1
|
Anand SP, Prévost J, Baril S, Richard J, Medjahed H, Chapleau JP, Tolbert WD, Kirk S, Smith AB, Wines BD, Kent SJ, Hogarth PM, Parsons MS, Pazgier M, Finzi A. Two Families of Env Antibodies Efficiently Engage Fc-Gamma Receptors and Eliminate HIV-1-Infected Cells. J Virol 2019; 93:e01823-18. [PMID: 30429344 PMCID: PMC6340017 DOI: 10.1128/jvi.01823-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022] Open
Abstract
HIV-1 conceals epitopes of its envelope glycoproteins (Env) recognized by antibody (Ab)-dependent cellular cytotoxicity (ADCC)-mediating antibodies. These Abs, including anti-coreceptor binding site (CoRBS) and anti-cluster A antibodies, preferentially recognize Env in its "open" conformation. The binding of anti-CoRBS Abs has been shown to induce conformational changes that further open Env, allowing interaction of anti-cluster A antibodies. We explored the possibility that CoRBS Abs synergize with anti-cluster A Abs to engage Fc-gamma receptors to mediate ADCC. We found that binding of anti-CoRBS and anti-cluster A Abs to the same gp120 is required for interaction with soluble dimeric FcγRIIIa in enzyme-linked immunosorbent assays (ELISAs). We also found that Fc regions of both Abs are required to optimally engage FcγRIIIa and mediate robust ADCC. Taken together, our results indicate that these two families of Abs act together in a sequential and synergistic fashion to promote FcγRIIIa engagement and ADCC.IMPORTANCE The "open" CD4-bound conformation of HIV-1 envelope glycoproteins is the primary target of antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies present in HIV-positive (HIV+) sera, such as anti-coreceptor binding site and anti-cluster A antibodies. Here we report that the binding of these two families of antibodies is required to engage FcγRIIIa and mediate ADCC.
Collapse
Affiliation(s)
- Sai Priya Anand
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Sophie Baril
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | | | - Jean-Philippe Chapleau
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - William D Tolbert
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sharon Kirk
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bruce D Wines
- Immune Therapies Group Burnet Institute, Melbourne, Victoria, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - P Mark Hogarth
- Immune Therapies Group Burnet Institute, Melbourne, Victoria, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Matthew S Parsons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Marzena Pazgier
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
2
|
Prediction of GluN2B-CT 1290-1310/DAPK1 Interaction by Protein⁻Peptide Docking and Molecular Dynamics Simulation. Molecules 2018; 23:molecules23113018. [PMID: 30463177 PMCID: PMC6278559 DOI: 10.3390/molecules23113018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 02/08/2023] Open
Abstract
The interaction of death-associated protein kinase 1 (DAPK1) with the 2B subunit (GluN2B) C-terminus of N-methyl-D-aspartate receptor (NMDAR) plays a critical role in the pathophysiology of depression and is considered a potential target for the structure-based discovery of new antidepressants. However, the 3D structures of C-terminus residues 1290⁻1310 of GluN2B (GluN2B-CT1290-1310) remain elusive and the interaction between GluN2B-CT1290-1310 and DAPK1 is unknown. In this study, the mechanism of interaction between DAPK1 and GluN2B-CT1290-1310 was predicted by computational simulation methods including protein⁻peptide docking and molecular dynamics (MD) simulation. Based on the equilibrated MD trajectory, the total binding free energy between GluN2B-CT1290-1310 and DAPK1 was computed by the mechanics generalized born surface area (MM/GBSA) approach. The simulation results showed that hydrophobic, van der Waals, and electrostatic interactions are responsible for the binding of GluN2B-CT1290⁻1310/DAPK1. Moreover, through per-residue free energy decomposition and in silico alanine scanning analysis, hotspot residues between GluN2B-CT1290-1310 and DAPK1 interface were identified. In conclusion, this work predicted the binding mode and quantitatively characterized the protein⁻peptide interface, which will aid in the discovery of novel drugs targeting the GluN2B-CT1290-1310 and DAPK1 interface.
Collapse
|