1
|
Woo HK, Nam Y, Park HG, Lee H. Bridging laboratory innovation to translational research and commercialization of extracellular vesicle isolation and detection. Biosens Bioelectron 2025; 282:117475. [PMID: 40300344 PMCID: PMC12076185 DOI: 10.1016/j.bios.2025.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/04/2025] [Accepted: 04/13/2025] [Indexed: 05/01/2025]
Abstract
Extracellular vesicles (EVs) have emerged as promising biomarkers for various diseases. Encapsulating biomolecules reflective of their parental cells, EVs are readily accessible in bodily fluids. The prospect for minimally invasive, repeatable molecular testing has stimulated significant research; however, challenges persist in isolating EVs from complex biological matrices and characterizing their limited molecular cargo. Technical advances have been pursued to address these challenges, producing innovative EV-specific platforms. This review highlights recent technological developments, focusing on EV isolation and molecular detection methodologies. Furthermore, it explores the translation of these laboratory innovations to clinical applications through the analysis of patient samples, providing insights into the potential diagnostic and prognostic utility of EV-based technologies.
Collapse
Affiliation(s)
- Hyun-Kyung Woo
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yoonho Nam
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Rajavel A, Kumar J, Essakipillai N, Anbazhagan R, Panneerselvam R, Ramakrishnan J, Venkataraman V, Natesan Sella R. Label-free Detection of Urine Extracellular Vesicles from Duchenne Muscular Dystrophy Patients Using Surface-Enhanced Raman Spectroscopy Combined with Machine Learning Models. ACS OMEGA 2025; 10:16874-16883. [PMID: 40321535 PMCID: PMC12044490 DOI: 10.1021/acsomega.5c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 05/08/2025]
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disease that affects males in the pediatric age group. Currently, there is no painless, cost-effective prognostic method available to monitor DMD progression. The main hypothesis of this study was that the biochemical composition of extracellular vesicles (EVs) isolated from the urine of DMD patients can be distinctly differentiated from that of healthy controls using surface-enhanced Raman Spectroscopy (SERS) combined with machine learning models. This differentiation is expected to provide a noninvasive, rapid, and accurate diagnostic tool for the early detection, staging, and monitoring of DMD by identifying the molecular signatures captured by SERS and leveraging the analytical power of machine learning algorithms. We collected fasting morning urine samples from 52 DMD patients and 17 healthy controls and isolated EVs using a Total Exosome Isolation kit. The SERS substrates are prepared using silver nanoparticles, which were employed to capture the molecular fingerprints of the EVs with uniformity and reproducibility, achieving relative standard deviation values of 7.3% and 8.9%. We observed alterations in phenylalanine and α-helical proteins in patients with DMD compared to controls. These spectral data were analyzed using PCA, Support Vector Machines, and k-Nearest Neighbor (KNN) algorithms to identify distinct patterns and stage DMD based on biochemical composition. Our integrated approach demonstrated 60% sensitivity and 100% specificity in distinguishing DMD patients from healthy controls, highlighting the potential of SERS and KNN for noninvasive, accurate, and rapid diagnosis of DMD. This method offers a promising avenue for early detection and personalized treatment strategies, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Archana Rajavel
- Membrane
Protein Interaction Laboratory, Department of Genetic Engineering,
School of Bioengineering, SRM Institute
of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Jayasree Kumar
- Raman
Research Laboratory (RARE Lab), Department of Chemistry, SRM University-AP, Andhra Pradesh, Amaravati 522502, India
| | - Narayanan Essakipillai
- Department
of Computer Applications, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Ramajayam Anbazhagan
- Department
of Mathematics, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Rajapandiyan Panneerselvam
- Raman
Research Laboratory (RARE Lab), Department of Chemistry, SRM University-AP, Andhra Pradesh, Amaravati 522502, India
| | - Jayashree Ramakrishnan
- Department
of Computer Applications, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Viswanathan Venkataraman
- Department
of Paediatrics Neurology, Apollo Children’s
Hospital, Thousands Lights, Chennai 600 006, Tamil Nadu, India
| | - Raja Natesan Sella
- Membrane
Protein Interaction Laboratory, Department of Genetic Engineering,
School of Bioengineering, SRM Institute
of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| |
Collapse
|
3
|
Hara T, Meng S, Alshammari AH, Hatakeyama H, Arao Y, Saito Y, Inoue K, di Luccio E, Vecchione A, Hirotsu T, Ishii H. Recent Exploration of Solid Cancer Biomarkers Hidden Within Urine or Blood Exosomes That Provide Fundamental Information for Future Cancer Diagnostics. Diagnostics (Basel) 2025; 15:628. [PMID: 40075875 PMCID: PMC11899240 DOI: 10.3390/diagnostics15050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer cells exhibit abnormal behavior compared to normal cells. They ignore growth arrest signals such as contact inhibition, a mechanism that stops their proliferation when they collide with surrounding cells, and proliferate in an uncontrolled manner, destroying tissue. Early detection and treatment of cancer are therefore important for healthy longevity. Cancer cells differ from normal cells in their characteristic gene expression due to their abnormalities. Cancer markers that reflect these characteristics have been searched for and applied to diagnosis. Although analysis of blood antigens has been the main method, further development of a diagnostic system is needed for early detection of cancer. Next-generation sequencers have improved gene expression analysis technology, making it possible to analyze detailed gene expression in cancer cells and nucleic acid molecules in blood or urine. In addition, cancer cells release extracellular vesicles, exosomes, which are known to contain molecules that may serve as cancer markers. This review summarizes the latest findings on exosomal cancer markers.
Collapse
Grants
- grant nos. 19K22658, 20H00541, 21K19526, 22H03146, 22K19559, 23K19505, 23K18313, 23KK0153, 24K22144, and 16H06279 (PAGS) Ministry of Education, Culture, Sports, Science and Technology
- grant nos. JP23ym0126809 and JP24ym0126809 AMED
- 2023 Princess Takamatsu Cancer Research Fund
- 2024 Suzuken Memorial Foundation, Japan
Collapse
Affiliation(s)
- Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan
| | - Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan
| | | | | | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan
| | - Yoshiko Saito
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan
| | - Kana Inoue
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan
| | - Eric di Luccio
- Hirotsu Bio Science Inc., Chiyoda-Ku, Tokyo 102-0094, Japan
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, University of Rome “Sapienza”, Santo Andrea Hospital, Via di Grottarossa, 1035-00189 Rome, Italy
| | | | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Ye J, Li D, Jie Y, Luo H, Zhang W, Qiu C. Exosome-based nanoparticles and cancer immunotherapy. Biomed Pharmacother 2024; 179:117296. [PMID: 39167842 DOI: 10.1016/j.biopha.2024.117296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Over the past decades, cancer immunotherapy has encountered challenges such as immunogenicity, inefficiency, and cytotoxicity. Consequently, exosome-based cancer immunotherapy has gained rapid traction as a promising alternative. Exosomes, a type of extracellular vesicles (EVs) ranging from 50 to 150 nm, are self-originating and exhibit fewer side effects compared to traditional therapies. Exosome-based immunotherapy encompasses three significant areas: cancer vaccination, co-inhibitory checkpoints, and adoptive T-cell therapy. Each of these fields leverages the inherent advantages of exosomes, demonstrating substantial potential for individualized tumor therapy and precision medicine. This review aims to elucidate the reasons behind the promise of exosome-based nanoparticles as cancer therapies by examining their characteristics and summarizing the latest research advancements in cancer immunotherapy.
Collapse
Affiliation(s)
- Jiarong Ye
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi Province, 330000 China.
| | - Danni Li
- Second Clinical Medical School, Nanchang University, Jiangxi Province 330000, China
| | - Yiting Jie
- Second Clinical Medical School, Nanchang University, Jiangxi Province 330000, China
| | - Hongliang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Province 330000, China
| | - Wenjun Zhang
- Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Province 330000, China
| | - Cheng Qiu
- Gastrointestinal Surgery, Pingxiang People's Hospital, Jiangxi Province 330000, China.
| |
Collapse
|
5
|
Leetanaporn K, Chiangjong W, Roytrakul S, Molika P, Janmunee N, Atjimakul T, Hanprasertpong J, Navakanitworakul R. Enhancing outcome prediction of concurrent chemoradiation treatment in patients with locally advanced cervical cancer through plasma extracellular vesicle proteomics. Heliyon 2024; 10:e36374. [PMID: 39262965 PMCID: PMC11388600 DOI: 10.1016/j.heliyon.2024.e36374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Most patients with locally advanced cervical cancer (LACC) are primarily treated using concurrent chemoradiation (CCRT); however, LACC lacks reliable predictive biomarkers. Extracellular vesicles (EVs) could define the dynamic biological response to CCRT. However, the relationship between EVs and the therapeutic response to LACC is unestablished. Thus, we aimed to determine the relationship of plasma EVs pre- and post-CCRT in 62 patients with LACC. For proteomic analyses, EVs were isolated using ultracentrifugation (UC) with size exclusion chromatography or UC alone. We found that plasma particle concentration was significantly increased post-treatment in non-responders. After CCRT, there was a decrease in proteins related to serine protease and fibrinogen, which contribute to tumor microenvironment alteration. This reduction also extended to proteins involved in innate immune and viral immune responses, correlating with reduced tumor burden. Sparse partial least squares discriminant analysis revealed 8, 13, and 19 proteins at diagnosis, one month, and three months, respectively, influencing the CCRT response. Among these, FIBG, TFR1, HBA, and FINC are prognostic markers according to The Cancer Genome Atlas tissue gene expression database. Our discriminant model demonstrated excellent specificity and negative predictive value, underscoring the model's reliability in determining responsiveness to CCRT and highlighting the potential clinical applicability of EVs in improving outcomes in LACC.
Collapse
Affiliation(s)
- K Leetanaporn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - W Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University Thailand
| | - S Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency Thailand
| | - P Molika
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Thailand
| | - N Janmunee
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - T Atjimakul
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - J Hanprasertpong
- Department of Research and Medical Innovation, Faculty of Medicine Vajira Hospital, Navamindradhiraj University Thailand
| | - R Navakanitworakul
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Thailand
| |
Collapse
|
6
|
Lu MM, Yang Y. Exosomal PD-L1 in cancer and other fields: recent advances and perspectives. Front Immunol 2024; 15:1395332. [PMID: 38726017 PMCID: PMC11079227 DOI: 10.3389/fimmu.2024.1395332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
PD-1/PD-L1 signaling is a key factor of local immunosuppression in the tumor microenvironment. Immune checkpoint inhibitors targeting PD-1/PD-L1 signaling have achieved tremendous success in clinic. However, several types of cancer are particularly refractory to the anti-PD-1/PD-L1 treatment. Recently, a series of studies reported that IFN-γ can stimulate cancer cells to release exosomal PD-L1 (exoPD-L1), which possesses the ability to suppress anticancer immune responses and is associated with anti-PD-1 response. In this review, we introduce the PD-1/PD-L1 signaling, including the so-called 'reverse signaling'. Furthermore, we summarize the immune treatments of cancers and pay more attention to immune checkpoint inhibitors targeting PD-1/PD-L1 signaling. Additionally, we review the action mechanisms and regulation of exoPD-L1. We also introduce the function of exoPD-L1 as biomarkers. Finally, we review the methods for analyzing and quantifying exoPD-L1, the therapeutic strategies targeting exoPD-L1 to enhance immunotherapy and the roles of exoPD-L1 beyond cancer. This comprehensive review delves into recent advances of exoPD-L1 and all these findings suggest that exoPD-L1 plays an important role in both cancer and other fields.
Collapse
Affiliation(s)
- Man-Man Lu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|