the hnRNPs family, plays an essential role in some biological functions (e.g., pre-mRNA splicing, cell growth, and nervous system development). However, the role of PTBP1 in SARC remains unclear. In this study, the aim was to investigate the potential role of PTBP1 with a focus on SARC. Methods. The expression, prognostic value, possible biological pathways of PTBP1, and its relationship with immune infiltration and drug sensitivity were comprehensively analyzed based on multiple databases. PTBP1 was further validated in osteosarcoma as the most prominent bone SARC. The expression of PTBP1 was investigated through IHC. The prognostic value of PTBP1 was verified in TARGET-OS databases. CRISPR/Cas9-mediated PTBP1 knockout HOS human osteosarcoma cell lines were used to assess the effect of PTBP1 on cell proliferation, migration, metastasis and cell cycle by CCK-8, Transwell migration, invasion, and FACS experiment. Result. PTBP1 was highly expressed and significantly correlated with poor prognosis in several cancers, especially in SARC, which was validated in the clinical cohort and osteosarcoma cell lines. The genetic alteration of PTBP1 was found most frequently in SARC. Besides, PTBP1 played a role in oncogenesis and immunity through cell cycle, TGFB, autophagy, and WNT pathways at a pan-cancer level. Knockout of PTBP1 was observed to negatively affect proliferation, migration, metastasis, and cell cycle of osteosarcoma in vitro. Furthermore, PTBP1 was significantly correlated with tumor immune infiltration, DNA methylation, TMB, and MSI in a wide variety of cancers. Moreover, the potential of the expression level of PTBP1 in predicting drug sensitivity was assessed. Conclusions. PTBP1 is highly expressed and correlated with prognosis and plays a vital pathogenic role in oncogenesis and immune infiltration of various cancers, especially for SARC, which suggests that it may be a promising prognostic marker and therapeutic target in the future.
Collapse
|
30
|
Downregulation of miR-122-5p Activates Glycolysis via PKM2 in Kupffer Cells of Rat and Mouse Models of Non-Alcoholic Steatohepatitis. Int J Mol Sci 2022; 23:ijms23095230. [PMID: 35563621 PMCID: PMC9101520 DOI: 10.3390/ijms23095230] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) has pathological characteristics similar to those of alcoholic hepatitis, despite the absence of a drinking history. The greatest threat associated with NASH is its progression to cirrhosis and hepatocellular carcinoma. The pathophysiology of NASH is not fully understood to date. In this study, we investigated the pathophysiology of NASH from the perspective of glycolysis and the Warburg effect, with a particular focus on microRNA regulation in liver-specific macrophages, also known as Kupffer cells. We established NASH rat and mouse models and evaluated various parameters including the liver-to-body weight ratio, blood indexes, and histopathology. A quantitative phosphoproteomic analysis of the NASH rat model livers revealed the activation of glycolysis. Western blotting and immunohistochemistry results indicated that the expression of pyruvate kinase muscle 2 (PKM2), a rate-limiting enzyme of glycolysis, was upregulated in the liver tissues of both NASH models. Moreover, increases in PKM2 and p-PKM2 were observed in the early phase of NASH. These observations were partially induced by the downregulation of microRNA122-5p (miR-122-5p) and occurred particularly in the Kupffer cells. Our results suggest that the activation of glycolysis in Kupffer cells during NASH was partially induced by the upregulation of PKM2 via miR-122-5p suppression.
Collapse
|
31
|
Allen CNS, Santerre M, Arjona SP, Ghaleb LJ, Herzi M, Llewellyn MD, Shcherbik N, Sawaya BE. SARS-CoV-2 Causes Lung Inflammation through Metabolic Reprogramming and RAGE. Viruses 2022; 14:983. [PMID: 35632725 PMCID: PMC9143006 DOI: 10.3390/v14050983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/26/2022] Open
Abstract
Clinical studies indicate that patients infected with SARS-CoV-2 develop hyperinflammation, which correlates with increased mortality. The SARS-CoV-2/COVID-19-dependent inflammation is thought to occur via increased cytokine production and hyperactivity of RAGE in several cell types, a phenomenon observed for other disorders and diseases. Metabolic reprogramming has been shown to contribute to inflammation and is considered a hallmark of cancer, neurodegenerative diseases, and viral infections. Malfunctioning glycolysis, which normally aims to convert glucose into pyruvate, leads to the accumulation of advanced glycation end products (AGEs). Being aberrantly generated, AGEs then bind to their receptor, RAGE, and activate several pro-inflammatory genes, such as IL-1b and IL-6, thus, increasing hypoxia and inducing senescence. Using the lung epithelial cell (BEAS-2B) line, we demonstrated that SARS-CoV-2 proteins reprogram the cellular metabolism and increase pyruvate kinase muscle isoform 2 (PKM2). This deregulation promotes the accumulation of AGEs and senescence induction. We showed the ability of the PKM2 stabilizer, Tepp-46, to reverse the observed glycolysis changes/alterations and restore this essential metabolic process.
Collapse
Affiliation(s)
- Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
| | - Lea J. Ghaleb
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
| | - Muna Herzi
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
| | - Megan D. Llewellyn
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA;
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab., FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (M.S.); (S.P.A.); (L.J.G.); (M.H.); (M.D.L.)
- Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
32
|
The Role of PKM2 in the Regulation of Mitochondrial Function: Focus on Mitochondrial Metabolism, Oxidative Stress, Dynamic, and Apoptosis. PKM2 in Mitochondrial Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7702681. [PMID: 35571239 PMCID: PMC9106463 DOI: 10.1155/2022/7702681] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
The M2 isoform of pyruvate kinase (PKM2) is one isoform of pyruvate kinase (PK). PKM2 is expressed at high levels during embryonic development and tumor progression and is subject to complex allosteric regulation. PKM2 is a special glycolytic enzyme that regulates the final step of glycolysis; the role of PKM2 in the metabolism, survival, and apoptosis of cancer cells has received increasing attention. Mitochondria are directly or indirectly involved in the regulation of energy metabolism, susceptibility to oxidative stress, and cell death; however, the role of PKM2 in mitochondrial functions remains unclear. Herein, we review the related mechanisms of the role of PKM2 in the regulation of mitochondrial functions from the aspects of metabolism, reactive oxygen species (ROS), dynamic, and apoptosis, which can be highlighted as a target for the clinical management of cardiovascular and metabolic diseases.
Collapse
|
33
|
Duan L, Wang J, Zhang D, Yuan Y, Tang L, Zhou Y, Jiang X. Immune-Related miRNA-195-5p Inhibits the Progression of Lung Adenocarcinoma by Targeting Polypyrimidine Tract-Binding Protein 1. Front Oncol 2022; 12:862564. [PMID: 35600383 PMCID: PMC9117652 DOI: 10.3389/fonc.2022.862564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Lung adenocarcinoma (LUAD) is the most common type of cancer and the leading cause of cancer-related death worldwide, resulting in a huge economic and social burden. MiRNA-195-5p plays crucial roles in the initiation and progression of cancer. However, the significance of the miRNA-195-5p/polypyrimidine tract-binding protein 1 (miRNA-195-5p/PTBP1) axis in the progression of lung adenocarcinoma (LUAD) remains unclear. Methods Data were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The starBase database was employed to examine the expression of miRNA-195-5p, while the Kaplan–Meier plotter, UALCAN, and Gene Expression Profiling Interactive Analysis (GEPIA) databases were utilized to analyze the tumor stage and prognostic value of miRNA and PTBP1. Quantitative reverse transcription-polymerase chain reaction assay was conducted to detect the expression levels of miRNA-195-5p in LUAD cell lines and tissues. The effects of miRNA-195-5p on cell proliferation and migration were examined using the cell growth curve, clone information, transwell assays, and wound healing assays. Results We found that miRNA-195-5p was down-regulated in LUAD cancer and cell lines. Importantly, its low levels were related to the tumor stage, lymph node metastasis, and poor prognosis in LUAD. Overexpression of miR-195-5p significantly inhibited cell growth and migration promotes cell apoptosis. Further study revealed that PTBP1 is a target gene of miRNA-195-5p, and overexpression of miRNA-195-5p inhibited the progression of LUAD by inhibiting PTBP1 expression. MiRNA-195-5p expression was related to immune infiltration in lung adenocarcinoma. Moreover, PTBP1 was negatively correlated with diverse immune cell infiltration and drug sensitivity. Conclusion Our findings uncover a pivotal mechanism that miRNA-195-5p by modulate PTBP1 expression to inhibit the progression of LUAD. MiRNA-195-5p could be a novel diagnostic and prognostic molecular marker for LUAD.
Collapse
Affiliation(s)
- Lincan Duan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dahang Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yixiao Yuan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Tang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongchun Zhou
- Molecular Diagnostic Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Yongchun Zhou, ; Xiulin Jiang,
| | - Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
- *Correspondence: Yongchun Zhou, ; Xiulin Jiang,
| |
Collapse
|
34
|
Wang W, Xu R, Zhao H, Xiong Y, He P. CircEXOC5 promotes ferroptosis by enhancing ACSL4 mRNA stability via binding to PTBP1 in sepsis-induced acute lung injury. Immunobiology 2022; 227:152219. [DOI: 10.1016/j.imbio.2022.152219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/29/2022] [Accepted: 04/09/2022] [Indexed: 12/16/2022]
|
35
|
Turroni F, Rizzo SM, Ventura M, Bernasconi S. Cross-talk between the infant/maternal gut microbiota and the endocrine system: a promising topic of research. MICROBIOME RESEARCH REPORTS 2022; 1:14. [PMID: 38045647 PMCID: PMC10688790 DOI: 10.20517/mrr.2021.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/05/2023]
Abstract
The infant gut microbiota is the set of microorganisms colonizing the baby's intestine. This complex ecosystem appears to be related to various physiological conditions of the host and it has also been shown to act as one of the most crucial determinants of infant's health. Furthermore, the mother's endocrine system, through its hormones, can have an effect on the composition of the newborn's gut microbiota. In this perspective, we summarize the recent state of the art on the intricate relationships involving the intestinal microbiota and the endocrine system of mother/baby to underline the need to study the molecular mechanisms that appear to be involved.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| | - Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| | | |
Collapse
|
36
|
Dai S, Wang C, Zhang C, Feng L, Zhang W, Zhou X, He Y, Xia X, Chen B, Song W. PTB: Not just a polypyrimidine tract-binding protein. J Cell Physiol 2022; 237:2357-2373. [PMID: 35288937 DOI: 10.1002/jcp.30716] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023]
Abstract
Polypyrimidine tract-binding protein (PTB), as a member of the heterogeneous nuclear ribonucleoprotein family, functions by rapidly shuttling between the nucleus and the cytoplasm. PTB is involved in the alternative splicing of pre-messenger RNA (mRNA) and almost all steps of mRNA metabolism. PTB regulation is organ-specific; brain- or muscle-specific microRNAs and long noncoding RNAs partially contribute to regulating PTB, thereby modulating many physiological and pathological processes, such as embryonic development, cell development, spermatogenesis, and neuron growth and differentiation. Previous studies have shown that PTB knockout can inhibit tumorigenesis and development. The knockout of PTB in glial cells can be reprogrammed into functional neurons, which shows great promise in the field of nerve regeneration but is controversial.
Collapse
Affiliation(s)
- Shirui Dai
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China.,Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, P. R. China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Xuezhi Zhou
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Ye He
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Xiaobo Xia
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, P. R. China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| |
Collapse
|
37
|
PT109, a novel multi-kinase inhibitor suppresses glioblastoma multiforme through cell reprogramming: Involvement of PTBP1/PKM1/2 pathway. Eur J Pharmacol 2022; 920:174837. [PMID: 35218719 DOI: 10.1016/j.ejphar.2022.174837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 01/17/2023]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent type and lethal form of primary malignant brain tumor, accounting for about 40-50% of intracranial tumors and without effective treatments now. Cell reprogramming is one of the emerging treatment approaches for GBM, which can reprogram glioblastomas into non-tumor cells to achieve therapeutic effects. However, anti-GBM drugs through reprogramming can only provide limited symptom relief, and cannot completely cure GBM. Here we showed that PT109, a novel multi-kinase inhibitor, suppressed GBM's proliferation, colony formation, migration and reprogramed GBM into oligodendrocytes. Analysis of quantitative proteomics data after PT109 administration of human GBM cells showed significant influence of energy metabolism, cell cycle, and immune system processes of GBM-associated protein. Metabolomics analysis showed that PT109 improved the aerobic respiration process in glioma cells. Meanwhile, we found that PT109 could significantly increase the ratio of Pyruvate kinase M1/2 (PKM1/2) by reducing the level of polypyrimidine tract-binding protein 1 (PTBP1). Altogether, this work developed a novel anti-GBM small molecule PT109, which reprogramed GBM into oligodendrocytes and changed the metabolic pattern of GBM through the PTBP1/PKM1/2 pathway, providing a new strategy for the development of anti-glioma drugs.
Collapse
|
38
|
Alternative Splicing, Epigenetic Modifications and Cancer: A Dangerous Triangle, or a Hopeful One? Cancers (Basel) 2022; 14:cancers14030560. [PMID: 35158828 PMCID: PMC8833605 DOI: 10.3390/cancers14030560] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Epigenetics studies the alteration of gene expression without changing DNA sequence and very often, epigenetic dysregulation causes cancer. Alternative splicing is a mechanism that results in the production of several mRNA isoforms from a single gene and aberrant splicing is also a frequent cause of cancer. The present review is built on the interrelations of epigenetics and alternative splicing. In an intuitive way, we say that epigenetic modifications and alternative splicing are at two vertices of a triangle, the third vertex being occupied by cancer. Interconnection between alternative splicing and epigenetic modifications occurs backward and forward and the mechanisms involved are widely reviewed. These connections also provide novel diagnostic or prognostic tools, which are listed. Finally, as epigenetic alterations are reversible and aberrant alternative splicing may be corrected, the therapeutic possibilities to break the triangle are discussed. Abstract The alteration of epigenetic modifications often causes cancer onset and development. In a similar way, aberrant alternative splicing may result in oncogenic products. These issues have often been individually reviewed, but there is a growing body of evidence for the interconnection of both causes of cancer. Actually, aberrant splicing may result from abnormal epigenetic signalization and epigenetic factors may be altered by alternative splicing. In this way, the interrelation between epigenetic marks and alternative splicing form the base of a triangle, while cancer may be placed at the vertex. The present review centers on the interconnections at the triangle base, i.e., between alternative splicing and epigenetic modifications, which may result in neoplastic transformations. The effects of different epigenetic factors, including DNA and histone modifications, the binding of non-coding RNAs and the alterations of chromatin organization on alternative splicing resulting in cancer are first considered. Other less-frequently considered questions, such as the epigenetic regulation of the splicing machinery, the aberrant splicing of epigenetic writers, readers and erasers, etc., are next reviewed in their connection with cancer. The knowledge of the above-mentioned relationships has allowed increasing the collection of biomarkers potentially useful as cancer diagnostic and/or prognostic tools. Finally, taking into account on one hand that epigenetic changes are reversible, and some epigenetic drugs already exist and, on the other hand, that drugs intended for reversing aberrations in alternative splicing, therapeutic possibilities for breaking the mentioned cancer-related triangle are discussed.
Collapse
|
39
|
Shima T, Taniguchi K, Tokumaru Y, Inomata Y, Arima J, Lee SW, Takabe K, Yoshida K, Uchiyama K. Glucose transporter‑1 inhibition overcomes imatinib resistance in gastrointestinal stromal tumor cells. Oncol Rep 2021; 47:7. [PMID: 34738628 PMCID: PMC8600406 DOI: 10.3892/or.2021.8218] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/01/2021] [Indexed: 12/23/2022] Open
Abstract
Imatinib mesylate (imatinib) is the primary agent of choice used to treat gastrointestinal stromal tumors (GIST). However, drug resistance to imatinib poses a major obstacle to treatment efficacy. In addition, the relationship between imatinib resistance and glycolysis is poorly understood. Glucose transporter (GLUT)-1 is a key component of glycolysis. The present study aimed to assess the potential relationship between components in the glycolytic pathway and the acquisition of imatinib resistance by GIST cells, with particular focus on GLUT-1. An imatinib-resistant GIST cell line was established through the gradual and continuous imatinib treatment of the parental human GIST cell line GIST-T1. The expression of glycolysis-related molecules (GLUT-1, hexokinase 2, pyruvate kinase M2 and lactate dehydrogenase) was assessed in parental and imatinib-resistant cells by western blotting, reverse transcription-quantitative PCR and glucose and lactate measurement kits. In addition, clinical information and transcriptomic data obtained from the gene expression omnibus database (GSE15966) were used to confirm the in vitro results. The potential effects of GLUT-1 inhibition on the expression of proteins in the glycolysis (GLUT-1, hexokinase 2, pyruvate kinase M2 and lactate dehydrogenase) and apoptosis pathways (Bcl-2, cleaved PARP, caspase-3 and caspase-9) in imatinib-resistant cells were then investigated following gene silencing and treatment using the GLUT-1 inhibitor WZB117 by western blotting. For gene silencing, the mature siRNAs for SLC2A1 were used for cell transfection. Annexin V-FITC/PI double-staining followed by flow cytometry was used to measure apoptosis whereas three-dimensional culture experiments were used to create three-dimensional spheroid cells where cell viability and spheroid diameter were measured. Although imatinib treatment downregulated GLUT-1 expression and other glycolysis pathway components hexokinase 2, pyruvate kinase M2, and lactate dehydrogenase in parental GIST-T1 cells even at low concentrations. By contrast, expression of these glycolysis pathway components in imatinib-resistant cells were increased by imatinib treatment. WZB117 administration significantly downregulated AKT phosphorylation and Bcl-2 expression in imatinib-resistant cells, whereas the combined administration of imatinib and WZB117 conferred synergistic growth inhibition effects in apoptosis assay. WZB117 was found to exert additional inhibitory effects by inducing apoptosis in imatinib-resistant cells. Therefore, the present study suggests that GLUT-1 is involved in the acquisition of imatinib resistance by GIST cells, which can be overcome by combined treatment with WZB117 and imatinib.
Collapse
Affiliation(s)
- Takafumi Shima
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Kohei Taniguchi
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Yosuke Inomata
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Jun Arima
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Sang-Woong Lee
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501‑1194, Japan
| | - Kazuhisa Uchiyama
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| |
Collapse
|