1
|
Uremis MM, Ceylan M, Turkoz Y. Investigation of Apoptotic and Anticancer Effects of 2-substituted Benzothiazoles in Breast Cancer Cell Lines: EGFR Modulation and Mechanistic Insights. Anticancer Agents Med Chem 2025; 25:433-445. [PMID: 39473208 DOI: 10.2174/0118715206335840241018053929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 04/11/2025]
Abstract
BACKGROUND AND OBJECTIVE Benzothiazole derivatives, a class of heterocyclic compounds, exhibited diverse biological activities influenced by substituents in the thiazole ring. This study aimed to synthesize these compounds with two functional groups to investigate their potential as anticancer agents, particularly against breast cancer. While previous research demonstrated the efficacy of 2-substituted benzothiazoles against glioma and cervical and pancreatic cancer cells, there is a gap in studies targeting breast cancer. METHODS The synthesized compounds were tested in vitro using MCF-7, MDA-MB-231, and MCF-10A cell lines, with Doxorubicin as the positive control. Various assays were conducted, including Annexin V/PI, cell cycle analysis, wound healing, and measurement of mitochondrial membrane potential. Protein expression of EGFR and transcription levels of apoptosis-related genes (Bax and Bcl-xL) and cancer progression-related genes (JAK, STAT3, ERK, AKT, mTOR) were analyzed. Additionally, the balance between antioxidants and oxidants was evaluated by measuring TAS and TOS levels. RESULTS Our findings revealed that benzothiazole compounds significantly inhibited breast cancer cell growth by reducing cell motility, disrupting mitochondrial membrane potential, and inducing cell cycle arrest in the sub-G1 phase. These compounds increased reactive oxygen species accumulation, leading to cell death. Furthermore, they decreased EGFR protein levels, increased Bax gene transcription, and downregulated the expression of genes such as JAK, STAT3, ERK, AKT, and mTOR. CONCLUSION In conclusion, benzothiazole derivatives exhibited potent inhibitory effects on breast cancer in vitro by promoting apoptosis, downregulating EGFR activity, and modulating key signaling pathways, including JAK/STAT, ERK/MAPK, and PI3K/Akt/mTOR. These results highlighted the potential of benzothiazole derivatives as novel therapeutic agents for breast cancer treatment.
Collapse
Affiliation(s)
- Muhammed Mehdi Uremis
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Mustafa Ceylan
- Department of Chemistry, Faculty of Science and Letters, Gaziosmanpaşa University, Tokat, Turkey
| | - Yusuf Turkoz
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
2
|
Ge A, He Q, Zhao D, Li Y, Chen J, Deng Y, Xiang W, Fan H, Wu S, Li Y, Liu L, Wang Y. Mechanism of ferroptosis in breast cancer and research progress of natural compounds regulating ferroptosis. J Cell Mol Med 2024; 28:e18044. [PMID: 38140764 PMCID: PMC10805512 DOI: 10.1111/jcmm.18044] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer is the most prevalent cancer worldwide and its incidence increases with age, posing a significant threat to women's health globally. Due to the clinical heterogeneity of breast cancer, the majority of patients develop drug resistance and metastasis following treatment. Ferroptosis, a form of programmed cell death dependent on iron, is characterized by the accumulation of lipid peroxides, elevated levels of iron ions and lipid peroxidation. The underlying mechanisms and signalling pathways associated with ferroptosis are intricate and interconnected, involving various proteins and enzymes such as the cystine/glutamate antiporter, glutathione peroxidase 4, ferroptosis inhibitor 1 and dihydroorotate dehydrogenase. Consequently, emerging research suggests that ferroptosis may offer a novel target for breast cancer treatment; however, the mechanisms of ferroptosis in breast cancer urgently require resolution. Additionally, certain natural compounds have been reported to induce ferroptosis, thereby interfering with breast cancer. Therefore, this review not only discusses the molecular mechanisms of multiple signalling pathways that mediate ferroptosis in breast cancer (including metastasis, invasion and proliferation) but also elaborates on the mechanisms by which natural compounds induce ferroptosis in breast cancer. Furthermore, this review summarizes potential compound types that may serve as ferroptosis inducers in future tumour cells, providing lead compounds for the development of ferroptosis-inducing agents. Last, this review proposes the potential synergy of combining natural compounds with traditional breast cancer drugs in the treatment of breast cancer, thereby suggesting future directions and offering new insights.
Collapse
Affiliation(s)
- Anqi Ge
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Qi He
- People's Hospital of Ningxiang CityNingxiangChina
| | - Da Zhao
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
- Hunan University of Chinese MedicineChangshaChina
| | - Yuwei Li
- Hunan University of Science and TechnologyXiangtanChina
| | - Junpeng Chen
- Hunan University of Science and TechnologyXiangtanChina
| | - Ying Deng
- People's Hospital of Ningxiang CityNingxiangChina
| | - Wang Xiang
- The First People's Hospital Changde CityChangdeChina
| | - Hongqiao Fan
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Shiting Wu
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Yan Li
- People's Hospital of Ningxiang CityNingxiangChina
| | - Lifang Liu
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Yue Wang
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| |
Collapse
|
3
|
Wongso H, Goenawan H, Lesmana R, Mahendra I, Kurniawan A, Wibawa THA, Nuraeni W, Rosyidiah E, Setiadi Y, Sylviana N, Pratiwi YS, Rosdianto AM, Supratman U, Kusumaningrum CE. Synthesis and Biological Evaluation of New Fluorescent Probe BPN-01: A Model Molecule for Fluorescence Image-guided Surgery. J Fluoresc 2023; 33:1827-1839. [PMID: 36847931 DOI: 10.1007/s10895-023-03166-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023]
Abstract
Fluorescence image-guided surgery (FIGS) can serve as a tool to achieve successful resection of tumour tissues during surgery, serving as a surgical navigator for surgeons. FIGS relies on the use of fluorescent molecules that can specifically interact with cancer cells. In this work, we developed a new model of fluorescent probe based on benzothiazole-phenylamide moiety featuring the visible fluorophore nitrobenzoxadiazole (NBD), namely BPN-01. This compound was designed and synthesised for potential applications in the tissue biopsy examination and ex-vivo imaging during FIGS of solid cancers. The probe BPN-01 exhibited favourable spectroscopic properties, particularly in nonpolar and alkaline solvents. Moreover, in vitro fluorescence imaging revealed that the probe appeared to recognise and be internalised in the prostate (DU-145) and melanoma (B16-F10) cancer cells, but not in the normal cells (myoblast C2C12). The cytotoxicity studies revealed that probe BPN-01 was not toxic to the B16 cells, suggesting excellent biocompatibility. Furthermore, the computational analysis showed that the calculated binding affinity of the probe to both translocator protein 18 kDa (TSPO) and human epidermal growth factor receptor 2 (HER2) was considerably high. Hence, probe BPN-01 displays promising properties and may be valuable for visualising cancer cells in vitro. Furthermore, ligand 5 can potentially be labelled with NIR fluorophore and radionuclide, and serves as a dual imaging agent for in vivo applications.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia.
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia.
| | - Hanna Goenawan
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Physiology Molecular, Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Physiology Molecular, Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Isa Mahendra
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| | - Ahmad Kurniawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Teguh H A Wibawa
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Witri Nuraeni
- Directorate of Laboratory Management, Research Facilities, and Science and Technology Park, National Research and Innovation Agency of Indonesia, Jl. Tamansari No. 71, Lb. Siliwangi, Bandung, West Java, 40132, Indonesia
| | - Endah Rosyidiah
- Directorate of Laboratory Management, Research Facilities, and Science and Technology Park, National Research and Innovation Agency of Indonesia, Jl. Tamansari No. 71, Lb. Siliwangi, Bandung, West Java, 40132, Indonesia
| | - Yanuar Setiadi
- Research Organization for Life Sciences and Environment, Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Nova Sylviana
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Physiology Molecular, Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Yuni Susanti Pratiwi
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Physiology Molecular, Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Aziiz Mardanarian Rosdianto
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Physiology Molecular, Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
- Veterinary Medicine Study Program, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Unang Supratman
- Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, 45363, Indonesia
| | - Crhisterra E Kusumaningrum
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| |
Collapse
|
4
|
Chen X, Li F, Liang R, Liu W, Ma H, Lan T, Liao J, Yang Y, Yang J, Liu N. A Smart Benzothiazole-Based Conjugated Polymer Nanoplatform with Multistimuli Response for Enhanced Synergistic Chemo-Photothermal Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16343-16354. [PMID: 36947054 DOI: 10.1021/acsami.2c19246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The combination of chemotherapy and phototherapy has received tremendous attention in multimodal cancer therapy. However, satisfactory therapeutic outcomes of chemo-photothermal therapy (chemo-PTT) still remain challenging. Herein, a biocompatible smart nanoplatform based on benzothiazole-linked conjugated polymer nanoparticles (CPNs) is rationally designed, for effectively loading doxorubicin (DOX) and Mo-based polyoxometalate (POM) through both dynamic chemical bond and intermolecular interactions, with an expectation to obtain new anticancer drugs with multiple stimulated responses to the tumor microenvironment (TME) and external laser irradiation. Controlled drug release of DOX from the obtained nanoformulation (CPNs-DOX-PEG-cRGD-BSA@POM) triggered by both endogenous stimulations (GSH and low pH) and exogenous laser irradiation has been well demonstrated by pharmacodynamics investigations. More intriguingly, incorporating POM into the nanoplatform not only enables the nanomedicine to achieve mild hyperthermia but also makes it exhibit self-assembly behavior in acidic TME, producing enhanced tumor retention. Benefiting from the versatile functions, the prepared CPNs-DOX-PEG-cRGD-BSA@POM exhibited excellent tumor targeting and therapeutic effects in murine xenografted models, showing great potential in practical cancer therapy.
Collapse
Affiliation(s)
- Xijian Chen
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Ranxi Liang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Weihao Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Huan Ma
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Jijun Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
5
|
Cuc DT, Hien NT, Doan VN, Thuan TD, Anh DTT, Thanh NH, Ha TT, Nga NT, Tuyet NTK, Kiem PV. Design and Synthesis of New 2-Aminobenzamide Derivatives Containing Benzothiazole and Phenylamine Moiety and Their Cytotoxicity. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221116188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Twelve new compounds including 2-aminobenzamide derivatives bearing benzothiazole and phenylamine moiety were designed and synthesized. The synthesized compounds were tested their cytotoxic activity against A549 and SW480 tumor cell lines. Compounds 3a and 3c exhibited cytotoxicity toward A549 cell line with IC50 values of 24.59 and 29.59 µM, respectively.
Collapse
Affiliation(s)
- Dinh Thi Cuc
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Institute of Chemistry, VAST, Cau Giay, Hanoi, Vietnam
| | - Nguyen Thi Hien
- Faculty of Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Vu Ngoc Doan
- Le Quy Don Technical University, Cau Giay, Hanoi, Vietnam
| | - Tran Dang Thuan
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Institute of Chemistry, VAST, Cau Giay, Hanoi, Vietnam
| | - Dang Thi Tuyet Anh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Institute of Chemistry, VAST, Cau Giay, Hanoi, Vietnam
| | - Nguyen Ha Thanh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Institute of Chemistry, VAST, Cau Giay, Hanoi, Vietnam
| | - Trinh Thu Ha
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Institute of Chemistry, VAST, Cau Giay, Hanoi, Vietnam
| | | | | | - Phan Van Kiem
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Institute of Marine Biochemistry, VAST, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
6
|
Electrooxidative N–N Cross Coupling: A Way to New Azopyrazoles. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Haider K, Shrivastava N, Pathak A, Prasad Dewangan R, Yahya S, Shahar Yar M. Recent advances and SAR study of 2-substituted benzothiazole scaffold based potent chemotherapeutic agents. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2021.100258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
8
|
Liu W, He M, Li Y, Peng Z, Wang G. A review on synthetic chalcone derivatives as tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2021; 37:9-38. [PMID: 34894980 PMCID: PMC8667932 DOI: 10.1080/14756366.2021.1976772] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microtubules play an important role in the process of cell mitosis and can form a spindle in the mitotic prophase of the cell, which can pull chromosomes to the ends of the cell and then divide into two daughter cells to complete the process of mitosis. Tubulin inhibitors suppress cell proliferation by inhibiting microtubule dynamics and disrupting microtubule homeostasis. Thereby inducing a cell cycle arrest at the G2/M phase and interfering with the mitotic process. It has been found that a variety of chalcone derivatives can bind to microtubule proteins and disrupt the dynamic balance of microtubules, inhibit the proliferation of tumour cells, and exert anti-tumour effects. Consequently, a great number of studies have been conducted on chalcone derivatives targeting microtubule proteins. In this review, synthetic or natural chalcone microtubule inhibitors in recent years are described, along with their structure-activity relationship (SAR) for anticancer activity.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
9
|
Emerging role of ferroptosis in breast cancer: New dawn for overcoming tumor progression. Pharmacol Ther 2021; 232:107992. [PMID: 34606782 DOI: 10.1016/j.pharmthera.2021.107992] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer has become a serious threat to women's health. Cancer progression is mainly derived from resistance to apoptosis induced by procedures or therapies. Therefore, new drugs or models that can overcome apoptosis resistance should be identified. Ferroptosis is a recently identified mode of cell death characterized by excess reactive oxygen species-induced lipid peroxidation. Since ferroptosis is distinct from apoptosis, necrosis and autophagy, its induction successfully eliminates cancer cells that are resistant to other modes of cell death. Therefore, ferroptosis may become a new direction around which to design breast cancer treatment. Unfortunately, the complete appearance of ferroptosis in breast cancer has not yet been fully elucidated. Furthermore, whether ferroptosis inducers can be used in combination with traditional anti- breast cancer drugs is still unknown. Moreover, a summary of ferroptosis in breast cancer progression and therapy is currently not available. In this review, we discuss the roles of ferroptosis-associated modulators glutathione, glutathione peroxidase 4, iron, nuclear factor erythroid-2 related factor-2, superoxide dismutases, lipoxygenase and coenzyme Q in breast cancer. Furthermore, we provide evidence that traditional drugs against breast cancer induce ferroptosis, and that ferroptosis inducers eliminate breast cancer cells. Finally, we put forward prospect of using ferroptosis inducers in breast cancer therapy, and predict possible obstacles and corresponding solutions. This review will deepen our understanding of the relationship between ferroptosis and breast cancer, and provide new insights into breast cancer-related therapeutic strategies.
Collapse
|
10
|
Gouda MA, Qurban J. Recent progress in the chemical reactivity of 3-Amino-1H-pyrazol-5(4H)-one derivatives (part II). SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1941115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Moustafa A. Gouda
- Department of Chemistry, Faculty of Science and Arts, Ulla, Taibah University, KSA, Medina, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Jihan Qurban
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
11
|
Karmakar R, Mukhopadhyay C. Ultrasonication under catalyst-free condition: an advanced synthetic technique toward the green synthesis of bioactive heterocycles. GREEN SYNTHETIC APPROACHES FOR BIOLOGICALLY RELEVANT HETEROCYCLES 2021:497-562. [DOI: 10.1016/b978-0-12-820586-0.00014-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Shadap L, Banothu V, Pinder E, Phillips RM, Kaminsky W, Kollipara MR. In vitrobiological evaluation of half-sandwich platinum-group metal complexes containing benzothiazole moiety. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1777547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Lathewdeipor Shadap
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong, India
| | - Venkanna Banothu
- Centre for Biotechnology (CBT), Institute of Science & Technology (IST), Jawaharlal Nehru Technological University Hyderabad (JNTUH), Hyderabad, Telangana State, India
| | - Emma Pinder
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Roger M. Phillips
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Mohan Rao Kollipara
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong, India
| |
Collapse
|
13
|
Ranji-Burachaloo H, Reyhani A, Gurr PA, Dunstan DE, Qiao GG. Combined Fenton and starvation therapies using hemoglobin and glucose oxidase. NANOSCALE 2019; 11:5705-5716. [PMID: 30865742 DOI: 10.1039/c8nr09107b] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Separately, Fenton and starvation cancer therapies have been recently reported as impressive methods for tumor destruction. Here, we introduce natural hemoglobin and glucose oxidase (GOx) for efficient cancer treatment following combined Fenton and starvation therapies. GOx and hemoglobin were encapsulated in zeolitic imidazolate frameworks 8 (ZIF-8) to fabricate a pH-sensitive MOF activated by tumor acidity. In the slightly acidic environment of cancer cells, GOx is released and it consumes d-glucose and molecular oxygen, nutrients essential for the survival of cancer cells, and produces gluconic acid and hydrogen peroxide, respectively. The produced gluconic acid increases the acidity of the tumor microenvironment leading to complete MOF destruction and enhances hemoglobin and GOx release. The Fe ions from the heme groups of hemoglobin also release in the presence of both endogenous and produced H2O2 and generate hydroxyl radicals. The produced OH˙ radical can rapidly oxidize the surrounding biomacromolecules in the biological system and treat the cancer cells. In vitro experiments demonstrate that this novel nanoparticle is cytotoxic to cancer cells HeLa and MCF-7, at very low concentrations (<2 μg mL-1). In addition, the selectivity index values are 5.52 and 11.04 for HeLa and MCF-7 cells, respectively, which are much higher than those of commercial drugs and those of similar studies reported by other research groups. This work thus demonstrates a novel pH-sensitive system containing hemoglobin and GOx for effective and selective cancer treatment using both radical generation and nutrient starvation.
Collapse
Affiliation(s)
- Hadi Ranji-Burachaloo
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| | | | | | | | | |
Collapse
|
14
|
Pinheiro A, de Souza M, Lourenço M, da Costa CF, Baddeley TC, Low JN, Wardell S, Wardell JL. Synthesis, potent anti-TB activity against M. tuberculosis ATTC 27294, crystal structures and complex formation of selected 2-arylidenehydrazinylbenzothiazole derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Vasconcelos ZS, Ralph ACL, Calcagno DQ, dos Santos Barbosa G, do Nascimento Pedrosa T, Antony LP, de Arruda Cardoso Smith M, de Lucas Chazin E, Vasconcelos TRA, Montenegro RC, de Vasconcellos MC. Anticancer potential of benzothiazolic derivative (E)-2-((2-(benzo[d]thiazol-2-yl)hydrazono)methyl)-4-nitrophenol against melanoma cells. Toxicol In Vitro 2018; 50:225-235. [DOI: 10.1016/j.tiv.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/22/2018] [Accepted: 03/01/2018] [Indexed: 10/17/2022]
|