1
|
Cohn GM, Daniel CJ, Eng JR, Sun XX, Pelz C, Chin K, Smith A, Lopez CD, Brody JR, Dai MS, Sears RC. MYC Serine 62 phosphorylation promotes its binding to DNA double strand breaks to facilitate repair and cell survival under genotoxic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644227. [PMID: 40166231 PMCID: PMC11957152 DOI: 10.1101/2025.03.19.644227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Genomic instability is a hallmark of cancer, driving oncogenic mutations that enhance tumor aggressiveness and drug resistance. MYC, a master transcription factor that is deregulated in nearly all human tumors, paradoxically induces replication stress and associated DNA damage while also increasing expression of DNA repair factors and mediating resistance to DNA-damaging therapies. Emerging evidence supports a non-transcriptional role for MYC in preserving genomic integrity at sites of active transcription and protecting stalled replication forks under stress. Understanding how MYC's genotoxic and genoprotective functions diverge may reveal new therapeutic strategies for MYC-driven cancers. Here, we identify a non-canonical role of MYC in DNA damage response (DDR) through its direct association with DNA breaks. We show that phosphorylation at serine 62 (pS62-MYC) is crucial for the efficient recruitment of MYC to damage sites, its interaction with repair factors BRCA1 and RAD51, and effective DNA repair to support cell survival under stress. Mass spectrometry analysis with MYC-BioID2 during replication stress reveals a shift in MYC's interactome, maintaining DDR associations while losing transcriptional regulators. These findings establish pS62-MYC as a key regulator of genomic stability and a potential therapeutic target in cancers.
Collapse
Affiliation(s)
- Gabriel M. Cohn
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Colin J. Daniel
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Jennifer R. Eng
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Carl Pelz
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | - Koei Chin
- Center for Early Detection Advanced Research, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Alexander Smith
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | - Charles D. Lopez
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Department of Hematology and Oncology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jonathan R. Brody
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Surgery, Oregon Health and Science University, Portland, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Mu-shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
2
|
Ju L, Wang H, Luo Y, Wang Y, Chen L, Han X, Lu R. Overexpression of MCM3 as a prognostic biomarker correlated with cell proliferation, cell cycle and immune regulation in hepatocellular carcinoma. J Cancer 2025; 16:1538-1554. [PMID: 39991578 PMCID: PMC11843239 DOI: 10.7150/jca.104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a common malignant tumor and has a poor prognosis. Minichromosome maintenance 3 (MCM3) protein is upregulated in several cancers, but the biological function, molecular mechanisms and the relationship with tumor immunity of MCM3 in HCC remain poorly understood. Methods: The expression levels and prognosis role of MCM3 in HCC were analyzed based on TCGA, GEO and LIHC databases, and 40 paired tissue samples. We conducted Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses on these DEGs to explore the potential impact of MCM3 on the biological behavior of HCC. In addition, flow cytometry, CCK-8, EdU, colony formation and nude mice xenograft models were employed to investigate the biological functions of MCM3. Furthermore, immune cell infiltration, markers and checkpoint-associated genes were analyzed by TIMER 2.0, ACLBI and TCGA database. Results: In this study, we investigated the expression and function of MCM3 in HCC. MCM3 was highly expressed in a variety of tumors including HCC, and high MCM3 expression was positively associated with various clinicopathological parameters and acted as an independent factor of the poor prognosis for overall survival in HCC. Meanwhile, immune characteristics analysis indicated that high MCM3 expression was related to the level of immune cell infiltration and immune checkpoints in HCC. Our functional enrichment analysis indicated that MCM3 is mainly involved in the cell cycle and cell metabolic related pathways. Moreover, in vitro and in vivo experiments further confirmed that MCM3 could promote the proliferation of HCC by regulating cell cycle progression. Conclusions: Our results indicated that MCM3 was up-regulated in HCC and might become a biomarker in the diagnosis and treatment of patients with HCC.
Collapse
Affiliation(s)
- Linling Ju
- Medical School of Nantong University, Nantong University, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People`s Hospital, Nantong 226000, Jiangsu, China
| | - Huixuan Wang
- Medical School of Nantong University, Nantong University, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People`s Hospital, Nantong 226000, Jiangsu, China
| | - Yunfeng Luo
- Medical School of Nantong University, Nantong University, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People`s Hospital, Nantong 226000, Jiangsu, China
| | - Yichen Wang
- Ulink High School of Suzhou Industrial Park, Suzhou 215006, Jiangsu, China
| | - Lin Chen
- Medical School of Nantong University, Nantong University, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People`s Hospital, Nantong 226000, Jiangsu, China
| | - Xudong Han
- Medical School of Nantong University, Nantong University, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People`s Hospital, Nantong 226000, Jiangsu, China
| | - Rujian Lu
- Medical School of Nantong University, Nantong University, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People`s Hospital, Nantong 226000, Jiangsu, China
| |
Collapse
|
3
|
Ahmed SMQ, Sasikumar J, Laha S, Das SP. Multifaceted role of the DNA replication protein MCM10 in maintaining genome stability and its implication in human diseases. Cancer Metastasis Rev 2024; 43:1353-1371. [PMID: 39240414 DOI: 10.1007/s10555-024-10209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
MCM10 plays a vital role in genome duplication and is crucial for DNA replication initiation, elongation, and termination. It coordinates several proteins to assemble at the fork, form a functional replisome, trigger origin unwinding, and stabilize the replication bubble. MCM10 overexpression is associated with increased aggressiveness in breast, cervical, and several other cancers. Disruption of MCM10 leads to altered replication timing associated with initiation site gains and losses accompanied by genome instability. Knockdown of MCM10 affects the proliferation and migration of cancer cells, manifested by DNA damage and replication fork arrest, and has recently been shown to be associated with clinical conditions like CNKD and RCM. Loss of MCM10 function is associated with impaired telomerase activity, leading to the accumulation of abnormal replication forks and compromised telomere length. MCM10 interacts with histones, aids in nucleosome assembly, binds BRCA2 to maintain genome integrity during DNA damage, prevents lesion skipping, and inhibits PRIMPOL-mediated repriming. It also interacts with the fork reversal enzyme SMARCAL1 and inhibits fork regression. Additionally, MCM10 undergoes several post-translational modifications and contributes to transcriptional silencing by interacting with the SIR proteins. This review explores the mechanism associated with MCM10's multifaceted role in DNA replication initiation, chromatin organization, transcriptional silencing, replication stress, fork stability, telomere length maintenance, and DNA damage response. Finally, we discuss the role of MCM10 in the early detection of cancer, its prognostic significance, and its potential use in therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Sumayyah M Q Ahmed
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Suparna Laha
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
4
|
Igarashi T, Yano K, Endo S, Shiotani B. Tolerance of Oncogene-Induced Replication Stress: A Fuel for Genomic Instability. Cancers (Basel) 2024; 16:3507. [PMID: 39456601 PMCID: PMC11506635 DOI: 10.3390/cancers16203507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Activation of oncogenes disturbs a wide variety of cellular processes and induces physiological dysregulation of DNA replication, widely referred to as replication stress (RS). Oncogene-induced RS can cause replication forks to stall or collapse, thereby leading to DNA damage. While the DNA damage response (DDR) can provoke an anti-tumor barrier to prevent the development of cancer, a small subset of cells triggers replication stress tolerance (RST), allowing precancerous cells to survive, thereby promoting clonal expansion and genomic instability (GIN). Genomic instability (GIN) is a hallmark of cancer, driving genetic alterations ranging from nucleotide changes to aneuploidy. These alterations increase the probability of oncogenic events and create a heterogeneous cell population with an enhanced ability to evolve. This review explores how major oncogenes such as RAS, cyclin E, and MYC induce RS through diverse mechanisms. Additionally, we delve into the strategies employed by normal and cancer cells to tolerate RS and promote GIN. Understanding the intricate relationship between oncogene activation, RS, and GIN is crucial to better understand how cancer cells emerge and to develop potential cancer therapies that target these vulnerabilities.
Collapse
Affiliation(s)
- Taichi Igarashi
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa 252-0373, Japan
| | - Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
| | - Syoju Endo
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of NCC Cancer Science, Division of Integrative Molecular Biomedicine, Biomedical Sciences and Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of Genome Stress Signaling, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
5
|
Wang Y, Ma L, He J, Gu H, Zhu H. Identification of cancer stem cell-related genes through single cells and machine learning for predicting prostate cancer prognosis and immunotherapy. Front Immunol 2024; 15:1464698. [PMID: 39267762 PMCID: PMC11390519 DOI: 10.3389/fimmu.2024.1464698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Background Cancer stem cells (CSCs) are a subset of cells within tumors that possess the unique ability to self-renew and give rise to diverse tumor cells. These cells are crucial in driving tumor metastasis, recurrence, and resistance to treatment. The objective of this study was to pinpoint the essential regulatory genes associated with CSCs in prostate adenocarcinoma (PRAD) and assess their potential significance in the diagnosis, prognosis, and immunotherapy of patients with PRAD. Method The study utilized single-cell analysis techniques to identify stem cell-related genes and evaluate their significance in relation to patient prognosis and immunotherapy in PRAD through cluster analysis. By utilizing diverse datasets and employing various machine learning methods for clustering, diagnostic models for PRAD were developed and validated. The random forest algorithm pinpointed HSPE1 as the most crucial prognostic gene among the stem cell-related genes. Furthermore, the study delved into the association between HSPE1 and immune infiltration, and employed molecular docking to investigate the relationship between HSPE1 and its associated compounds. Immunofluorescence staining analysis of 60 PRAD tissue samples confirmed the expression of HSPE1 and its correlation with patient prognosis in PRAD. Result This study identified 15 crucial stem cell-related genes through single-cell analysis, highlighting their importance in diagnosing, prognosticating, and potentially treating PRAD patients. HSPE1 was specifically linked to PRAD prognosis and response to immunotherapy, with experimental data supporting its upregulation in PRAD and association with poorer prognosis. Conclusion Overall, our findings underscore the significant role of stem cell-related genes in PRAD and unveil HSPE1 as a novel target related to stem cell.
Collapse
Affiliation(s)
- YaXuan Wang
- Cancer Research Centre Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Ma
- Department of Pharmacy, Tongren Hospital Affiliated to Wuhan University (The Third Hospital of Wuhan), Wuhan, China
| | - Jiaxin He
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - HaiJuan Gu
- Cancer Research Centre Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - HaiXia Zhu
- Cancer Research Centre Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| |
Collapse
|
6
|
Ouyang Y, Al-Amodi A, Tehseen M, Alhudhali L, Shirbini A, Takahashi M, Raducanu VS, Yi G, Danazumi A, De Biasio A, Hamdan S. Single-molecule characterization of SV40 replisome and novel factors: human FPC and Mcm10. Nucleic Acids Res 2024; 52:8880-8896. [PMID: 38967018 PMCID: PMC11347169 DOI: 10.1093/nar/gkae565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45-MCM-GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system.
Collapse
Affiliation(s)
- Yujing Ouyang
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Amani Al-Amodi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Muhammad Tehseen
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Lubna Alhudhali
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Afnan Shirbini
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Masateru Takahashi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Vlad-Stefan Raducanu
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Gang Yi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Ammar Usman Danazumi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Alfredo De Biasio
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Samir M Hamdan
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
7
|
Guilz NC, Ahn YO, Fatima H, Pedroza LA, Seo S, Soni RK, Wang N, Egli D, Mace EM. Replication Stress in Activated Human NK Cells Induces Sensitivity to Apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:40-51. [PMID: 38809096 PMCID: PMC11824913 DOI: 10.4049/jimmunol.2300843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
NK cells are innate immune effectors that kill virally infected or malignant cells. NK cell deficiency (NKD) occurs when NK cell development or function is impaired and variants in MCM4, GINS1, MCM10, and GINS4 result in NKD. Although NK cells are strongly impacted by mutational deficiencies in helicase proteins, the mechanisms underlying this specific susceptibility are poorly understood. In this study, we induced replication stress in activated NK cells or T cells by chemical and genetic methods. We found that the CD56bright subset of NK cells accumulates more DNA damage and replication stress during activation than do CD56dim NK cells or T cells. Aphidicolin treatment increases apoptosis of CD56bright NK cells through increased pan-caspase expression and decreases perforin expression in surviving cells. These findings show that sensitivity to replication stress affects NK cell survival and function and contributes to NKD.
Collapse
Affiliation(s)
- Nicole C Guilz
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Yong-Oon Ahn
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Hijab Fatima
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Luis Alberto Pedroza
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Seungmae Seo
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Ning Wang
- Pediatrics and Obstetrics and Gynecology, Columbia Stem Cell Initiative, Naomi Berrie Diabetes Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Dieter Egli
- Pediatrics and Obstetrics and Gynecology, Columbia Stem Cell Initiative, Naomi Berrie Diabetes Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Emily M Mace
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| |
Collapse
|
8
|
Murayama T, Nakayama J, Jiang X, Miyata K, Morris AD, Cai KQ, Prasad RM, Ma X, Efimov A, Belani N, Gerstein ER, Tan Y, Zhou Y, Kim W, Maruyama R, Campbell KS, Chen L, Yang Y, Balachandran S, Cañadas I. Targeting DHX9 Triggers Tumor-Intrinsic Interferon Response and Replication Stress in Small Cell Lung Cancer. Cancer Discov 2024; 14:468-491. [PMID: 38189443 PMCID: PMC10905673 DOI: 10.1158/2159-8290.cd-23-0486] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Activating innate immunity in cancer cells through cytoplasmic nucleic acid sensing pathways, a phenomenon known as "viral mimicry," has emerged as an effective strategy to convert immunologically "cold" tumors into "hot." Through a curated CRISPR-based screen of RNA helicases, we identified DExD/H-box helicase 9 (DHX9) as a potent repressor of double-stranded RNA (dsRNA) in small cell lung cancers (SCLC). Depletion of DHX9 induced accumulation of cytoplasmic dsRNA and triggered tumor-intrinsic innate immunity. Intriguingly, ablating DHX9 also induced aberrant accumulation of R-loops, which resulted in an increase of DNA damage-derived cytoplasmic DNA and replication stress in SCLCs. In vivo, DHX9 deletion promoted a decrease in tumor growth while inducing a more immunogenic tumor microenvironment, invigorating responsiveness to immune-checkpoint blockade. These findings suggest that DHX9 is a crucial repressor of tumor-intrinsic innate immunity and replication stress, representing a promising target for SCLC and other "cold" tumors in which genomic instability contributes to pathology. SIGNIFICANCE One promising strategy to trigger an immune response within tumors and enhance immunotherapy efficacy is by inducing endogenous "virus-mimetic" nucleic acid accumulation. Here, we identify DHX9 as a viral-mimicry-inducing factor involved in the suppression of double-stranded RNAs and R-loops and propose DHX9 as a novel target to enhance antitumor immunity. See related commentary by Chiappinelli, p. 389. This article is featured in Selected Articles from This Issue, p. 384.
Collapse
Affiliation(s)
- Takahiko Murayama
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jun Nakayama
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Oncogenesis and Growth Regulation, Research Institute, Osaka International Cancer Institute, Osaka, Japan
| | - Xinpei Jiang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Biomedical Science Graduate Program, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kenichi Miyata
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Alexander D. Morris
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathy Q. Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Rahul M. Prasad
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Xueying Ma
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Andrey Efimov
- Bio Imaging Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Neel Belani
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Emily R. Gerstein
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yinfei Tan
- Genomics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - William Kim
- Moores Cancer Center, UC San Diego, La Jolla, California
- Center for Novel Therapeutics, UC San Diego, La Jolla, California
- Department of Medicine, UC San Diego, La Jolla, California
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kerry S. Campbell
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Lu Chen
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yibin Yang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Siddharth Balachandran
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Israel Cañadas
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Jiao Y, Yu Y, Zheng M, Yan M, Wang J, Zhang Y, Zhang S. Dormant cancer cells and polyploid giant cancer cells: The roots of cancer recurrence and metastasis. Clin Transl Med 2024; 14:e1567. [PMID: 38362620 PMCID: PMC10870057 DOI: 10.1002/ctm2.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Tumour cell dormancy is critical for metastasis and resistance to chemoradiotherapy. Polyploid giant cancer cells (PGCCs) with giant or multiple nuclei and high DNA content have the properties of cancer stem cell and single PGCCs can individually generate tumours in immunodeficient mice. PGCCs represent a dormant form of cancer cells that survive harsh tumour conditions and contribute to tumour recurrence. Hypoxic mimics, chemotherapeutics, radiation and cytotoxic traditional Chinese medicines can induce PGCCs formation through endoreduplication and/or cell fusion. After incubation, dormant PGCCs can recover from the treatment and produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric cell division. Additionally, PGCCs can resist hypoxia or chemical stress and have a distinct protein signature that involves chromatin remodelling and cell cycle regulation. Dormant PGCCs form the cellular basis for therapeutic resistance, metastatic cascade and disease recurrence. This review summarises regulatory mechanisms governing dormant cancer cells entry and exit of dormancy, which may be used by PGCCs, and potential therapeutic strategies for targeting PGCCs.
Collapse
Affiliation(s)
- Yuqi Jiao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yongjun Yu
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Minying Zheng
- Department of PathologyTianjin Union Medical CenterNankai UniversityTianjinChina
| | - Man Yan
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiangping Wang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yue Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shiwu Zhang
- Department of PathologyTianjin Union Medical CenterTianjinChina
| |
Collapse
|
10
|
Li QY, Guo Q, Luo WM, Luo XY, Ji YM, Xu LQ, Guo JL, Shi RS, Li F, Lin CY, Zhang J, Ke D. Overexpression of MTFR1 promotes cancer progression and drug-resistance on cisplatin and is related to the immune microenvironment in lung adenocarcinoma. Aging (Albany NY) 2024; 16:66-88. [PMID: 38170222 PMCID: PMC10817379 DOI: 10.18632/aging.205338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE The roles of MTFR1 in the drug resistance of lung adenocarcinoma (LAC) to cisplatin remain unexplored. In this study, the expression, clinical values and mechanisms of MTFR1 were explored, and the relationship between MTFR1 expression and immune microenvironment was investigated in LAC using bioinformatics analysis, cell experiments, and meta-analysis. METHODS MTFR1 expression and clinical values, and the relationship between MTFR1 expression and immunity were explored, through bioinformatics analysis. The effects of MTFR1 on the growth, migration and cisplatin sensitivity of LAC cells were identified using cell counting kit-8, wound healing and Transwell experiments. Additionally, the mechanisms of drug resistance of LAC cells involving MTFR1 were investigated using western blotting. RESULTS MTFR1 was elevated in LAC tissues. MTFR1 overexpression was associated with sex, age, primary therapy outcome, smoking, T stage, unfavourable prognosis and diagnostic value and considered an independent risk factor for an unfavourable prognosis in patients with LAC. MTFR1 co-expressed genes involved in the cell cycle, oocyte meiosis, DNA replication and others. Moreover, interfering with MTFR1 expression inhibited the proliferation, migration and invasion of A549 and A549/DDP cells and promoted cell sensitivity to cisplatin, which was related to the inhibition of p-AKT, p-P38 and p-ERK protein expression. MTFR1 overexpression was associated with stromal, immune and estimate scores along with natural killer cells, pDC, iDC and others in LAC. CONCLUSIONS MTFR1 overexpression was related to the unfavourable prognosis, diagnostic value and immunity in LAC. MTFR1 also participated in cell growth and migration and promoted the drug resistance of LAC cells to cisplatin via the p-AKT and p-ERK/P38 signalling pathways.
Collapse
Affiliation(s)
- Qian-Yun Li
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wei-Min Luo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiang-Yu Luo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan-Mei Ji
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li-Qiang Xu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jia-Long Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Rong-Shu Shi
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Li
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Cheng-Yi Lin
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jun Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Di Ke
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
11
|
Naeimzadeh Y, Ilbeigi S, Dastsooz H, Rafiee Monjezi M, Mansoori Y, Tabei SMB. Protooncogenic Role of ARHGAP11A and ARHGAP11B in Invasive Ductal Carcinoma: Two Promising Breast Cancer Biomarkers. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8236853. [PMID: 38046902 PMCID: PMC10689071 DOI: 10.1155/2023/8236853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/22/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Invasive duct carcinoma (IDC) is one of the most common types of breast cancer (BC) in women worldwide, with a high risk of malignancy, metastasis, recurrence, and death. So far, molecular patterns among IDC cases have not been fully defined. However, extensive evidence has shown that dysregulated Rho family small GTPases (Rho GTPases) including Rho GTPase activating proteins (RhoGAPs) have important roles in the invasive features of IDCs. In the current study, we analyzed the expression levels of two RhoGAP genes, ARHGAP11A and ARHGAP11B, in The Cancer Genome Atlas (TCGA) breast cancer (BRCA) and also our 51 IDC tumors compared to their matched normal tissues using quantitative polymerase chain reaction (qPCR). Our TCGA data analysis revealed higher expression of ARHGAP11A and ARHGAP11B in various cancers comprising BCs. Also, we found correlations between these genes and other genes in TCGA-BRCA. Moreover, our methylation analysis showed that their promotor methylation had a negative correlation with their overexpression. QPCR revealed their significant upregulation in our tumor samples. Furthermore, we found that the expression level of ARHGAP11A was considerably lower in women who were breastfeeding. Moreover, it had overexpression in cases who had regular menstrual cycles and early age (younger than 14) at menarche. However, ARHGAP11B had a higher expression in HER2-positive tumors versus HER2-positive and ER-positive tumors. Our study found possible protooncogenic roles for these genes and their involvement in IDC pathogenesis and malignancy. Therefore, they can be considered novel prognostic and diagnostic biomarkers for IDC.
Collapse
Affiliation(s)
- Y. Naeimzadeh
- School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S. Ilbeigi
- Walther-Straub Institute, Ludwig-Maximilians-Universität München, Munich, Germany
| | - H. Dastsooz
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Candiolo, C/o IRCCS, IIGM-Italian Institute for Genomic Medicine, Turin, Italy
- Candiolo Cancer (IT), FPO-IRCCS, Candiolo Cancer Institute, Turin, Italy
| | - M. Rafiee Monjezi
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Y. Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - S. M. B. Tabei
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Wu Z, Fang Y, Wu J, Wang J, Ling Y, Liu T, Tong Q, Yao Y. Activation of Glycolysis by MCM10 Increases Stemness and Paclitaxel Resistance in Gastric Cancer Cells. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:1107-1115. [PMID: 37860833 PMCID: PMC10724805 DOI: 10.5152/tjg.2023.23169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND/AIMS Chemotherapy is an essential avenue for curing malignancies; however, tumor cells acquire resistance to chemotherapeutic agents, eventually leading to chemotherapy failure. At present, paclitaxel (PTX) resistance seriously hinders the therapeutic efficacy of gastric cancer (GC). Investigating the molecular mechanism of PTX resistance in GC is critical. This study attempted to delineate the impact of MCM10 on GC resistance to PTX and its mechanism in GC. MATERIALS AND METHODS The expression of minichromosome maintenance complex component 10 (MCM10) in GC tissues, its enrichment pathways, and its correlation with glycolysis marker genes and stemness index (mRNAsi) were analyzed in a bioinformatics effort. Real-time quantitative polymerase chain reaction was used to assay the expression of MCM10 in cells. Cell counting kit-8 (CCK-8) was used to analyze cell viability and calculate the 50% inhibitor concentration (IC50) value. Western blot was used to measure the expression of MCM10, Hexokinase 2 (HK2) and stemness-related factors in cells. Sphere-forming assay was performed to study cell sphere-forming ability. Seahorse XF 96 was utilized to measure cell extracellular acidification and oxygen consumption rates. The content of glycolysisrelated products was tested with corresponding kits. RESULTS MCM10 was significantly upregulated in GC and enriched in the glycolysis pathway, and it was positively correlated with both glycolysis-related genes and stemness index. High expression of MCM10 increased sphere-forming ability of drug-resistant cells and GC resistance to PTX. The stimulation of PTX resistance and drug-resistant cell stemness in GC by high MCM10 expression was mediated by the glycolysis pathway. CONCLUSION MCM10 was upregulated in GC and drove stemness and PTX resistance in GC cells by activating glycolysis. These findings generated new insights into the development of PTX resistance in GC, implicating that targeting MCM10 may be a novel approach to improve GC sensitivity to PTX chemotherapy.
Collapse
Affiliation(s)
- Zhangqiang Wu
- Department of Surgical Oncology, Guang Fu Oncology Hospital, Jinhua, Zhejiang Province, China
| | - Yuejun Fang
- Department of Surgical Oncology, Guang Fu Oncology Hospital, Jinhua, Zhejiang Province, China
| | - Jun Wu
- Department of Surgical Oncology, Guang Fu Oncology Hospital, Jinhua, Zhejiang Province, China
| | - Jianjun Wang
- Department of Surgical Oncology, Guang Fu Oncology Hospital, Jinhua, Zhejiang Province, China
| | - Yingjie Ling
- Department of Surgical Oncology, Guang Fu Oncology Hospital, Jinhua, Zhejiang Province, China
| | - Tao Liu
- Department of Surgical Oncology, Guang Fu Oncology Hospital, Jinhua, Zhejiang Province, China
| | - Qin Tong
- Department of Surgical Oncology, Guang Fu Oncology Hospital, Jinhua, Zhejiang Province, China
| | - Yefeng Yao
- Department of Surgical Oncology, Guang Fu Oncology Hospital, Jinhua, Zhejiang Province, China
| |
Collapse
|
13
|
Chen D, Zhong N, Guo Z, Ji Q, Dong Z, Zheng J, Ma Y, Zhang J, He Y, Song T. MCM10, a potential diagnostic, immunological, and prognostic biomarker in pan-cancer. Sci Rep 2023; 13:17701. [PMID: 37848534 PMCID: PMC10582070 DOI: 10.1038/s41598-023-44946-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023] Open
Abstract
Microchromosome maintenance (MCM) proteins are a number of nuclear proteins with significant roles in the development of cancer by influencing the process of cellular DNA replication. Of the MCM protein family, MCM10 is a crucial member that maintains the stability and extension of DNA replication forks during DNA replication and is significantly overexpressed in a variety of cancer tissues, regulating the biological behaviour of cancer cells. But little is understood about MCM10's functional role and regulatory mechanisms in a range of malignancies. We investigate the impact of MCM10 in human cancers by analyzing data from databases like the Gene Expression Profiling Interaction Analysis (GEPIA2), Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA), among others. Possible relationships between MCM10 and clinical staging, diagnosis, prognosis, Mutation burden (TMB), microsatellite instability (MSI), immunological checkpoints, DNA methylation, and tumor stemness were identified. The findings demonstrated that MCM10 expression was elevated in the majority of cancer types and was connected to tumor dryness, immunocytic infiltration, immunological checkpoints, TMB and MSI. Functional enrichment analysis in multiple tumors also identified possible pathways of MCM10 involvement in tumorigenesis. We also discovered promising MCM10-targeting chemotherapeutic drugs. In conclusion, MCM10 may be a desirable pan-cancer biomarker and offer fresh perspectives on cancer therapy.
Collapse
Affiliation(s)
- Dengwang Chen
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Na Zhong
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Zhanwen Guo
- School of Medical Information Engineering, Zunyi Medical University, Zunyi, China
| | - Qinglu Ji
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Zixuan Dong
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jishan Zheng
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yunyan Ma
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China.
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China.
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi, China.
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China.
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China.
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
14
|
Tabrizi-Nezhadi P, MotieGhader H, Maleki M, Sahin S, Nematzadeh S, Torkamanian-Afshar M. Application of Protein-Protein Interaction Network Analysis in Order to Identify Cervical Cancer miRNA and mRNA Biomarkers. ScientificWorldJournal 2023; 2023:6626279. [PMID: 37746664 PMCID: PMC10513823 DOI: 10.1155/2023/6626279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023] Open
Abstract
Cervical cancer (CC) is one of the world's most common and severe cancers. This cancer includes two histological types: squamous cell carcinoma (SCC) and adenocarcinoma (ADC). The current study aims at identifying novel potential candidate mRNA and miRNA biomarkers for SCC based on a protein-protein interaction (PPI) and miRNA-mRNA network analysis. The current project utilized a transcriptome profile for normal and SCC samples. First, the PPI network was constructed for the 1335 DEGs, and then, a significant gene module was extracted from the PPI network. Next, a list of miRNAs targeting module's genes was collected from the experimentally validated databases, and a miRNA-mRNA regulatory network was formed. After network analysis, four driver genes were selected from the module's genes including MCM2, MCM10, POLA1, and TONSL and introduced as potential candidate biomarkers for SCC. In addition, two hub miRNAs, including miR-193b-3p and miR-615-3p, were selected from the miRNA-mRNA regulatory network and reported as possible candidate biomarkers. In summary, six potential candidate RNA-based biomarkers consist of four genes containing MCM2, MCM10, POLA1, and TONSL, and two miRNAs containing miR-193b-3p and miR-615-3p are opposed as potential candidate biomarkers for CC.
Collapse
Affiliation(s)
| | - Habib MotieGhader
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Health Ecosystem, Medical Faculty, Nisantasi University, Istanbul, Turkey
| | - Masoud Maleki
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Soner Sahin
- Department of Health Ecosystem, Medical Faculty, Nisantasi University, Istanbul, Turkey
| | - Sajjad Nematzadeh
- Software Engineering Department, Engineering Faculty, Topkapi University, Istanbul, Turkey
| | - Mahsa Torkamanian-Afshar
- Department of Computer Engineering, Faculty of Engineering and Architecture, Nisantasi University, Istanbul, Turkey
| |
Collapse
|
15
|
Ahmed SMQ, Laha S, Das R, Ifthikar MA, Das SP. MCM10 expression is linked to cervical cancer aggressiveness. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1009903. [PMID: 39086679 PMCID: PMC11285692 DOI: 10.3389/fmmed.2023.1009903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/03/2023] [Indexed: 08/02/2024]
Abstract
Cervical cancer screening is a challenge mainly in developing countries. In developed countries, both incidence and mortality rates have been decreasing due to well organized screening programs. One of the potential biomarkers being exploited are the minichromosome maintenance proteins (MCMs), which show both specificity and sensitivity. MCM2-7 are involved in DNA replication initiation and elongation, and the MCM subunits are highly expressed in malignant tissues. Unlike other MCMs, MCM10, which is not part of the core helicase complex, is a critical determinant of origin activation and its levels are limiting in cancer cells. In this study, we performed bioinformatic analysis on the expression profile of all DNA replication associated MCM proteins in cervical cancer. MCM10 showed a relatively higher expression profile compared to the other MCMs. The mRNA expression levels of the MCMs were significantly increased in tumour tissues compared to normal, and MCM10 showed a fold change of 3.4. In order to understand if MCM10 is associated with the aggressiveness of cervical cancer, we looked into the mRNA expression pattern of MCM10 in three cervical cancer cell lines and one normal cervical cell line. MCM10 expression was significantly higher in the case of the more aggressive cancer cell line HeLa compared to controls. MCM10, therefore, can serve as a prominent biomarker for cancer progression and thus aid in early detection to control the spread of cancer cells. Our results show that MCM10 expression levels in cervical cancer cell lines are associated with cancer aggressiveness, demonstrating its clinical significance.
Collapse
Affiliation(s)
| | - Suparna Laha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Ranajit Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Mariam Anjum Ifthikar
- Department of Oncology, Yenepoya Medical College Hospital, Yenepoya (Deemed to be University), Mangalore, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
16
|
Song H, Shen R, Mahasin H, Guo Y, Wang D. DNA replication: Mechanisms and therapeutic interventions for diseases. MedComm (Beijing) 2023; 4:e210. [PMID: 36776764 PMCID: PMC9899494 DOI: 10.1002/mco2.210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Accurate and integral cellular DNA replication is modulated by multiple replication-associated proteins, which is fundamental to preserve genome stability. Furthermore, replication proteins cooperate with multiple DNA damage factors to deal with replication stress through mechanisms beyond their role in replication. Cancer cells with chronic replication stress exhibit aberrant DNA replication and DNA damage response, providing an exploitable therapeutic target in tumors. Numerous evidence has indicated that posttranslational modifications (PTMs) of replication proteins present distinct functions in DNA replication and respond to replication stress. In addition, abundant replication proteins are involved in tumorigenesis and development, which act as diagnostic and prognostic biomarkers in some tumors, implying these proteins act as therapeutic targets in clinical. Replication-target cancer therapy emerges as the times require. In this context, we outline the current investigation of the DNA replication mechanism, and simultaneously enumerate the aberrant expression of replication proteins as hallmark for various diseases, revealing their therapeutic potential for target therapy. Meanwhile, we also discuss current observations that the novel PTM of replication proteins in response to replication stress, which seems to be a promising strategy to eliminate diseases.
Collapse
Affiliation(s)
- Hao‐Yun Song
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Rong Shen
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Hamid Mahasin
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Ya‐Nan Guo
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - De‐Gui Wang
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
17
|
Identification of Novel Hub Genes Associated with Psoriasis Using Integrated Bioinformatics Analysis. Int J Mol Sci 2022; 23:ijms232315286. [PMID: 36499614 PMCID: PMC9737295 DOI: 10.3390/ijms232315286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a chronic, prolonged, and recurrent inflammatory skin disease and the current therapeutics can only alleviate the symptoms rather than cure it completely. Therefore, we aimed to identify the molecular signatures and specific biomarkers of psoriasis to provide novel clues for psoriasis and targeted therapy. In the present study, the Gene Expression Omnibus (GEO) database was used to retrieve three microarray datasets (GSE166388, GSE50790 and GSE42632) and to explore the differentially expressed genes (DEGs) in psoriasis using the Affy package in R software. The gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment were utilized to determine the common DEGs and their capabilities. The STRING database was used to develop DEG-encoded proteins and a protein-protein interaction network (PPI) and the Cytohubba plugin to classify hub genes. Using the NetworkAnalyst platform, we detected transcription factors (TFs), microRNAs and drug candidates interacting with hub genes. In addition, the expression levels of hub genes in HaCaT cells were detected by western blot. We screened the up- and downregulated DEGs from the transcriptome microarrays of corresponding psoriasis patients. Functional enrichment of DEGs in psoriasis was mainly associated with positive regulation of leukocyte cell-cell adhesion and T cell activation, cytokine binding, cytokine activity and the Wnt signaling pathway. Through further data processing, we obtained 57 intersecting genes in the three datasets and probed them in STRING to determine the interaction of their expressed proteins and we obtained the critical 10 hub genes in the Cytohubba plugin, including TOP2A, CDKN3, MCM10, PBK, HMMR, CEP55, ASPM, KIAA0101, ESC02, and IL-1β. Using these hub genes as targets, we obtained 35 TFs and 213 miRNAs that may regulate these genes and 33 potential therapeutic agents for psoriasis. Furthermore, the expression levels of TOP2A, MCM10, PBK, ASPM, KIAA0101 and IL-1β were observably increased in HaCaT cells. In conclusion, we identified potential biomarkers, risk factors and drugs for psoriasis.
Collapse
|
18
|
Xu Y, Yu X, Zhang Q, He Y, Guo W. A novel classification of HCC basing on fatty-acid-associated lncRNA. Sci Rep 2022; 12:18863. [PMID: 36344648 PMCID: PMC9640627 DOI: 10.1038/s41598-022-23681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Aberrant long noncoding RNA (lncRNA) expression and fatty acid signaling dysfunction both contribute to hepatocellular carcinoma (HCC) occurrence and development. However, the relationship and interaction mechanism between lncRNAs and fatty acid signaling in HCC remain unclear. Data regarding RNA expression and clinical outcomes for patients with HCC were obtained from The Cancer Genome Atlas (TCGA), HCCDB, and the Gene Expression Omnibus (GEO) databases. Hallmark pathways were identified using the single-sample gene set enrichment analysis (ssGSEA) method. ConsensusClusterPlus was used to establish a consistency matrix for classifying samples into three subtypes. A risk signature was established, and predictive values for key lncRNAs related to prognosis were evaluated using Kaplan-Meier analysis and receiver operating characteristic curves. The ESTIMATE algorithm, MCP-Counter, and ssGSEA were used to evaluate the characteristics of the tumor immune microenvironment. The CTRP2.0 and PRISM were used to analyze drug sensitivity in HCC subtypes. We discovered seven fatty-acid-associated lncRNAs with predictive prognostic capabilities, including TRAF3IP2-AS1, SNHG10, AL157392.2, LINC02641, AL357079.1, AC046134.2, and A1BG-AS. Three subtypes were obtained, which presented with differences in prognosis, clinical information, mutation features, pathway traits, immune characteristics, and drug sensitivity. The seven key lncRNAs identified in this study might serve as promising biomarkers for predicting prognosis in patients with HCC, and the three HCC subtypes classified according to lncRNA expression profiles could improve HCC classification.
Collapse
Affiliation(s)
- Yating Xu
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China ,grid.412633.10000 0004 1799 0733Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China ,grid.256922.80000 0000 9139 560XOpen and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China ,grid.412633.10000 0004 1799 0733Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China ,grid.256922.80000 0000 9139 560XOpen and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Qiyao Zhang
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China ,grid.412633.10000 0004 1799 0733Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China ,grid.256922.80000 0000 9139 560XOpen and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Yuting He
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China ,grid.412633.10000 0004 1799 0733Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China ,grid.256922.80000 0000 9139 560XOpen and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China ,grid.412633.10000 0004 1799 0733Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China ,grid.256922.80000 0000 9139 560XOpen and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
19
|
Breast Cancer Prognosis Prediction and Immune Pathway Molecular Analysis Based on Mitochondria-Related Genes. Genet Res (Camb) 2022; 2022:2249909. [PMID: 35707265 PMCID: PMC9174003 DOI: 10.1155/2022/2249909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Background Mitochondria play an important role in breast cancer (BRCA). We aimed to build a prognostic model based on mitochondria-related genes. Method Univariate Cox regression analysis, random forest, and the LASSO method were performed in sequence on pretreated TCGA BRCA datasets to screen out genes from a Gene Set Enrichment Analysis, Gene Ontology: biological process gene set to build a prognosis risk score model. Survival analyses and ROC curves were performed to verify the model by using the GSE103091 dataset. The BRCA datasets were equally divided into high- and low-risk score groups. Comparisons between clinical features and immune infiltration related to different risk scores and gene mutation analysis and drug sensitivity prediction were performed for different groups. Result Four genes, MRPL36, FEZ1, BMF, and AFG1L, were screened to construct our risk score model in which the higher the risk score, the poorer the prognosis. Univariate and multivariate analyses showed that the risk score was significantly associated with age, M stage, and N stage. The gene mutation probability in the high-risk score group was significantly higher than that in the low-risk score group. Patients with higher risk scores were more likely to die. Drug sensitivity prediction in different groups indicated that PF-562271 and AS601245 might be new inhibitors of BRCA. Conclusion We developed a new workable risk score model based on mitochondria-related genes for BRCA prognosis and identified new targets and drugs for BRCA research.
Collapse
|
20
|
Multiomics profiling of the expression and prognosis of MCMs in endometrial carcinoma. Biosci Rep 2021; 41:230367. [PMID: 34859821 PMCID: PMC8685644 DOI: 10.1042/bsr20211719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
Minichromosome maintenance (MCM) family members are a group of genes involved in regulating DNA replication and cell division and have been identified as oncogenes in various cancer types. Several experimental studies have suggested that MCMs are dysregulated in endometrial carcinoma (EC). However, the expression pattern, clinical value and functions of different MCMs have yet to be analyzed systematically and comprehensively. We analyzed expression, survival rate, DNA alteration, PPT network, GGI network, functional enrichment cancer hallmarks and drug sensitivity of MCMs in patients with EC based on diverse datasets, including Oncomine, GEPIA, Kaplan–Meier Plotter, HPA, Sangerbox and GSCALite databases. The results indicated that most MCM members were increased in EC and showed a prognostic value in survival analysis, which were considerately well in terms of PFS and OS prognostic prediction. Importantly, functional enrichment, PPI network and GGI network suggested that MCMs interact with proteins related to DNA replication and cell division, which may be the mechanism of MCM promote EC progression. Further data mining illustrated that MCMs have broad DNA hypomethylation levels and high levels of copy number aberrations in tumor tissue samples, which may be the mechanism causing the high expression level of MCMs. Moreover, MCM2 can activate or suppress diverse cancer-related pathways and is implicated in EC drug sensitivity. Taking together, our findings illustrate the expression pattern, clinical value and function of MCMs in EC and imply that MCMs are potential targets for precision therapy and new biomarkers for the prognosis of patients with EC.
Collapse
|
21
|
Lee J, Chen X, Wang Y, Nishimura T, Li M, Ishikawa S, Daikoku T, Kawai J, Tojo A, Gotoh N. A novel oral inhibitor for one-carbon metabolism and checkpoint kinase 1 inhibitor as a rational combination treatment for breast cancer. Biochem Biophys Res Commun 2021; 584:7-14. [PMID: 34753066 DOI: 10.1016/j.bbrc.2021.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
Patients with triple-negative breast cancer have a poor prognosis as only a few efficient targeted therapies are available. Cancer cells are characterized by their unregulated proliferation and require large amounts of nucleotides to replicate their DNA. One-carbon metabolism contributes to purine and pyrimidine nucleotide synthesis by supplying one carbon atom. Although mitochondrial one-carbon metabolism has recently been focused on as an important target for cancer treatment, few specific inhibitors have been reported. In this study, we aimed to examine the effects of DS18561882 (DS18), a novel, orally active, specific inhibitor of methylenetetrahydrofolate dehydrogenase (MTHFD2), a mitochondrial enzyme involved in one-carbon metabolism. Treatment with DS18 led to a marked reduction in cancer-cell proliferation; however, it did not induce cell death. Combinatorial treatment with DS18 and inhibitors of checkpoint kinase 1 (Chk1), an activator of the S phase checkpoint pathway, efficiently induced apoptotic cell death in breast cancer cells and suppressed tumorigenesis in a triple-negative breast cancer patient-derived xenograft model. Mechanistically, MTHFD2 inhibition led to cell cycle arrest and slowed nucleotide synthesis. This finding suggests that DNA replication stress occurs due to nucleotide shortage and that the S-phase checkpoint pathway is activated, leading to cell-cycle arrest. Combinatorial treatment with both inhibitors released cell-cycle arrest, but induced accumulation of DNA double-strand breaks, leading to apoptotic cell death. Collectively, a combination of MTHFD2 and Chk1 inhibitors would be a rational treatment option for patients with triple-negative breast cancer.
Collapse
Affiliation(s)
- Jin Lee
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Ishikawa, 920-1192, Japan
| | - Xiaoxi Chen
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Ishikawa, 920-1192, Japan
| | - Yuming Wang
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Ishikawa, 920-1192, Japan
| | - Tatsunori Nishimura
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Ishikawa, 920-1192, Japan
| | - Mengjiao Li
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Ishikawa, 920-1192, Japan
| | - Satoko Ishikawa
- Department of Gastroenterological Surgery, Kanazawa University, Kanazawa City, Ishikawa, 920-1192, Japan
| | - Takiko Daikoku
- Research Center for Experimental Modeling of Human Disease, Institute for Experimental Animals, Kanazawa University, Kanazawa City, Ishikawa, 920-1192, Japan
| | - Junya Kawai
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Arinobu Tojo
- Division of Molecular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Ishikawa, 920-1192, Japan.
| |
Collapse
|
22
|
Beyond the Double-Strand Breaks: The Role of DNA Repair Proteins in Cancer Stem-Cell Regulation. Cancers (Basel) 2021; 13:cancers13194818. [PMID: 34638302 PMCID: PMC8508278 DOI: 10.3390/cancers13194818] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer stem cells (CSCs) are a tumor cell population maintaining tumor growth and promoting tumor relapse if not wholly eradicated during treatment. CSCs are often equipped with molecular mechanisms making them resistant to conventional anti-cancer therapies whose curative potential depends on DNA damage-induced cell death. An elevated expression of some key DNA repair proteins is one of such defense mechanisms. However, new research reveals that the role of critical DNA repair proteins is extending far beyond the DNA repair mechanisms. This review discusses the diverse biological functions of DNA repair proteins in CSC maintenance and the adaptation to replication and oxidative stress, anti-cancer immune response, epigenetic reprogramming, and intracellular signaling mechanisms. It also provides an overview of their potential therapeutic targeting. Abstract Cancer stem cells (CSCs) are pluripotent and highly tumorigenic cells that can re-populate a tumor and cause relapses even after initially successful therapy. As with tissue stem cells, CSCs possess enhanced DNA repair mechanisms. An active DNA damage response alleviates the increased oxidative and replicative stress and leads to therapy resistance. On the other hand, mutations in DNA repair genes cause genomic instability, therefore driving tumor evolution and developing highly aggressive CSC phenotypes. However, the role of DNA repair proteins in CSCs extends beyond the level of DNA damage. In recent years, more and more studies have reported the unexpected role of DNA repair proteins in the regulation of transcription, CSC signaling pathways, intracellular levels of reactive oxygen species (ROS), and epithelial–mesenchymal transition (EMT). Moreover, DNA damage signaling plays an essential role in the immune response towards tumor cells. Due to its high importance for the CSC phenotype and treatment resistance, the DNA damage response is a promising target for individualized therapies. Furthermore, understanding the dependence of CSC on DNA repair pathways can be therapeutically exploited to induce synthetic lethality and sensitize CSCs to anti-cancer therapies. This review discusses the different roles of DNA repair proteins in CSC maintenance and their potential as therapeutic targets.
Collapse
|
23
|
Curti L, Campaner S. MYC-Induced Replicative Stress: A Double-Edged Sword for Cancer Development and Treatment. Int J Mol Sci 2021; 22:6168. [PMID: 34201047 PMCID: PMC8227504 DOI: 10.3390/ijms22126168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
MYC is a transcription factor that controls the expression of a large fraction of cellular genes linked to cell cycle progression, metabolism and differentiation. MYC deregulation in tumors leads to its pervasive genome-wide binding of both promoters and distal regulatory regions, associated with selective transcriptional control of a large fraction of cellular genes. This pairs with alterations of cell cycle control which drive anticipated S-phase entry and reshape the DNA-replication landscape. Under these circumstances, the fine tuning of DNA replication and transcription becomes critical and may pose an intrinsic liability in MYC-overexpressing cancer cells. Here, we will review the current understanding of how MYC controls DNA and RNA synthesis, discuss evidence of replicative and transcriptional stress induced by MYC and summarize preclinical data supporting the therapeutic potential of triggering replicative stress in MYC-driven tumors.
Collapse
Affiliation(s)
- Laura Curti
- Center for Genomic Science of IIT@CGS, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT@CGS, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| |
Collapse
|
24
|
Murayama T, Takeuchi Y, Yamawaki K, Natsume T, Li M, Marcela RCN, Nishimura T, Kogure Y, Nakata A, Tominaga K, Sasahara A, Yano M, Ishikawa S, Ohta T, Ikeda K, Horie-Inoue K, Inoue S, Seki M, Suzuki Y, Sugano S, Enomoto T, Tanabe M, Tada KI, Kanemaki MT, Okamoto K, Tojo A, Gotoh N. MCM10 compensates for Myc-induced DNA replication stress in breast cancer stem-like cells. Cancer Sci 2021; 112:1209-1224. [PMID: 33340428 PMCID: PMC7935783 DOI: 10.1111/cas.14776] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer stem-like cells (CSCs) induce drug resistance and recurrence of tumors when they experience DNA replication stress. However, the mechanisms underlying DNA replication stress in CSCs and its compensation remain unclear. Here, we demonstrate that upregulated c-Myc expression induces stronger DNA replication stress in patient-derived breast CSCs than in differentiated cancer cells. Our results suggest critical roles for mini-chromosome maintenance protein 10 (MCM10), a firing (activating) factor of DNA replication origins, to compensate for DNA replication stress in CSCs. MCM10 expression is upregulated in CSCs and is maintained by c-Myc. c-Myc-dependent collisions between RNA transcription and DNA replication machinery may occur in nuclei, thereby causing DNA replication stress. MCM10 may activate dormant replication origins close to these collisions to ensure the progression of replication. Moreover, patient-derived breast CSCs were found to be dependent on MCM10 for their maintenance, even after enrichment for CSCs that were resistant to paclitaxel, the standard chemotherapeutic agent. Further, MCM10 depletion decreased the growth of cancer cells, but not of normal cells. Therefore, MCM10 may robustly compensate for DNA replication stress and facilitate genome duplication in cancer cells in the S-phase, which is more pronounced in CSCs. Overall, we provide a preclinical rationale to target the c-Myc-MCM10 axis for preventing drug resistance and recurrence of tumors.
Collapse
Affiliation(s)
- Takahiko Murayama
- Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, Minato-ku, Japan.,Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| | - Yasuto Takeuchi
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| | - Kaoru Yamawaki
- Division of Cancer Differentiation, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima City, Japan.,Department of Genetics, SOKENDAI, Mishima City, Japan
| | - Mengjiao Li
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| | - Rojas-Chaverra N Marcela
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| | - Tatsunori Nishimura
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| | - Yuta Kogure
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa City, Japan
| | - Asuka Nakata
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan.,Department of Pediatrics, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Kana Tominaga
- Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, Minato-ku, Japan.,Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan.,Division of Cancer Differentiation, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Asako Sasahara
- Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, Minato-ku, Japan.,Department of Breast & Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Masao Yano
- Department of Surgery, Minamimachida Hospital, Machida City, Japan
| | - Satoko Ishikawa
- Department of Gastroenterological Surgery, Kanazawa University, Kanazawa City, Japan
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Kanazawa University, Kanazawa City, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka City, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka City, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka City, Japan
| | - Masahide Seki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masahiko Tanabe
- Department of Breast & Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Kei-Ichiro Tada
- Department of Pediatrics, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima City, Japan.,Department of Genetics, SOKENDAI, Mishima City, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Arinobu Tojo
- Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Noriko Gotoh
- Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, Minato-ku, Japan.,Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| |
Collapse
|