1
|
Pang C, Zhao J, Zhang S, Chen J, Zeng X, Li H. Design, synthesis, and biological antitumor evaluation of tetrahydroisoquinoline derivatives. Bioorg Med Chem Lett 2024; 109:129824. [PMID: 38823729 DOI: 10.1016/j.bmcl.2024.129824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Cancer, as a public health issue, is the leading cause of death worldwide. Tetrahydroisoquinoline derivatives have effective biological activities and can be used as potential therapeutic agents for antitumor drugs. In this work, we designed and synthesized a series of novel tetrahydroisoquinoline compounds and evaluated their antitumor activity in vitro on several representative human cancer cell lines. The results showed that the vast majority of compounds showed good inhibitory activities against the cancer cell lines of HCT116, MDA-MB-231, HepG2, and A375.
Collapse
Affiliation(s)
- Can Pang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jianbo Zhao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shuai Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiayu Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiu Zeng
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
2
|
Jovanović D, Filipović A, Janjić G, Lazarević-Pašti T, Džambaski Z, Bondžić BP, Bondžić AM. Targeting Alzheimer's Disease: Evaluating the Efficacy of C-1 Functionalized N-Aryl-Tetrahydroisoquinolines as Cholinergic Enzyme Inhibitors and Promising Therapeutic Candidates. Int J Mol Sci 2024; 25:1033. [PMID: 38256107 PMCID: PMC10816625 DOI: 10.3390/ijms25021033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
We have synthesized 22 C-1 functionalized-N-aryl-1,2,3,4-tetrahydroisoquinoline derivatives showing biological activities towards cholinergic enzymes. Synthesis was performed using visible-light-promoted photo-redox chemistry, starting from a common intermediate, and the application of this synthetic methodology drastically simplified synthetic routes and purification of desired compounds. All synthesized derivates were divided into four groups based on the substituents in the C-1 position, and their inhibition potencies towards two cholinergic enzymes, acetyl- and butyrylcholinesterase were evaluated. Most potent derivatives were selected, and kinetic analysis was further carried out to obtain insights into the mechanisms of inhibition of these two enzymes. Further validation of the mode of inhibition of cholinergic enzymes by the two most potent THIQ compounds, 3c and 3i, was performed using fluorescence-quenching titration studies. Molecular docking studies further confirmed the proposed mechanism of enzymes' inhibition. In silico predictions of physicochemical properties, pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of the selected most potent derivatives were performed using Swiss ADME tool. This was followed by UPLC-assisted log P determination and in vitro BBB permeability studies performed in order to assess the potential of the synthesized compounds to pass the BBB.
Collapse
Affiliation(s)
- Dunja Jovanović
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (D.J.); (T.L.-P.)
| | - Ana Filipović
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (A.F.); (G.J.); (Z.D.)
| | - Goran Janjić
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (A.F.); (G.J.); (Z.D.)
| | - Tamara Lazarević-Pašti
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (D.J.); (T.L.-P.)
| | - Zdravko Džambaski
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (A.F.); (G.J.); (Z.D.)
| | - Bojan P. Bondžić
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (A.F.); (G.J.); (Z.D.)
| | - Aleksandra M. Bondžić
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (D.J.); (T.L.-P.)
| |
Collapse
|
3
|
Tan FHP, Ting ACJ, Najimudin N, Watanabe N, Shamsuddin S, Zainuddin A, Osada H, Azzam G. 3-[[(3S)-1,2,3,4-Tetrahydroisoquinoline-3-Carbonyl]Amino]Propanoic Acid (THICAPA) Is Protective Against Aβ42-Induced Toxicity In Vitro and in an Alzheimer's Disease Drosophila. J Gerontol A Biol Sci Med Sci 2023; 78:1944-1952. [PMID: 37453137 DOI: 10.1093/gerona/glad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia globally. The accumulation of amyloid-beta (Aβ) extracellular senile plaques in the brain is one of the hallmark mechanisms found in AD. Aβ42 is the most damaging and aggressively aggregating Aβ isomer produced in the brain. Although Aβ42 has been extensively researched as a crucial peptide connected to the development of the characteristic amyloid fibrils in AD, the specifics of its pathophysiology are still unknown. Therefore, the main objective was to identify novel compounds that could potentially mitigate the negative effects of Aβ42. 3-[[(3S)-1,2,3,4-Tetrahydroisoquinoline-3-carbonyl]amino]propanoic acid (THICAPA) was identified as a ligand for Aβ42 and for reducing fibrillary Aβ42 aggregation. THICAPA also improved cell viability when administered to PC12 neuronal cells that were exposed to Aβ42. Additionally, this compound diminished Aβ42 toxicity in the current AD Drosophila model by rescuing the rough eye phenotype, prolonging the life span, and enhancing motor functions. Through next-generation RNA-sequencing, immune response pathways were downregulated in response to THICAPA treatment. Thus, this study suggests THICAPA as a possible disease-modifying treatment for AD.
Collapse
Affiliation(s)
- Florence Hui Ping Tan
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- USM-RIKEN Interdisciplinary Centre for Advanced Sciences (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| | | | - Nazalan Najimudin
- USM-RIKEN Interdisciplinary Centre for Advanced Sciences (URICAS), Universiti Sains Malaysia, Penang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Nobumoto Watanabe
- USM-RIKEN Interdisciplinary Centre for Advanced Sciences (URICAS), Universiti Sains Malaysia, Penang, Malaysia
- Bioprobe Application Research Unit, RIKEN CSRS, Wako, Saitama, Japan
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Azalina Zainuddin
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Hiroyuki Osada
- USM-RIKEN Interdisciplinary Centre for Advanced Sciences (URICAS), Universiti Sains Malaysia, Penang, Malaysia
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, Japan
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Malaysia Genome and Vaccine Institute (MGVI), National Institutes of Biotechnology Malaysia (NIBM), Jalan Bangi, Selangor, Malaysia
| |
Collapse
|
4
|
Li B, Wang J, Yuan M, Miao Y, Zhang H, Zhang J. Design, synthesis, and biological evaluation of tetrahydroisoquinoline stilbene derivatives as potential antitumor candidates. Chem Biol Drug Des 2023; 101:364-379. [PMID: 36054251 DOI: 10.1111/cbdd.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/31/2022] [Accepted: 08/14/2022] [Indexed: 01/14/2023]
Abstract
Herein, a novel class of tetrahydroisoquinoline stilbene derivatives were synthesized, and their potential in vitro anticancer activities were evaluated. Most of the compounds displayed inhibitory activity against one or more representative human cancer cell lines (lung cancer A549 cells, breast cancer MCF-7 cells, and human colorectal carcinoma HT-29 cells), especially compound 16e, which exhibited outstanding cytotoxicity to A549 cells. The tubulin polymerization assay demonstrated that compound 16e displayed better inhibition than colchicine when tested at the same concentration. It was found that 16e arrested A549 cells in G2/M phase by downregulating the expression of cell division cycle 2 (Cdc2) and upregulating the expression of proliferating cell nuclear antigen (PCNA) and cyclin B1. Flow cytometry and Western blot analysis indicated that 16e caused apoptosis via the mitochondrial-dependent apoptotic pathway by reducing mitochondrial membrane potential, inducing ROS accumulation, promoting the release of cytochrome C from the mitochondria into the cytoplasm, and further increasing the protein level of cleaved caspase-3. This work may inspire new ideas for the further improvement of tubulin-related anticancer drugs and treatments.
Collapse
Affiliation(s)
- Bo Li
- Department of Chemistry, Bengbu Medical College, Bengbu, China
| | - Jie Wang
- Department of Chemistry, Bengbu Medical College, Bengbu, China
| | - Ming Yuan
- Department of Chemistry, Bengbu Medical College, Bengbu, China
| | - Yuchen Miao
- Department of Chemistry, Bengbu Medical College, Bengbu, China
| | - Hui Zhang
- Department of Chemistry, Bengbu Medical College, Bengbu, China
| | - Junjie Zhang
- Department of Chemistry, Bengbu Medical College, Bengbu, China
| |
Collapse
|
5
|
Kouznetsov VV, Ortiz-Villamizar MC, Méndez-Vargas LY, Galvis CEP. A Review on Metal-Free Oxidative α-Cyanation and Alkynylation of N-Substituted Tetrahydroisoquinolines as a Rapid Route for the Synthesis of Isoquinoline Alkaloids. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200420073539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As a fast-growing research field in modern organic chemistry, the crossdehydrogenative
coupling (CDC) has seen considerable development in its scope of application,
uptake into industry, and understanding of its mechanism to functionalize the tetrahydroisoquinoline
(THIQ) scaffold. Among the vast number of possibilities offered by
the CDC coupling, the metal-free oxidative α-cyanation and alkynylation reactions have
emerged as powerful strategies in the synthesis of diverse and potentially bioactive
THIQs. Even though transition-metal catalyzed CDC reactions have undoubtedly made
significant progress in THIQ chemistry, general and selective protocols for the metal-free
oxidative α-cyanation and alkynylation reactions of THIQs are urgently needed. Thereby,
this critical discussion is aimed to highlight the recent progress in this field of CDC reactions
where Csp3-H bonds are activated without metal catalysts to introduce the CN and the alkynyl groups into
the THIQ core.
Collapse
Affiliation(s)
- Vladimir V. Kouznetsov
- Laboratory of Organic and Bimolecular Chemistry, CMN, Industrial University of Santande, Guatiguará Technology Park, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
| | - Marlyn C. Ortiz-Villamizar
- Laboratory of Organic and Bimolecular Chemistry, CMN, Industrial University of Santande, Guatiguará Technology Park, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
| | - Leonor Y. Méndez-Vargas
- Laboratory of Organic and Bimolecular Chemistry, CMN, Industrial University of Santande, Guatiguará Technology Park, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
| | - Carlos E. Puerto Galvis
- Laboratory of Organic and Bimolecular Chemistry, CMN, Industrial University of Santande, Guatiguará Technology Park, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
| |
Collapse
|
6
|
Sbei N, Titov AA, Markova EB, Elinson MN, Voskressensky LG. A Facile One‐Pot Synthesis of 1,2,3,4‐Tetrahydroisoquinoline‐1‐carbonitriles via the Electrogenerated Cyanide Anions from Acetonitrile. ChemistrySelect 2020. [DOI: 10.1002/slct.202000869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Najoua Sbei
- Research Center: Molecular Design and Synthesis of Innovative Compounds for MedicinePeoples' Friendship University of Russia(RUDN University) 117198 Russia Moscow, Miklukho-Maklaya st https://twitter.com/UniversityRudn
| | - Alexander A. Titov
- Research Center: Molecular Design and Synthesis of Innovative Compounds for MedicinePeoples' Friendship University of Russia(RUDN University) 117198 Russia Moscow, Miklukho-Maklaya st https://twitter.com/UniversityRudn
| | - Ekaterina B. Markova
- Physical and Colloidal Chemistry DepartmentRUDN University Peoples' Friendship University of Russia (RUDN University) 117198 Russia Moscow, Miklukho-Maklaya st
| | - Michail N. Elinson
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Moscow Russian Federation Leninsky Prospect, 47, Moscow
| | - Leonid G. Voskressensky
- Research Center: Molecular Design and Synthesis of Innovative Compounds for MedicinePeoples' Friendship University of Russia(RUDN University) 117198 Russia Moscow, Miklukho-Maklaya st https://twitter.com/UniversityRudn
| |
Collapse
|
7
|
Design, synthesis, and biological evaluation of tetrahydroisoquinoline-based diaryl urea derivatives for suppressing VEGFR-2 signaling. Anticancer Drugs 2019; 30:508-516. [DOI: 10.1097/cad.0000000000000718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Huang M, Zolnoori M, Balls-Berry JE, Brockman TA, Patten CA, Yao L. Technological Innovations in Disease Management: Text Mining US Patent Data From 1995 to 2017. J Med Internet Res 2019; 21:e13316. [PMID: 31038462 PMCID: PMC6611693 DOI: 10.2196/13316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Patents are important intellectual property protecting technological innovations that inspire efficient research and development in biomedicine. The number of awarded patents serves as an important indicator of economic growth and technological innovation. Researchers have mined patents to characterize the focuses and trends of technological innovations in many fields. OBJECTIVE To expand patent mining to biomedicine and facilitate future resource allocation in biomedical research for the United States, we analyzed US patent documents to determine the focuses and trends of protected technological innovations across the entire disease landscape. METHODS We analyzed more than 5 million US patent documents between 1995 and 2017, using summary statistics and dynamic topic modeling. More specifically, we investigated the disease coverage and latent topics in patent documents over time. We also incorporated the patent data into the calculation of our recently developed Research Opportunity Index (ROI) and Public Health Index (PHI), to recalibrate the resource allocation in biomedical research. RESULTS Our analysis showed that protected technological innovations have been primarily focused on socioeconomically critical diseases such as "other cancers" (malignant neoplasm of head, face, neck, abdomen, pelvis, or limb; disseminated malignant neoplasm; Merkel cell carcinoma; and malignant neoplasm, malignant carcinoid tumors, neuroendocrine tumor, and carcinoma in situ of an unspecified site), diabetes mellitus, and obesity. The United States has significantly improved resource allocation to biomedical research and development over the past 17 years, as illustrated by the decreasing PHI. Diseases with positive ROI, such as ankle and foot fracture, indicate potential research opportunities for the future. Development of novel chemical or biological drugs and electrical devices for diagnosis and disease management is the dominating topic in patented inventions. CONCLUSIONS This multifaceted analysis of patent documents provides a deep understanding of the focuses and trends of technological innovations in disease management in patents. Our findings offer insights into future research and innovation opportunities and provide actionable information to facilitate policy makers, payers, and investors to make better evidence-based decisions regarding resource allocation in biomedicine.
Collapse
Affiliation(s)
- Ming Huang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Maryam Zolnoori
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Joyce E Balls-Berry
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Tabetha A Brockman
- Center for Clinical and Translational Science, Commuity Engagement Program, Mayo Clinic, Rochester, MN, United States.,Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Christi A Patten
- Center for Clinical and Translational Science, Commuity Engagement Program, Mayo Clinic, Rochester, MN, United States.,Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Lixia Yao
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
9
|
Perevoshchikova AN, Eroshenko DV, Dmitriev MV, Grishko VV, Shklyaev YV. Synthesis and Prediction of the Ubiquinol‐cytochrome
c
Reductase Inhibitory Activity of 3,4‐Dihydroisoquinolines and 2‐Azaspiro[4.5]decanes (Spiropyrrolines). J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anna N. Perevoshchikova
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences Academician Korolev Street 3 614013 Perm Russia
| | - Daria V. Eroshenko
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences Academician Korolev Street 3 614013 Perm Russia
| | - Maksim V. Dmitriev
- Perm State National Research University Bukirev Street 15 614990 Perm Russia
| | - Victoria V. Grishko
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences Academician Korolev Street 3 614013 Perm Russia
| | - Yurii V. Shklyaev
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences Academician Korolev Street 3 614013 Perm Russia
| |
Collapse
|
10
|
Shao D, Zhang GN, Niu W, Li Z, Zhu M, Wang J, Li D, Wang Y. Design, Synthesis, and Cytotoxic Activity of 3-Aryl-N-hydroxy-2-(sulfonamido)propanamides in HepG2, HT-1080, KB, and MCF-7 Cells. Chem Biodivers 2019; 16:e1800646. [PMID: 30706997 DOI: 10.1002/cbdv.201800646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/01/2019] [Indexed: 01/12/2023]
Abstract
A new series of (sulfonamido)propanamides (6a1-6a13, 6b1-6b15, 7c1-7c5, 6d1-6d5, 6e1-6e6) was designed and synthesized. All the synthesized compounds were characterized by NMR and mass spectrometry. The target compounds were evaluated for their in vitro cytotoxic activity against hepatocellular carcinoma (HepG2), fibrosarcoma (HT-1080), mouth epidermal carcinoma (KB), and breast adenocarcinoma (MCF-7) cell lines with the sulforhodamine B (SRB) assay, with gemcitabine and mitomycin C as positive controls. Most of these compounds exhibit a more potent cytotoxic effect than the positive control group on various cancer cell lines and the most potent compound, 6a7, shows the IC50 values of 29.78±0.516 μm, 30.70±0.61 μm, and 64.89±3.09 μm in HepG2, HT-1080, KB, and MCF-7 cell lines, respectively. Thus, these compounds with potent cytotoxic activity have potential for development as new chemotherapy agents.
Collapse
Affiliation(s)
- Duanyang Shao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, P. R. China
| | - Guo-Ning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Weixiao Niu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Ziqiang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Mei Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Juxian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Donghui Li
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, P. R. China
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|
11
|
Albano G, Morelli M, Lissia M, Aronica LA. Synthesis of Functionalised Indoline and Isoquinoline Derivatives through a Silylcarbocyclisation/Desilylation Sequence. ChemistrySelect 2019. [DOI: 10.1002/slct.201900524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale; University of Pisa, Via G. Moruzzi 13; 56124 Pisa Italy Fax: (+)390502219260
| | - Martina Morelli
- Dipartimento di Chimica e Chimica Industriale; University of Pisa, Via G. Moruzzi 13; 56124 Pisa Italy Fax: (+)390502219260
| | - Margherita Lissia
- Dipartimento di Chimica e Chimica Industriale; University of Pisa, Via G. Moruzzi 13; 56124 Pisa Italy Fax: (+)390502219260
| | - Laura A. Aronica
- Dipartimento di Chimica e Chimica Industriale; University of Pisa, Via G. Moruzzi 13; 56124 Pisa Italy Fax: (+)390502219260
| |
Collapse
|
12
|
Achary R, Kim S, Choi Y, Mathi GR, Kim HJ, Hwang JY, Kim P. Succinct Syntheses of Methopholine, (±)‐Homolaudanosine, and (±)‐Dysoxyline via Metal‐free One‐Pot Double Alkylation on 1‐Methyl‐3,4‐dihydroisoquinolines. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raghavendra Achary
- Therapeutics and Biotechnology DivisionKorea Research Institute of Chemical Technology Daejeon 34114 South Korea
- Department of Medicinal Chemistry and PharmacologyUniversity of Science and Technology Daejeon 34113 South Korea
| | - Seulgi Kim
- Therapeutics and Biotechnology DivisionKorea Research Institute of Chemical Technology Daejeon 34114 South Korea
- Department of ChemistryChungnam National University Daejeon 34134 South Korea
| | - Yuri Choi
- Therapeutics and Biotechnology DivisionKorea Research Institute of Chemical Technology Daejeon 34114 South Korea
- Department of Medicinal Chemistry and PharmacologyUniversity of Science and Technology Daejeon 34113 South Korea
| | - Gangadhar Rao Mathi
- Therapeutics and Biotechnology DivisionKorea Research Institute of Chemical Technology Daejeon 34114 South Korea
- Department of Medicinal Chemistry and PharmacologyUniversity of Science and Technology Daejeon 34113 South Korea
| | - Hyun Jin Kim
- Therapeutics and Biotechnology DivisionKorea Research Institute of Chemical Technology Daejeon 34114 South Korea
| | - Jong Yeon Hwang
- Therapeutics and Biotechnology DivisionKorea Research Institute of Chemical Technology Daejeon 34114 South Korea
- Department of Medicinal Chemistry and PharmacologyUniversity of Science and Technology Daejeon 34113 South Korea
| | - Pilho Kim
- Therapeutics and Biotechnology DivisionKorea Research Institute of Chemical Technology Daejeon 34114 South Korea
- Department of Medicinal Chemistry and PharmacologyUniversity of Science and Technology Daejeon 34113 South Korea
| |
Collapse
|
13
|
Chen Y, Su C, Wang L, Qin J, Wei S, Tang H. Hybrids of oxoisoaporphine-tetrahydroisoquinoline: novel multi-target inhibitors of inflammation and amyloid-β aggregation in Alzheimer's disease. Mol Divers 2019; 23:709-722. [PMID: 30603938 DOI: 10.1007/s11030-018-9905-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/06/2018] [Indexed: 01/30/2023]
Abstract
A series of 8- and 11-substituted hybrids of oxoisoaporphine-tetrahydroisoquinoline have been designed and synthesized. The new derivatives strongly suppressed NO and iNOS production and modulated the production of cytokines by decreasing TNF-α and IL-1β formation in lipopolysaccharide-activated BV-2 microglia and RAW 264.7 macrophages. Meanwhile, incubation of these derivatives with SH-SY5Y cells that were transfected with human APP containing the Swedish mutations significantly decreased the secretion of Aβ42. Moreover, these hybrids could strongly inhibit the activity of acetylcholinesterase and butyrylcholinesterase. Further investigations in vivo indicated that the 8-substituted hybrid 3b significantly delayed paralysis caused by Aβ1-42 toxicity in GMC101. In sum, these new hybrids could target multiple pathogenetic factors in Alzheimer's disease and merit further investigation.
Collapse
Affiliation(s)
- Yusi Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin City, Guangxi, China
| | - Chunlin Su
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin City, Guangxi, China
| | - Li Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin City, Guangxi, China
| | - Jingfang Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin City, Guangxi, China
| | - Shenqi Wei
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin City, Guangxi, China
| | - Huang Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin City, Guangxi, China.
| |
Collapse
|
14
|
Capilla AS, Soucek R, Grau L, Romero M, Rubio-Martínez J, Caignard DH, Pujol MD. Substituted tetrahydroisoquinolines: synthesis, characterization, antitumor activity and other biological properties. Eur J Med Chem 2018; 145:51-63. [PMID: 29324343 DOI: 10.1016/j.ejmech.2017.12.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 10/18/2022]
Abstract
This work deals with the molecular design, synthesis and biological activity of a series of tetrahydro[1,4]dioxanisoquinolines and dimethoxyisoquinoline analogues. This study describes the synthesis strategy of these potential antitumor compounds, their multi-step synthesis and their optimization. A series of tetrahydroisoquinolines was synthesized and their cytotoxicity evaluated. Some of these tetrahydroisoquinolines showed promising KRas inhibition, antiangiogenesis activity and antiosteoporosis properties. Molecular modeling studies showed that compound 12 bind in the p1 pocket of the KRas protein making interactions with the hydrophobic residues Leu56, Tyr64, Tyr71 and Thr74 and hydrogen bonds with residues Glu37 and Asp38.
Collapse
Affiliation(s)
- A Sergi Capilla
- Laboratori de Química Farmacèutica (Unitat associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Spain
| | - Richard Soucek
- Laboratori de Química Farmacèutica (Unitat associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Spain
| | - Laura Grau
- Laboratori de Química Farmacèutica (Unitat associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Spain
| | - Manel Romero
- Laboratori de Química Farmacèutica (Unitat associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Spain
| | - Jaime Rubio-Martínez
- Department of Physical Chemistry, Faculty of Chemistry, University of Barcelona and the Institut de Recerca en Química Teòrica i Computacional (IQTCUB), Barcelona, Spain
| | - Daniel H Caignard
- Les laboratoires Servier, 1 rue Carle Hébert-92415, Courbevoie Cedex, 92200 Neuilly-sur Seine, France
| | - Maria Dolors Pujol
- Laboratori de Química Farmacèutica (Unitat associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Spain.
| |
Collapse
|
15
|
Gornowicz A, Pawłowska N, Czajkowska A, Czarnomysy R, Bielawska A, Bielawski K, Michalak O, Staszewska-Krajewska O, Kałuża Z. Biological evaluation of octahydropyrazin[2,1-a:5,4-a']diisoquinoline derivatives as potent anticancer agents. Tumour Biol 2017; 39:1010428317701641. [PMID: 28618951 DOI: 10.1177/1010428317701641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, we evaluated the cytotoxic activity and antiproliferative potency of novel octahydropyrazin[2,1-a:5,4-a']diisoquinoline derivatives (1-7) in MCF-7 and MDA-MB-231 breast cancer cell lines. Annexin V binding assay and disruption of the mitochondrial potential were performed to determine apoptosis. The activity of caspases 3, 8, 9, and 10 was measured after 24 h of incubation with tested compounds to explain detailed molecular mechanism of induction of apoptosis. The results from experiments were compared with effects obtained after incubation in the presence of camptothecin and etoposide. Our study demonstrated that the most active compounds in both analyzed breast cancer cell lines were compounds 3 and 4. We also observed that all compounds induced apoptosis. We demonstrated the higher activity of caspases 3, 8, 9, and 10, which confirmed that induction of apoptosis is associated with external and internal cell death pathway. Our study revealed that the novel compounds in group of diisoquinoline derivatives are promising candidates in anticancer treatment by activation of both extrinsic and intrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Agnieszka Gornowicz
- 1 Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Natalia Pawłowska
- 2 Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Anna Czajkowska
- 1 Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Robert Czarnomysy
- 2 Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Anna Bielawska
- 1 Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Bielawski
- 2 Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Olga Michalak
- 3 Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Zbigniew Kałuża
- 3 Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|