1
|
Witz A, Dardare J, Betz M, Michel C, Husson M, Gilson P, Merlin JL, Harlé A. Homologous recombination deficiency (HRD) testing landscape: clinical applications and technical validation for routine diagnostics. Biomark Res 2025; 13:31. [PMID: 39985088 PMCID: PMC11846297 DOI: 10.1186/s40364-025-00740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/04/2025] [Indexed: 02/24/2025] Open
Abstract
The use of poly(ADP-ribose) polymerase inhibitors (PARPi) revolutionized the treatment of BRCA-mutated cancers. Identifying patients exhibiting homologous recombination deficiency (HRD) has been proved useful to predict PARPi efficacy. However, obtaining HRD status remains an arduous task due to its evolution over the time. This causes HRD status to become obsolete when obtained from genomic scars, rendering PARPi ineffective for these patients. Only two HRD tests are currently FDA-approved, both based on genomic scars detection and BRCA mutations testing. Nevertheless, new technologies for obtaining an increasingly reliable HRD status continue to evolve. Application of these tests in clinical practice is an additional challenge due to the need for lower costs and shorter time to results delay.In this review, we describe the currently available methods for HRD testing, including the methodologies and corresponding tests for assessing HRD status, and discuss the clinical routine application of these tests and their technical validation.
Collapse
Affiliation(s)
- Andréa Witz
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France.
| | - Julie Dardare
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Margaux Betz
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Cassandra Michel
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Marie Husson
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Pauline Gilson
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Alexandre Harlé
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
2
|
Subramanian DN, Zethoven M, Pishas KI, Marinović ER, McInerny S, Rowley SM, Allan PE, Devereux L, Cheasley D, James PA, Campbell IG. Assessment of candidate high-grade serous ovarian carcinoma predisposition genes through integrated germline and tumour sequencing. NPJ Genom Med 2025; 10:1. [PMID: 39794353 PMCID: PMC11724014 DOI: 10.1038/s41525-024-00447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/07/2024] [Indexed: 01/13/2025] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) has a significant hereditary component, only half of which is explained. Previously, we performed germline exome sequencing on BRCA1 and BRCA2-negative HGSOC patients, revealing three proposed and 43 novel candidate genes enriched with rare loss-of-function variants. For validation, we undertook case-control analyses using genomic data from disease-free controls. This confirms enrichment for nearly all previously identified genes. Additionally, one-hundred-and-eleven HGSOC tumours from variant carriers were sequenced alongside other complementary studies, seeking evidence of biallelic inactivation as supportive evidence. PALB2 and ATM validate as HGSOC predisposition genes, with 6/8 germline carrier tumours exhibiting biallelic inactivation accompanied by characteristic mutational signatures. Among candidate genes, only LLGL2 consistently shows biallelic inactivation and protein expression loss, supporting it as a novel HGSOC susceptibility gene. The remaining candidate genes fail to validate. Integrating case-control analyses with tumour sequencing is thus crucial for accurate gene discovery in familial cancer studies.
Collapse
Affiliation(s)
- Deepak N Subramanian
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Maia Zethoven
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Kathleen I Pishas
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Evanny R Marinović
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Simone McInerny
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Simone M Rowley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Prue E Allan
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Lisa Devereux
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Lifepool Cohort, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Dane Cheasley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul A James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Ian G Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Argudo-Portal V. Testing Ecology: Breast and Gynecological Cancer Predisposition Tests and the National Healthcare System in Spain. Med Anthropol 2025; 44:22-38. [PMID: 39717962 DOI: 10.1080/01459740.2024.2444617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
This research asks what is being put to the test by breast and gynecological cancer predisposition testing in Spain beyond genes or cancer. By combining document analysis and fieldwork with national healthcare professionals and drawing on the anthropology and sociology of testing, I examine how the molecular relations of these tests extend to the political economy of the national healthcare system. I show how the capacity of these tests to produce a low-risk collective has paradoxical consequences for the political economy of the national healthcare system, unsettling professionals' concerns and spotlighting what is prioritized in personalized medicine strategies.
Collapse
Affiliation(s)
- Violeta Argudo-Portal
- Department of Social Anthropology, University of Barcelona, Barcelona, Spain
- Institute for Public Goods and Policies, Spanish Research Council, Madrid, Spain
| |
Collapse
|
4
|
Kechin A, Koryukov M, Mikheeva R, Filipenko M. Homologous recombination deficiency (HRD) diagnostics: underlying mechanisms and new perspectives. Cancer Metastasis Rev 2024; 44:19. [PMID: 39724448 DOI: 10.1007/s10555-024-10238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Homologous recombination deficiency (HRD) is considered a universal and effective sign of a tumor's sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. HRD diagnostics have undergone several stages of transformations: from detection of point mutations in HR-related genes and large regions with loss of heterozygosity detected using single-nucleotide polymorphism arrays to whole-genome signatures of single-nucleotide variants, large genomic rearrangements (LGRs), and copy number alterations. All these methods have their own advantages and limitations. HRD tests, based on signatures of LGRs and copy number alterations, show in hindsight that some progenitor cells have possessed HRD status but not the current state of the genome. The aim of this review was to compare different methods of HRD detection and mechanisms of formation of HRD-specific LGRs. In the last several years, new data appeared implying a crucial role of proteins BRCA1 and BRCA2 in the resolution of stalled replication forks that may be associated with at least some of LGRs observed in HRD-positive tumors. Reviewing current knowledge on these mechanisms, distributions of different LGR types, and limitations of sequencing technologies and algorithms of data analysis, we offer some new perspectives on HRD diagnostics. We hope that this review will help to accelerate the development of new diagnostic approaches in this important field of molecular oncology.
Collapse
Affiliation(s)
- Andrey Kechin
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Maksim Koryukov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Regina Mikheeva
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Maksim Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090, Russia
| |
Collapse
|
5
|
Zambelli A, Sgarra R, De Sanctis R, Agostinetto E, Santoro A, Manfioletti G. Heterogeneity of triple-negative breast cancer: understanding the Daedalian labyrinth and how it could reveal new drug targets. Expert Opin Ther Targets 2022; 26:557-573. [PMID: 35638300 DOI: 10.1080/14728222.2022.2084380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is considered the most aggressive breast cancer subtype with the least favorable outcomes. However, recent research efforts have generated an enhanced knowledge of the biology of the disease and have provided a new, more comprehensive understanding of the multifaceted ecosystem that underpins TNBC. AREAS COVERED In this review, the authors illustrate the principal biological characteristics of TNBC, the molecular driver alterations, targetable genes, and the biomarkers of immune engagement that have been identified across the subgroups of TNBC. Accordingly, the authors summarize the landscape of the innovative and investigative biomarker-driven therapeutic options in TNBC that emerge from the unique biological basis of the disease. EXPERT OPINION The therapeutic setting of TNBC is rapidly evolving. An enriched understanding of the tumor spatial and temporal heterogeneity and the surrounding microenvironment of this complex disease can effectively support the development of novel and tailored opportunities of treatment.
Collapse
Affiliation(s)
- Alberto Zambelli
- Medical Oncology and Hematology Unit, IRCCS - Humanitas Clinical and Research Center, Humanitas Cancer Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Riccardo Sgarra
- Department of Life sciences, University of Trieste, Trieste, Italy
| | - Rita De Sanctis
- Medical Oncology and Hematology Unit, IRCCS - Humanitas Clinical and Research Center, Humanitas Cancer Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elisa Agostinetto
- Department of Biomedical Sciences, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Brussels, Belgium and Humanitas University, Milan, Italy
| | - Armando Santoro
- Medical Oncology and Hematology Unit, IRCCS - Humanitas Clinical and Research Center, Humanitas Cancer Center, Milan, Italy
| | | |
Collapse
|
6
|
Mori S, Gotoh O, Kiyotani K, Low SK. Genomic alterations in gynecological malignancies: histotype-associated driver mutations, molecular subtyping schemes, and tumorigenic mechanisms. J Hum Genet 2021; 66:853-868. [PMID: 34092788 DOI: 10.1038/s10038-021-00940-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023]
Abstract
There are numerous histological subtypes (histotypes) of gynecological malignancies, with each histotype considered to largely reflect a feature of the "cell of origin," and to be tightly linked with the clinical behavior and biological phenotype of the tumor. The recent advances in massive parallel sequencing technologies have provided a more complete picture of the range of the genomic alterations that can persist within individual tumors, and have highlighted the types and frequencies of driver-gene mutations and molecular subtypes often associated with these histotypes. Several large-scale genomic cohorts, including the Cancer Genome Atlas (TCGA), have been used to characterize the genomic features of a range of gynecological malignancies, including high-grade serous ovarian carcinoma, uterine corpus endometrial carcinoma, uterine cervical carcinoma, and uterine carcinosarcoma. These datasets have also been pivotal in identifying clinically relevant molecular targets and biomarkers, and in the construction of molecular subtyping schemes. In addition, the recent widespread use of clinical sequencing for the more ubiquitous types of gynecological cancer has manifested in a series of large genomic datasets that have allowed the characterization of the genomes, driver mutations, and histotypes of even rare cancer types, with sufficient statistical power. Here, we review the field of gynecological cancer, and seek to describe the genomic features by histotype. We also will demonstrate how these are linked with clinicopathological attributes and highlight the potential tumorigenic mechanisms.
Collapse
Affiliation(s)
- Seiichi Mori
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Osamu Gotoh
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Siew Kee Low
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
7
|
Yoshida R, Hagio T, Kaneyasu T, Gotoh O, Osako T, Tanaka N, Amino S, Yaguchi N, Nakashima E, Kitagawa D, Ueno T, Ohno S, Nakajima T, Nakamura S, Miki Y, Hirota T, Takahashi S, Matsuura M, Noda T, Mori S. Pathogenicity assessment of variants for breast cancer susceptibility genes based on BRCAness of tumor sample. Cancer Sci 2021; 112:1310-1319. [PMID: 33421217 PMCID: PMC7935793 DOI: 10.1111/cas.14803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/03/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022] Open
Abstract
Genes involved in the homologous recombination repair pathway—as exemplified by BRCA1, BRCA2, PALB2, ATM, and CHEK2—are frequently associated with hereditary breast and ovarian cancer syndrome. Germline mutations in the loci of these genes with loss of heterozygosity or additional somatic truncation at the WT allele lead to the development of breast cancers with characteristic clinicopathological features and prominent genomic features of homologous recombination deficiency, otherwise referred to as “BRCAness.” Although clinical genetic testing for these and other genes has increased the chances of identifying pathogenic variants, there has also been an increase in the prevalence of variants of uncertain significance, which poses a challenge to patient care because of the difficulties associated with making further clinical decisions. To overcome this challenge, we sought to develop a methodology to reclassify the pathogenicity of these unknown variants using statistical modeling of BRCAness. The model was developed with Lasso logistic regression by comparing 116 genomic attributes derived from 37 BRCA1/2 biallelic mutant and 32 homologous recombination‐quiescent breast cancer exomes. The model showed 95.8% and 86.7% accuracies in the training cohort and The Cancer Genome Atlas validation cohort, respectively. Through application of the model for variant reclassification of homologous recombination‐associated hereditary breast and ovarian cancer causal genes and further assessment with clinicopathological features, we finally identified one likely pathogenic and five likely benign variants. As such, the BRCAness model developed from the tumor exome was robust and provided a reasonable basis for variant reclassification.
Collapse
Affiliation(s)
- Reiko Yoshida
- Department of Oncotherapeutic Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Department of Clinical Genetic Oncology, Cancer Institute Hospital (CIH), JFCR, Tokyo, Japan
| | - Taichi Hagio
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| | - Tomoko Kaneyasu
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| | - Osamu Gotoh
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| | - Tomo Osako
- Division of Pathology, Cancer Institute, JFCR, Tokyo, Japan
| | - Norio Tanaka
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| | - Sayuri Amino
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Genomics-based Cancer Medicine, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| | - Noriko Yaguchi
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| | | | - Dai Kitagawa
- Breast Oncology Center, CIH, JFCR, Tokyo, Japan.,Department of Breast Surgical Oncology, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Shinji Ohno
- Breast Oncology Center, CIH, JFCR, Tokyo, Japan
| | - Takeshi Nakajima
- Department of Clinical Genetic Oncology, Cancer Institute Hospital (CIH), JFCR, Tokyo, Japan
| | - Seigo Nakamura
- Division of Breast Surgical Oncology, Showa University School of Medicine, Tokyo, Japan
| | - Yoshio Miki
- Division of Genetic Diagnosis, Cancer Institute, JFCR, Tokyo, Japan
| | - Toru Hirota
- Department of Cellular and Molecular Imaging of Cancer, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Division of Experimental Pathology, Cancer Institute, JFCR, Tokyo, Japan
| | - Shunji Takahashi
- Department of Oncotherapeutic Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Medical Oncology, CIH, JFCR, Tokyo, Japan
| | - Masaaki Matsuura
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Tetsuo Noda
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Genomics-based Cancer Medicine, Cancer Precision Medicine Center, JFCR, Tokyo, Japan.,Cancer, Institute, JFCR, Tokyo, Japan
| | - Seiichi Mori
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| |
Collapse
|