1
|
Hu X, Li G, Kong C, Liu L, Deng D, Xin G, Pan J, Wu S, Lei Q. Fluorinated chitosan mediated transepithelial delivery of sanguinarine-loaded platinum (IV) prodrug for intravesical instillation therapy of muscle-invasive bladder cancer. J Control Release 2025; 378:701-718. [PMID: 39701454 DOI: 10.1016/j.jconrel.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Cisplatin-based neoadjuvant chemotherapy is first-line strategy to inhibit progression and metastasis of muscle-invasive bladder cancer (MIBC). However, its clinical efficacy is often limited by drug resistance and severe systemic side effects, highlighting the urgent need for innovative therapeutic approaches. Despite advancements in cisplatin-based regimens, research on intravesical cisplatin delivery systems remains scarce. In this study, we developed an amphiphilic platinum(IV) prodrug micellar platform (Pt (IV)-DI-PEG) capable of efficiently encapsulating sanguinarine (San), which was further coated with fluorinated chitosan (FCS) to construct San@Pt(IV)-DI-PEG@FCS nanoparticles (SPFNPs) for intravesical instillation even targeting MIBC. The resulting SPFNPs demonstrated several advantages: the FCS coating facilitated enhanced trans-epithelial drug delivery by regulating bladder epithelial tight junction proteins, enabling efficient intravesical administration; Second, the glutathione (GSH)-responsive reduction of the Pt(IV) prodrug promoted tumor-targeted release of San and localized accumulation of Pt(II), while simultaneously depleting intracellular GSH. Furthermore, the released San induced reactive oxygen species (ROS) production, oxidative cleavage and inhibit the activation and function of poly (ADP-ribose) polymerase, collectively impairing nucleotide-excision repair and preventing the elimination of Pt-DNA adducts, resulting in persistent DNA damage, cell cycle arrest, and apoptosis in tumor cells. The synergistic effects of San and cisplatin were validated in both orthotopic mouse models and patient-derived orthotopic xenograft, demonstrating robust anti-tumor efficacy. This study underscores the potential of intravesical cisplatin formulations as a promising strategy for MIBC treatment, offering a shift from traditional systemic chemotherapy towards localized, targeted drug delivery systems.
Collapse
Affiliation(s)
- Xinzi Hu
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China; Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Chenfan Kong
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lisha Liu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Dashi Deng
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Guizhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China
| | - Jian Pan
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China
| | - Song Wu
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China; Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Qifang Lei
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China; Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China.
| |
Collapse
|
2
|
Dijkstra M, Schueffl H, Adamova B, Baumfried O, Kastner A, Berger W, Keppler BK, Heffeter P, Kowol CR. Exploring the Structure-Activity Relationships of Albumin-Targeted Picoplatin-Based Platinum(IV) Prodrugs. Inorg Chem 2025; 64:2554-2566. [PMID: 39878587 PMCID: PMC11815855 DOI: 10.1021/acs.inorgchem.4c05269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Platinum(II) complexes prevail as first-line treatment for many cancers but are associated with serious side effects and resistance development. Picoplatin emerged as a promising alternative to circumvent GSH-induced tumor resistance by introducing a bulky 2-picoline ligand. Although clinical studies were encouraging, picoplatin did not receive approval. Interestingly, the anticancer potential of prodrugs based on picoplatin is widely underexplored, and even less so the respective tumor-targeting approaches. We synthesized two new "hybrid" picoplatin(II) derivatives with an oxalate or cyclobutane dicarboxylate leaving group and their corresponding platinum(IV) prodrugs with an albumin-targeting maleimide moiety or a succinimide as reference. Picoplatin(II) and its derivatives indeed reacted much slower with GSH compared to the respective analogs cisplatin, carboplatin, or oxaliplatin. While PicoCarbo(IV) and PicoOxali(IV) were reduced slowly in the presence of ascorbic acid, picoplatin(IV) was extremely unstable. All three prodrugs were widely inactive in the MTT assays. The platinum(IV)-maleimide complexes rapidly bound to albumin with stable conjugates for >25 h. Albumin-binding resulted in elevated platinum plasma levels, prolonged blood circulation, and enhanced tumor accumulation of the prodrugs in mice bearing CT26 tumors. However, only maleimide-functionalized PicoCarbo(IV) and picoplatin(II) significantly inhibited tumor growth. One possible explanation is that for albumin-binding platinum(IV) prodrugs, the bulky 2-picoline moiety prevents sufficient activation/reduction to unlock their full anticancer potential.
Collapse
Affiliation(s)
- Martijn Dijkstra
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Hemma Schueffl
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Barbora Adamova
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Oliver Baumfried
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Alexander Kastner
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Walter Berger
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Bernhard K. Keppler
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Petra Heffeter
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Christian R. Kowol
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| |
Collapse
|
3
|
Zhang Z, Gao J, Jia L, Kong S, Zhai M, Wang S, Li W, Wang S, Su Y, Li W, Zhu C, Wang W, Lu Y, Li W. Excessive glutathione intake contributes to chemotherapy resistance in breast cancer: a propensity score matching analysis. World J Surg Oncol 2024; 22:345. [PMID: 39709466 DOI: 10.1186/s12957-024-03626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND We aim to explore the impact of excessive glutathione (GSH) intake on chemotherapy sensitivity in breast cancer. METHODS Clinicopathological data were collected from 460 breast cancer patients who underwent adjuvant chemotherapy from January 2016 to December 2019 from Zhengzhou University People's Hospital. The clinicopathological characteristics following GSH treatment were collected and compared with those in Non-GSH group after 1:2 propensity score matching (PSM). Intracellular GSH levels and the expression of antioxidant enzymes (NRF2, GPX4 and SOD1) were evaluated in tumor tissues in 51 patients receiving neoadjuvant chemotherapy. RESULTS The recurrence rate after adjuvant chemotherapy was significantly higher in the GSH group (n = 28, 31.8%) than that in the Non-GSH group (n = 39, 22.2%; P = 0.010). Additionally, patients in the HGSH group (high GSH intake, ≥ 16 days) exhibited an elevated recurrence rate compared to that in the LGSH group (low GSH intake, < 16 days) (n = 15 (46.8%) vs. n = 52 (22.4%); P = 0.003). Cox regression revealed that High GSH intake, Ki67 ≥ 30%, Triple negative and Lymphovascular invasion were independent risk factors of progression after adjuvant chemotherapy. Among patients receiving neoadjuvant chemotherapy, intracellular GSH levels and the expression levels of antioxidant enzymes (NRF2, GPX4 and SOD1) in the resistant patients were substantially higher (P < 0.001). CONCLUSIONS Excessive GSH intake may contribute to chemotherapy resistance in breast cancer, and the levels of intracellular GSH and antioxidant enzymes are elevated in resistant patients after neoadjuvant chemotherapy, indicating that the standardization of GSH intake may assist in reducing chemotherapy resistance.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Jiaru Gao
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Linjiao Jia
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Shuxin Kong
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Maosen Zhai
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Shuai Wang
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Wenwen Li
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Shoukai Wang
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Yuqing Su
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Wanyue Li
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Changzheng Zhu
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanxiang Lu
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China.
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China.
| | - Wentao Li
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China.
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
4
|
Jiang C, Shen C, Ni M, Huang L, Hu H, Dai Q, Zhao H, Zhu Z. Molecular mechanisms of cisplatin resistance in ovarian cancer. Genes Dis 2024; 11:101063. [PMID: 39224110 PMCID: PMC11367050 DOI: 10.1016/j.gendis.2023.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 09/04/2024] Open
Abstract
Ovarian cancer is one of the most common malignant tumors of the female reproductive system. The majority of patients with advanced ovarian cancer are mainly treated with cisplatin-based chemotherapy. As the most widely used first-line anti-neoplastic drug, cisplatin produces therapeutic effects through multiple mechanisms. However, during clinical treatment, cisplatin resistance has gradually emerged, representing a challenge for patient outcome improvement. The mechanism of cisplatin resistance, while known to be complex and involve many processes, remains unclear. We hope to provide a new direction for pre-clinical and clinical studies through this review on the mechanism of ovarian cancer cisplatin resistance and methods to overcome drug resistance.
Collapse
Affiliation(s)
- Chenying Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Chenjun Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Maowei Ni
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310005, China
| | - Lili Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Hongtao Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Qinhui Dai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Huajun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Zhihui Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| |
Collapse
|
5
|
Sun Y, Li Q, Huang Y, Yang Z, Li G, Sun X, Gu X, Qiao Y, Wu Q, Xie T, Sui X. Natural products for enhancing the sensitivity or decreasing the adverse effects of anticancer drugs through regulating the redox balance. Chin Med 2024; 19:110. [PMID: 39164783 PMCID: PMC11334420 DOI: 10.1186/s13020-024-00982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
Redox imbalance is reported to play a pivotal role in tumorigenesis, cancer development, and drug resistance. Severe oxidative damage is a general consequence of cancer cell responses to treatment and may cause cancer cell death or severe adverse effects. To maintain their longevity, cancer cells can rescue redox balance and enter a state of resistance to anticancer drugs. Therefore, targeting redox signalling pathways has emerged as an attractive and prospective strategy for enhancing the efficacy of anticancer drugs and decreasing their adverse effects. Over the past few decades, natural products (NPs) have become an invaluable source for developing new anticancer drugs due to their high efficacy and low toxicity. Increasing evidence has demonstrated that many NPs exhibit remarkable antitumour effects, whether used alone or as adjuvants, and are emerging as effective approaches to enhance sensitivity and decrease the adverse effects of conventional cancer therapies by regulating redox balance. Among them are several novel anticancer drugs based on NPs that have entered clinical trials. In this review, we summarize the synergistic anticancer effects and related redox mechanisms of the combination of NPs with conventional anticancer drugs. We believe that NPs targeting redox regulation will represent promising novel candidates and provide prospects for cancer treatment in the future.
Collapse
Affiliation(s)
- Yitian Sun
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qinyi Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yufei Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Zijing Yang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Guohua Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoyu Sun
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoqing Gu
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yunhao Qiao
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Tian Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Xinbing Sui
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
6
|
Huang LJ, Lan JX, Wang JH, Huang H, Lu K, Zhou ZN, Xin SY, Zhang ZY, Wang JY, Dai P, Chen XM, Hou W. Bioactivity and mechanism of action of sanguinarine and its derivatives in the past 10 years. Biomed Pharmacother 2024; 173:116406. [PMID: 38460366 DOI: 10.1016/j.biopha.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Sanguinarine is a quaternary ammonium benzophenanthine alkaloid found in traditional herbs such as Chelidonium, Corydalis, Sanguinarum, and Borovula. It has been proven to possess broad-spectrum biological activities, such as antitumor, anti-inflammatory, antiosteoporosis, neuroprotective, and antipathogenic microorganism activities. In this paper, recent progress on the biological activity and mechanism of action of sanguinarine and its derivatives over the past ten years is reviewed. The results showed that the biological activities of hematarginine and its derivatives are related mainly to the JAK/STAT, PI3K/Akt/mTOR, NF-κB, TGF-β, MAPK and Wnt/β-catenin signaling pathways. The limitations of using sanguinarine in clinical application are also discussed, and the research prospects of this subject are outlined. In general, sanguinarine, a natural medicine, has many pharmacological effects, but its toxicity and safety in clinical application still need to be further studied. This review provides useful information for the development of sanguinarine-based bioactive agents.
Collapse
Affiliation(s)
- Le-Jun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jin-Xia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jin-Hua Wang
- Ji'an Central People's Hospital (Shanghai East Hospital Ji'an Hospital), Ji'an, Jiangxi 343100, PR China
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Kuo Lu
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan 450018, PR China
| | - Zhi-Nuo Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Su-Ya Xin
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Zi-Yun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jing-Yang Wang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Ping Dai
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Xiao-Mei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China.
| |
Collapse
|
7
|
Liu S, Tao Y, Wu S, Lin J, Fu S, Lu J, Zhang J, Fu B, Zhang E, Xu J, Wang J, Li L, Zhang L, Wang Z. Sanguinarine chloride induces ferroptosis by regulating ROS/BACH1/HMOX1 signaling pathway in prostate cancer. Chin Med 2024; 19:7. [PMID: 38195593 PMCID: PMC10777654 DOI: 10.1186/s13020-024-00881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Sanguinarine chloride (S.C) is a benzophenanthrine alkaloid derived from the root of sanguinaria canadensis and other poppy-fumaria species. Studies have reported that S.C exhibits antioxidant, anti-inflammatory, proapoptotic, and growth inhibitory effects, which contribute to its anti-cancer properties. Recent studies suggested that the antitumor effect of S.C through inducing ferroptosis in some cancers. Nevertheless, the precise mechanism underlying the regulation of ferroptosis by S.C remains poorly understood. METHODS A small molecule library was constructed based on FDA and CFDA approved small molecular drugs. CCK-8 assay was applied to evaluate the effects of the small molecule compound on tumor cell viability. Prostate cancer cells were treated with S.C and then the cell viability and migration ability were assessed using CCK8, colony formation and wound healing assay. Reactive oxygen species (ROS) and iron accumulation were quantified through flow cytometry analysis. The levels of malondialdehyde (MDA) and total glutathione (GSH) were measured using commercially available kits. RNA-seq analysis was performed to identify differentially expressed genes (DEGs) among the treatment groups. Western blotting and qPCR were utilized to investigate the expression of relevant proteins and genes. In vivo experiments employed a xenograft mice model to evaluate the anti-cancer efficacy of S.C. RESULTS Our study demonstrated that S.C effectively inhibited the viability of various prostate cancer cells. Notably, S.C exhibited the ability to enhance the cytotoxicity of docetaxel in DU145 cells. We found that S.C-induced cell death partially relied on the induction of ferroptosis, which was mediated through up-regulation of HMOX1 protein. Additionally, our investigation revealed that S.C treatment decreased the stability of BACH1 protein, which contributed to HMOX1expression. We further identified that S.C-induced ROS caused BACH1 instability by suppressing USP47expression. Moreover, In DU145 xenograft model, we found S.C significantly inhibited prostate cancer growth, highlighting its potential as a therapeutic strategy. Collectively, these findings provide evidence that S.C could induce regulated cell death (RCD) in prostate cancer cells and effectively inhibit tumor growth via triggering ferroptosis. This study provides evidence that S.C effectively suppresses tumor progression and induces ferroptosis in prostate cancer cells by targeting ROS/USP47/BACH1/HMOX1 axis. CONCLUSION This study provides evidence that S.C effectively suppresses tumor progression and induces ferroptosis in prostate cancer cells by targeting the ROS/USP47/BACH1/HMOX1 axis. These findings offer novel insights into the underlying mechanism by which S.C inhibits the progression of prostate cancer. Furthermore, leveraging the potential of S.C in targeting ferroptosis may present a new therapeutic opportunity for prostate cancer. This study found that S.C induces ferroptosis by targeting the ROS/USP47/BACH1/HMOX1 axis in prostate cancer cells.
Collapse
Affiliation(s)
- Shanhui Liu
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China.
| | - Yan Tao
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Shan Wu
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, 730000, Gansu, China
| | - Jiawei Lin
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Shengjun Fu
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Jianzhong Lu
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Jing Zhang
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Beitang Fu
- The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830000, China
| | - Erdong Zhang
- Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jing Xu
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jiaxuan Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Lanlan Li
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China.
| | - Lei Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Zhiping Wang
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
8
|
El-Readi MZ, Abdulkarim MA, Abdellatif AAH, Elzubeir ME, Refaat B, Althubiti M, Almaimani RA, Mukhtar MH, Al-Moraya IS, Eid SY. Doxorubicin-sanguinarine nanoparticles: formulation and evaluation of breast cancer cell apoptosis and cell cycle. Drug Dev Ind Pharm 2024:1-15. [PMID: 38180322 DOI: 10.1080/03639045.2024.2302557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Therapeutic resistance fails cancer treatment. Drug-nanoparticle combinations overcome resistance. Sanguinarine-conjugated nanoparticles may boost sanguinarine's anticancer effects. METHODS Sanguinarine, HPMC-NPs, and doxorubicin were tested on Adriamycin-resistant MCF-7/ADR breast cancer cells, parent-sensitive MCF-7, and MCR-5 normal cells (DX). RESULTS Regular distribution, 156 nm diameter, <1 μm average size, 100% intensity-SN is therapeutic. Furthermore, the obtained NPs showed PDI = 0.145, zeta-potential=-37.6, and EE%=90.5%. DX sensitized MCF-7 cells (IC50 = 1.4 μM) more than MCF-7/ADR cells (IC50 = 27 μM) with RR = 19.3. SA and SN were more toxic to MCF-7/ADR cells (overexpressed with P-gp) than their sensitive parent MCF-7 cells (IC50 = 4 μM, RR = 0.6 and 0.6 μM, RR = 0.7). MCR-5 normal lung cells were more resistant to SA (IC50 = 7.2 μM) and SN (IC50 = 1.6 μM) with a selection index > 2. Synergistic cytotoxic interactions reduced the IC50 from 27 μM to 1.6 (CI = 0.1) and 0.9 (CI = 0.4) after DX and nontoxic dosages (IC20) of SA and SN. DS and SN killed 27.1% and 39.4% more cells than DX (7.7%), SA (4.9%), SN (5.5%), or untreated control (0.3%). DS and DSN lowered CCND1 and survival in MCF-7/ADR cells while raising p21 and Casp3 gene and protein expression. CONCLUSIONS Cellular and molecular studies suggested adjuvant chemosensitizers SA and SN to reverse MDR in breast cancer cells.
Collapse
Affiliation(s)
- Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Majed Abdurhman Abdulkarim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Sulaiman Alhabab Hospital, Alqassim, Saudi Arabia
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Mohamed E Elzubeir
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad Adnan Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed Hasan Mukhtar
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Issa Saad Al-Moraya
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Forensic Medicine & Toxicology Center, Abha, Saudi Arabia
| | - Safaa Yehia Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
9
|
Fan JY, Liu J, Zhang WQ, Lin T, Hu XR, Zhou FL, Tang L, He YC, Shi HJ. Anti-Nasopharyngeal carcinoma mechanism of sanguinarine based on network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e36477. [PMID: 38050231 PMCID: PMC10695581 DOI: 10.1097/md.0000000000036477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND The purpose of this study was to investigate the mechanism of sanguinarine (SAN) against nasopharyngeal carcinoma (NPC) by means of network pharmacology, molecular docking technique, and experimental verification. METHODS The SAN action targets were predicted using the Swiss Target Prediction database, the related NPC targets were determined using the GEO database, and the intersection of drug and disease pathway targets were considered to be the potential targets of SAN against NPC. The target-protein interaction network map was constructed using the STRING database, and the core target genes of SAN against NPC were obtained via topological network analysis. "R" language gene ontology (GO) function and Kyoto encyclopedia of genes and genome (KEGG) pathway enrichment analyses were used to dock the core target genes with SAN with the help of AutodockVina. Cell proliferation was detected using MTT and xCELLigence real-time cell analysis. Apoptosis was identified via Hoechst 33342 staining, JC-1 mitochondrial membrane staining, and annexin V-FITC/PI double fluorescence staining, while protein expression was quantified using western blotting. RESULTS A total of 95 SAN against NPC targets were obtained using target intersection, and 8 core targets were obtained by topological analysis and included EGFR, TP53, F2, FN1, PLAU, MMP9, SERPINE1, and CDK1. Gene ontology enrichment analysis identified 530 items, and 42 items were obtained by Kyoto encyclopedia of genes and genome pathway enrichment analysis and were mainly related to the PI3K/AKT, MAPK, and p53 signaling pathways. Molecular docking results showed that SAN had good binding activity to the core target. SAN inhibited the proliferation of NPC cells, induced apoptosis, reduced the expression levels of survivin and Bcl2, and increased the expression levels of Bax and cleaved caspase-8. It also decreased the expression levels of the key proteins p-c-Raf, p-MEK, and p-ERK1/2 in the MAPK/ERK signaling pathway in NPC cells. CONCLUSION SAN inhibits the proliferation and induces the apoptosis of NPC cells through the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Jing-Ying Fan
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
| | - Jie Liu
- Hunan University of Chinese Medicine, Changsha, China
| | | | - Ting Lin
- Hunan Provincial Key Lab for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xi-Ran Hu
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
| | - Fang-Liang Zhou
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Lab for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Le Tang
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
| | - Ying-Chun He
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Jian Shi
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Lab for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
10
|
Wu S, Zhang Q, Zhao Q, Jiang Y, Qu X, Zhou Y, Zhao T, Cang F, Li Y. Cobalt-doped hollow polydopamine for oxygen generation and GSH consumption enhanced chemo-PTT combined cancer therapy. BIOMATERIALS ADVANCES 2023; 154:213593. [PMID: 37657278 DOI: 10.1016/j.bioadv.2023.213593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Nanotechnology has revolutionized the field of therapeutics by introducing a plethora of nanomaterials capable of enhancing traditional drug efficacy or paving the way for innovative treatment methods. Within this domain, we propose a novel Cobalt-doped hollow polydopamine nanosphere system. This system, incorporating Doxorubicin loading and hyaluronic acid (HA) surface coating (CoHPDA@DOX-HA), is designed for combined tumor therapy. The overarching aim is to diminish the administration dosage, mitigate the cytotoxic side effects of chemotherapy drugs, augment chemosensitivity within neoplastic tissues, and attain superior results in tumor treatment via combined therapeutic strategies. The targeted molecule, hyaluronic acid (HA), amplifies the biocompatibility of CoHPDA@DOX-HA throughout circulation and fosters endocytosis of the nanoparticle system within cancer cells. This nanosphere system possesses pH sensitivity properties, allowing for a meticulous drug release within the acidic microenvironment of tumor cells. Concurrently, Polydopamine (PDA) facilitates proficient photothermal therapy upon exposure to 808 nm laser irradiation. This process further amplifies the Glutathione (GSH) depletion, and when coupled with the oxygen production capabilities of the Cobalt-doped hollow PDA, significantly enhances the chemo-photothermal therapeutic efficiency. Findings from the treatment of tumor-bearing mice substantiate that even at dosages equivalent to a singular DOX administration, the CoHPDA@DOX-HA can provide efficacious synergistic therapy. Therefore, it is anticipated that multifunctional nanomaterials with Photoacoustic Tomography (PAT) imaging capabilities, targeted delivery, and a controlled collaborative therapeutic framework may serve as promising alternatives for accurate diagnostics and efficacious treatment strategies.
Collapse
Affiliation(s)
- Shilong Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Qin Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Qiyao Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yu Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Xiaomeng Qu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yifan Zhou
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Tingting Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Feng Cang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Yanyan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China.
| |
Collapse
|
11
|
Abdelmaksoud NM, Abulsoud AI, Doghish AS, Abdelghany TM. From resistance to resilience: Uncovering chemotherapeutic resistance mechanisms; insights from established models. Biochim Biophys Acta Rev Cancer 2023; 1878:188993. [PMID: 37813202 DOI: 10.1016/j.bbcan.2023.188993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Despite the tremendous advances in cancer treatment, resistance to chemotherapeutic agents impedes higher success rates and accounts for major relapses in cancer therapy. Moreover, the resistance of cancer cells to chemotherapy is linked to low efficacy and high recurrence of cancer. To stand up against chemotherapy resistance, different models of chemotherapy resistance have been established to study various molecular mechanisms of chemotherapy resistance. Consequently, this review is going to discuss different models of induction of chemotherapy resistance, highlighting the most common mechanisms of cancer resistance against different chemotherapeutic agents, including overexpression of efflux pumps, drug inactivation, epigenetic modulation, and epithelial-mesenchymal transition. This review aims to open a new avenue for researchers to lower the resistance to the existing chemotherapeutic agents, develop new therapeutic agents with low resistance potential, and establish possible prognostic markers for chemotherapy resistance.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt.
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt.
| |
Collapse
|
12
|
Peng R, Xu M, Xie B, Min Q, Hui S, Du Z, Liu Y, Yu W, Wang S, Chen X, Yang G, Bai Z, Xiao X, Qin S. Insights on Antitumor Activity and Mechanism of Natural Benzophenanthridine Alkaloids. Molecules 2023; 28:6588. [PMID: 37764364 PMCID: PMC10535962 DOI: 10.3390/molecules28186588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Benzophenanthridine alkaloids are a class of isoquinoline compounds, which are widely found in the plants of papaveraceae, corydalis, and rutaceae. Biological activities and clinical studies have shown that benzophenanthridine alkaloids have inhibitory effects on many cancers. Considering that the anticancer activities and mechanisms of many natural benzophenanthridine alkaloids have been discovered in succession, the purpose of this paper is to review the anticancer effects of benzophenanthridine alkaloids and explore the application potential of these natural products in the development of antitumor drugs. A literature survey was carried out using Scopus, Pubmed, Reaxys, and Google Scholar databases. This review summarizes and analyzes the current status of research on the antitumor activity and antitumor mechanism of natural products of benzophenanthridine from different sources. The research progress of the antitumor activity of natural products of benzophenanthridine from 1983 to 2023 was reviewed. The antitumor activities of 90 natural products of benzophenanthridine and their related analogues were summarized, and the results directly or indirectly showed that natural products of benzophenanthridine had the effects of antidrug-resistant tumor cell lines, antitumor stem cells, and inducing ferroptosis. In conclusion, benzophenanthridine alkaloids have inhibitory effects on a variety of cancers and have the potential to counteract tumor resistance, and they have great application potential in the development of antitumor drugs.
Collapse
Affiliation(s)
- Rui Peng
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mengwei Xu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Baocheng Xie
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Qing Min
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Siwen Hui
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Ziwei Du
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Yan Liu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Wei Yu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Shi Wang
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Chen
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Shuanglin Qin
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| |
Collapse
|
13
|
Natural and synthetic compounds for glioma treatment based on ROS-mediated strategy. Eur J Pharmacol 2023:175537. [PMID: 36871663 DOI: 10.1016/j.ejphar.2023.175537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 03/06/2023]
Abstract
Glioma is the most frequent and most malignant tumor of the central nervous system (CNS),accounting for about 50% of all CNS tumor and approximately 80% of the malignant primary tumors in the CNS. Patients with glioma benefit from surgical resection, chemo- and radio-therapy. However these therapeutical strategies do not significantly improve the prognosis, nor increase survival rates owing to restricted drug contribution in the CNS and to the malignant characteristics of glioma. Reactive oxygen species (ROS) are important oxygen-containing molecules that regulate tumorigenesis and tumor progression. When ROS accumulates to cytotoxic levels, this can lead to anti-tumor effects. Multiple chemicals used as therapeutic strategies are based on this mechanism. They regulate intracellular ROS levels directly or indirectly, resulting in the inability of glioma cells to adapt to the damage induced by these substances. In the current review, we summarize the natural products, synthetic compounds and interdisciplinary techniques used for the treatment of glioma. Their possible molecular mechanisms are also presented. Some of them are also used as sensitizers: they modulate ROS levels to improve the outcomes of chemo- and radio-therapy. In addition, we summarize some new targets upstream or downstream of ROS to provide ideas for developing new anti-glioma therapies.
Collapse
|
14
|
Ullah A, Ullah N, Nawaz T, Aziz T. Molecular Mechanisms of Sanguinarine in Cancer Prevention and Treatment. Anticancer Agents Med Chem 2023; 23:765-778. [PMID: 36045531 DOI: 10.2174/1871520622666220831124321] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
Historically, natural plant-derived drugs received a great impact of consideration in the treatment of several human-associated disorders. Cancer is a devastating disease and the second most cause of mortality. Sanguinarine (SANG), a naturally isolated plant alkaloidal agent, possesses chemo-preventive effects. Several studies have revealed that SANG impedes tumor metastasis and development by disrupting a wide range of cell signaling pathways and its molecular targets, such as BCL-2, MAPKs, Akt, NF-κB, ROS, and microRNAs (miRNAs). However, its low chemical stability and poor oral bioavailability remain key issues in its use as a medicinal molecule. A novel method (e.g., liposomes, nanoparticles, and micelles) and alternative analogs provide an exciting approach to alleviate these problems and broaden its pharmacokinetic profile. Cancer-specific miRNA expression is synchronized by SANG, which has also been uncertain. In this critical study, we review the utilization of SANG mimics and nano-technologies to improve its support in cancer. We focus on recently disclosed studies on SANG anti-cancer properties.
Collapse
Affiliation(s)
- Asmat Ullah
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Najeeb Ullah
- School of Biochemistry and Molecular Biology, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Touseef Nawaz
- Faculty of Pharmacy, Gomal University, D.I. Khan, Pakistan
| | - Tariq Aziz
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
| |
Collapse
|
15
|
Marianna B, Radka M, Martin K, Janka V, Jan M. Design, Synthesis and Antiproliferative Evaluation of Bis-Indole Derivatives with a Phenyl Linker: Focus on Autophagy. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010251. [PMID: 36615444 PMCID: PMC9822133 DOI: 10.3390/molecules28010251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
This work deals with the study of the synthesis of new bis-indole analogues with a phenyl linker derived from indole phytoalexins. Synthesis of target bis-indole thiourea linked by a phenyl linker was achieved by the reaction of [1-(tert-butoxycarbonyl)indol-3-yl]methyl isothiocyanate with p-phenylenediamine. By replacing the sulfur of the thiocarbonyl group in bis-indole thiourea with oxygen using mesityl nitrile oxide, a bis-indole homodimer with a urea group was obtained. A cyclization protocol utilizing bis-indole thiourea and methyl bromoacetate was applied to synthesize a bis-indole homodimer with a thiazolidin-4-one moiety. Bis-indole homodimers derived from 1-methoxyspirobrassinol methyl ether were prepared by bromospirocyclization methodology. Among the synthesized analogues, compound 49 was selected for further study. To evaluate the mode of the mechanism of action, we used flow cytometry, Western blot, and spectroscopic analyses. Compound 49 significantly inhibited the proliferation of lung cancer cell line A549 with minimal effects on the non-cancer cells. We also demonstrated that compound 49 induced autophagy through the upregulation of Beclin-1, LC3A/B, Atg7 and AMPK and ULK1. Furthermore, chloroquine (CQ; an autophagy inhibitor) in combination with compound 49 decreased cell proliferation and induced G1 cell cycle arrest and apoptosis. Compound 49 also caused GSH depletion and significantly potentiated the antiproliferative effect of cis-platin.
Collapse
Affiliation(s)
- Budovska Marianna
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Michalkova Radka
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Kello Martin
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Vaskova Janka
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Mojzis Jan
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
- Correspondence:
| |
Collapse
|
16
|
Yang X, Li L, Shi Y, Wang X, Zhang Y, Jin M, Chen X, Wang R, Liu K. Neurotoxicity of sanguinarine via inhibiting mitophagy and activating apoptosis in zebrafish and PC12 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105259. [PMID: 36464364 DOI: 10.1016/j.pestbp.2022.105259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
Sanguinarine, a plant-derived phytoalexin, displays various biological activities, such as insecticidal, antimicrobial, anti-inflammatory, anti-angiogenesis and antitumor effects. But its potential neurotoxicity and the underlying mechanisms has rarely been investigated. Therefore, we aimed to assess the neurotoxicity of sanguinarine using zebrafish model and PC12 cells in this study. The results showed that sanguinarine induced the reduction of the length of dopamine neurons and inhibited the blood vessel in the head area of the zebrafish. Further studies demonstrated that the behavioral phenotype of the larval zebrafish was changed by sanguinarine. In addition, there were more apoptotic cells in the larval zebrafish head area. The mRNA expression levels of β-syn, th, pink1 and parkin, closely related to the nervous function, were changed after sanguinarine treatment. The in vitro studies show that notably increases of ROS and apoptosis levels in PC12 cells were observed after sanguinarine treatment. Moreover, the protein expression of Caspase3, Parp, Bax, Bcl2, α-Syn, Th, PINK1 and Parkin were also altered by sanguinarine. Our data indicated that the inhibition of mitophagy, ROS elevation and apoptosis were involved in the neurotoxicity of sanguinarine. These findings will be useful to understand the toxicity induced by sanguinarine.
Collapse
Affiliation(s)
- Xueliang Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Lei Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Yuxin Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Xiqiang Chen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| |
Collapse
|
17
|
Reduction-triggered polycyclodextrin supramolecular nanocage induces immunogenic cell death for improved chemotherapy. Carbohydr Polym 2022; 301:120365. [DOI: 10.1016/j.carbpol.2022.120365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
18
|
Cytotoxic Activity, Apoptosis Induction and Structure–Activity Relationship of 2‐Phenylphthalazin‐2‐ium Salts as Promising Antitumor Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202202983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Mahboubi N, Shafiei-Irannejad V, Kahyaei_aghdam M, Soraya H. Memantine enhances the cisplatin-induced apoptosis in A2780 ovarian cancer cells via CyclinD1 and hTERT inhibition. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
KIRLANGIÇ ÖF, KAYA-SEZGİNER E, ÖREN S, GÜR S, YAVUZ Ö, ÖZGÜRTAŞ T. Cytotoxic and Apoptotic Effects of the Combination of Borax (Sodium Tetraborate) and 5-Fluorouracil on DLD-1 Human Colorectal Adenocarcinoma Cell Line. Turk J Pharm Sci 2022; 19:371-376. [DOI: 10.4274/tjps.galenos.2021.29726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Li C, Wu X, Zheng C, Xu S, Liu Y, Qin J, Fan X, Ye Y, Fei W. Nanotechnology-integrated ferroptosis inducers: a sharp sword against tumor drug resistance. J Mater Chem B 2022; 10:7671-7693. [PMID: 36043505 DOI: 10.1039/d2tb01350a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presently, the biggest hurdle to cancer therapy is the inevitable emergence of drug resistance. Since conventional therapeutic schedules fall short of the expectations in curbing drug resistance, the development of novel drug resistance management strategies is critical. Extensive research over the last decade has revealed that the process of ferroptosis is correlated with cancer resistance; moreover, it has been demonstrated that ferroptosis inducers reverse drug resistance. To elucidate the development and promote the clinical transformation of ferroptosis strategies in cancer therapy, we first analyzed the roles of key ferroptosis-regulating molecules in the progression of drug resistance in-depth and then reviewed the design of ferroptosis-inducing strategies based on nanotechnology for overcoming drug resistance, including glutathione depletion, reactive oxygen species generation, iron donation, lipid peroxidation aggregation, and multiple-drug resistance-associated tumor cell destruction. Finally, the prospects and challenges of regulating ferroptosis as a therapeutic strategy for reversing cancer therapy resistance were evaluated. This review aimed to provide a comprehensive understanding for researchers to develop ferroptosis-inducing nanoplatforms that can overcome drug resistance.
Collapse
Affiliation(s)
- Chaoqun Li
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Xiaodong Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Shanshan Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxi Liu
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Jiale Qin
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaoyu Fan
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
22
|
Ding K, Wang L, Zhu J, He D, Huang Y, Zhang W, Wang Z, Qin A, Hou J, Tang BZ. Photo-Enhanced Chemotherapy Performance in Bladder Cancer Treatment via Albumin Coated AIE Aggregates. ACS NANO 2022; 16:7535-7546. [PMID: 35413177 DOI: 10.1021/acsnano.1c10770] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The implementation of cisplatin-based neoadjuvant chemotherapy (NAC) plays a key role in conjunction with surgical resection in preventing bladder cancer progression and recurrence. However, the significant dose-dependent toxic side effects of NAC are still a major challenge. To solve this problem, we developed a photoenhanced cancer chemotherapy (PECC) strategy based on AIEgen ((E)-3-(2-(2-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)vinyl)-1,1-dimethyl-1H-3λ4-benzo[e]indol-3-yl)propane-1-sulfonate), which is abbreviated as BITT. Multifunctional BITT@BSA-DSP nanoparticles (NPs) were employed with an albumin-based nanocarrier decorated with the cisplatin(IV) prodrug and loaded to produce strong near-infrared fluorescence imaging (NIR FLI), and they exhibited good photoenhancement performance via photodynamic therapy (PDT) and photothermal therapy (PTT). In vitro results demonstrated that BITT@BSA-DSP NPs could be efficiently taken up by bladder cancer cells and reduced to release Pt (II) under reductase, ensuring the chemotherapy effect. Furthermore, both in vitro and in vivo evaluation verified that the integration of NIR FL imaging-guided PECC efficiently promoted the sensitivity of bladder cancer to cisplatin chemotherapy with negligible side effects. This work provides a promising strategy to enhance the sensitivity of multiple cancers to chemotherapy drugs and even achieve effective treatments for drug-resistant cancers.
Collapse
Affiliation(s)
- Keke Ding
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Road, Suzhou 215006, China
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 Zheshan Road, Wuhu 241001, China
| | - Lirong Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Jiamiao Zhu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Dong He
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Road, Suzhou 215006, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Road, Suzhou 215006, China
| | - Weijie Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Road, Suzhou 215006, China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Road, Suzhou 215006, China
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
23
|
Natural alkaloids targeting EGFR in non-small cell lung cancer: Molecular docking and ADMET predictions. Chem Biol Interact 2022; 358:109901. [PMID: 35341731 DOI: 10.1016/j.cbi.2022.109901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022]
Abstract
The phytochemicals contribute to the processes of protection and interaction by acting as antioxidants, anti-mutagens, anticarcinogens, and antimicrobial agents. Among the diverse families of phytoconstituents, alkaloids play an essential role in medicine. These are low-molecular-mass compounds containing nitrogen and are generally alkaline. In this study, in silico molecular docking was performed using AutoDock Vina for thirty-one alkaloids against epidermal growth factor receptor (EGFR). Erlotinib was used as a reference ligand for this study. Erlotinib has been linked to various serious side effects over the past decade, including folliculitis, diarrhoea, paronychia, fatigue, conjunctivitis, ectopion, and epiphora of the lower eyelids. This study found sanguinarine (-10.7 kcal mol-1) to be the most potent inhibitor of EGFR as compared to erlotinib (-7.5 kcal mol-1). Other alkaloids namely, isocolumbin (-9.3 kcal mol-1), lunamarine (-9.1 kcal mol-1), ajmaline (-8.6 kcal mol-1), magnoflorine (-8.6 kcal mol-1) and jatrorrhizine (-8.5 kcal mol-1) also showed potent inhibition against EGFR, but the stability of these molecules with EGFR was less than sanguinarine and more than erlotinib. These were stable and ideal pharmaceutical alkaloids because of their significant interactions, minimal Gibbs free energy, safety, effectiveness and selectivity. Amongst the 31 alkaloids subjected to ADMET prediction, 29 alkaloids followed Lipinski's rule of five. These 29 alkaloids were predicted to have high bioavailability, high lead-likeness score, low toxicity and were easier to synthesize. Compared to erlotinib, other molecules showed less or no inhibition of EGFR. The six named compounds listed above may be potent inhibitors for EGFR mutated cancers, as for example non-small cell lung cancer, colorectal cancer, and pancreatic cancer.
Collapse
|
24
|
Shen LX, Liu GF, Song JS, Cao YH, Peng X, Wu RR, Cao Y, Chen XJ, Liu Z, Sun ZL, Wu Y. Sex differences in the pharmacokinetics and tissue residues of Macleaya cordata extracts in rats. Xenobiotica 2022; 52:46-53. [PMID: 35227161 DOI: 10.1080/00498254.2022.2048323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macleaya cordata extracts (MCE) are listed as feed additives in animal production by the European Food Authority. The core components of MCE are mainly sanguinarine (SA) and chelerythrine (CHE). This study aims to investigate sex differences in the pharmacokinetics and tissue residues of MCE in rats.Male and female rates were intragastrically administered MCE (1.25 mg·kg-1 body weight and 12.5 mg·kg-1 body weight dose for 28 days). SA and CHE concentrations were determined using high-performance liquid chromatography/tandem mass spectrometry.The peak plasma concentration (Cmax) and area under the curve (AUC) of both CHE and SA were higher in female than in male rats (12.5 mg·kg-1 body weight group), whereas their half-life (T1/2) and apparent volume of distribution (Vd) was lower (p < 0.05). Tissue rfesidue analysis indicated that SA and CHE were more distributed in male than in female rats and were highly distributed in the cecum and liver. SA and CHE were completely eliminated from the liver, kidney, lung, heart, spleen, leg muscle, and cecum after 120 h, indicating they did not accumulate in rats for a long time.Overall, we found that the pharmacokinetics and tissue residues of SA and CHE of male and female rats showed sex differences.
Collapse
Affiliation(s)
- Li-Xia Shen
- Hunan Agricultural University, Changsha, 410128 China
| | - Gao-Feng Liu
- Hunan Canzoho Biological Technology Co. Ltd, Hunan Canzoho Biological Technology Co. Ltd, Changsha, China
| | | | - Yu-Hang Cao
- Hunan Agricultural University, Changsha, 410128 China
| | - Xiong Peng
- Hunan Agricultural University, Changsha, 410128 China
| | - Rong-Rong Wu
- Hunan Agricultural University, Changsha, 410128 China
| | - Yan Cao
- Hunan Agricultural University, Changsha, 410128 China
| | - Xiao-Jun Chen
- Hunan Agricultural University, Changsha, 410128 China
| | - Zhaoying Liu
- Hunan Agricultural University, Changsha, 410128 China
| | - Zhi-Liang Sun
- Hunan Agricultural University, Changsha, 410128 China
| | - Yong Wu
- Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
25
|
Wang X, Yang X, Wang J, Li L, Zhang Y, Jin M, Chen X, Sun C, Wang R, Liu K. Cardiotoxicity of sanguinarine via regulating apoptosis and MAPK pathways in zebrafish and HL1 cardiomyocytes. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109228. [PMID: 34744004 DOI: 10.1016/j.cbpc.2021.109228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022]
Abstract
Sanguinarine, a plant phytoalexin, possesses extensive biological activities including antimicrobial, insecticidal, antitumor, anti-inflammatory and anti-angiogenesis effect. But its cardiotoxicity has rarely been studied. Here, we assess the cardiotoxicity of sanguinarine in vivo using larval zebrafish from 48 hpf to 96 hpf. The results show that sanguinarine caused severe malformation and the dysfunction of the heart including reductions of heart rate, red blood cell number, blood flow dynamics, stroke volume and increase of SV-BA distance, subintestinal venous congestion. Further studies showed that apoptosis in the zebrafish heart region was observed after sanguinarine exposure using TUNEL assay and AO staining method. In addition, the genes, such as sox9b, myl7, nkx2.5 and bmp10, which play crucial parts in the development and the function of the heart, were changed after sanguinarine treatment. caspase3, caspase9, bax and bcl2, apoptosis-related genes, were also altered by sanguinarine. Further studies were performed to study the cardiotoxicity in vitro using cardiomyocytes HL1 cell line. The results showed that remarkable increase of apoptosis and ROS level in HL1 cells were induced by sanguinarine. Moreover, the MAPK pathway (JNK and P38) were notably enhanced and involved in the cardiotoxicity induced by sanguinarine. Our findings will provide better understanding of sanguinarine in the toxic effect on heart.
Collapse
Affiliation(s)
- Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Xueliang Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Jiazhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Lei Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Xiqiang Chen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| |
Collapse
|
26
|
Dasari S, Njiki S, Mbemi A, Yedjou CG, Tchounwou PB. Pharmacological Effects of Cisplatin Combination with Natural Products in Cancer Chemotherapy. Int J Mol Sci 2022; 23:ijms23031532. [PMID: 35163459 PMCID: PMC8835907 DOI: 10.3390/ijms23031532] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Cisplatin and other platinum-based drugs, such as carboplatin, ormaplatin, and oxaliplatin, have been widely used to treat a multitude of human cancers. However, a considerable proportion of patients often relapse due to drug resistance and/or toxicity to multiple organs including the liver, kidneys, gastrointestinal tract, and the cardiovascular, hematologic, and nervous systems. In this study, we sought to provide a comprehensive review of the current state of the science highlighting the use of cisplatin in cancer therapy, with a special emphasis on its molecular mechanisms of action, and treatment modalities including the combination therapy with natural products. Hence, we searched the literature using various scientific databases., such as MEDLINE, PubMed, Google Scholar, and relevant sources, to collect and review relevant publications on cisplatin, natural products, combination therapy, uses in cancer treatment, modes of action, and therapeutic strategies. Our search results revealed that new strategic approaches for cancer treatment, including the combination therapy of cisplatin and natural products, have been evaluated with some degree of success. Scientific evidence from both in vitro and in vivo studies demonstrates that many medicinal plants contain bioactive compounds that are promising candidates for the treatment of human diseases, and therefore represent an excellent source for drug discovery. In preclinical studies, it has been demonstrated that natural products not only enhance the therapeutic activity of cisplatin but also attenuate its chemotherapy-induced toxicity. Many experimental studies have also reported that natural products exert their therapeutic action by triggering apoptosis through modulation of mitogen-activated protein kinase (MAPK) and p53 signal transduction pathways and enhancement of cisplatin chemosensitivity. Furthermore, natural products protect against cisplatin-induced organ toxicity by modulating several gene transcription factors and inducing cell death through apoptosis and/or necrosis. In addition, formulations of cisplatin with polymeric, lipid, inorganic, and carbon-based nano-drug delivery systems have been found to delay drug release, prolong half-life, and reduce systemic toxicity while other formulations, such as nanocapsules, nanogels, and hydrogels, have been reported to enhance cell penetration, target cancer cells, and inhibit tumor progression.
Collapse
Affiliation(s)
- Shaloam Dasari
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Sylvianne Njiki
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Ariane Mbemi
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Clement G. Yedjou
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, FL 32307, USA;
| | - Paul B. Tchounwou
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
- Correspondence: ; Tel.: +1-601-979-0777
| |
Collapse
|
27
|
Niu B, Liao K, Zhou Y, Wen T, Quan G, Wu C, Pan X. Cellular defense system-destroying nanoparticles as a platform for enhanced chemotherapy against drug-resistant cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112494. [PMID: 34857280 DOI: 10.1016/j.msec.2021.112494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/26/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Cellular defense system represented by glutathione (GSH) greatly weakens the outcomes of cancer therapy by antioxidation and detoxification. GSH depletion has been proved to be an effective way to enhance the efficacy of reactive oxygen species (ROS)-based therapies and chemotherapy. However, the existing strategies of GSH depletion still face the problems of unclear biosafety and high complexity of multicomponent co-delivery. In this study, we developed a GSH-depleting carrier platform based on disulfide-bridged mesoporous organosilica nanoparticles (MONs) to destroy the cellular defense system for cancer therapy. Responding to the high level of GSH in cancer cells, the disulfide bonds in the framework of MONs could be broken and consumed substantial GSH at the same time. Moreover, this process also promoted the degradation of MONs. In order to evaluate the effect of this platform in cancer therapy, chemotherapeutic drug cisplatin was loaded into MONs (Pt@MONs) to treat drug-resistant non-small cell lung cancer. In vitro and in vivo results indicated that Pt@MONs efficiently triggered GSH depletion, promoted platinum-DNA adduct formation, and induced cell apoptosis, resulting in significant tumor growth inhibition without marked toxicity. Taken together, the cellular defense system-destroying nanoparticles provide a promising platform for enhanced cancer therapy.
Collapse
Affiliation(s)
- Boyi Niu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Kaixin Liao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ting Wen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
28
|
Khan MA, Vikramdeo KS, Sudan SK, Singh S, Wilhite A, Dasgupta S, Rocconi RP, Singh AP. Platinum-resistant ovarian cancer: From drug resistance mechanisms to liquid biopsy-based biomarkers for disease management. Semin Cancer Biol 2021; 77:99-109. [PMID: 34418576 PMCID: PMC8665066 DOI: 10.1016/j.semcancer.2021.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/09/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
Resistance to platinum-based chemotherapy is a major clinical challenge in ovarian cancer, contributing to the high mortality-to-incidence ratio. Management of the platinum-resistant disease has been difficult due to diverse underlying molecular mechanisms. Over the past several years, research has revealed several novel molecular targets that are being explored as biomarkers for treatment planning and monitoring of response. The therapeutic landscape of ovarian cancer is also rapidly evolving, and alternative therapies are becoming available for the recurrent platinum-resistant disease. This review provides a snapshot of platinum resistance mechanisms and discusses liquid-based biomarkers and their potential utility in effective management of platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Kunwar Somesh Vikramdeo
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Sarabjeet Kour Sudan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States
| | - Annelise Wilhite
- Department of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Santanu Dasgupta
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States
| | - Rodney Paul Rocconi
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States.
| |
Collapse
|
29
|
Molaparast M, Ehsanimehr S, Kahyaei M, Mahboubi N, Shafiei-Irannejad V. Polymeric complex based on poly (styrene-alt-maleic anhydride)- targeted with folic acid for doxorubicin delivery to HT-29 colorectal cancer cells. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1999953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Morteza Molaparast
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- ERNAM – Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Sedigheh Ehsanimehr
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Maryam Kahyaei
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Negin Mahboubi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
30
|
Cai Y, An B, Yao D, Zhou H, Zhu J. MicroRNA miR-30a inhibits cisplatin resistance in ovarian cancer cells through autophagy. Bioengineered 2021; 12:10713-10722. [PMID: 34747309 PMCID: PMC8810079 DOI: 10.1080/21655979.2021.2001989] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We study whether microRNA miR-30a inhibits the autophagy through transforming growth factor (TGF)-β/Smad4 to generate cisplatin (DDP) resistance in ovarian cancer cells. The expression of miR-30a, Smad4, and TGF-β was detected in the serum of ovarian cancer patients and DDP-resistant cell lines (A2780) by quantitative real-time polymerase chain reaction (qRT-PCR). Computational search and western blotting were used to demonstrate the downstream target of miR-30a in ovarian cancer cells. Cell viability was measured with CCK8 assay. Apoptosis and autophagy of ovarian cancer cells were analyzed by flow cytometry and transmission electron microscopy, and the expressions of Beclin1 and LC3II protein were detected by western blotting. Expression of miR-30a was significantly decreased, while expressions of TGF-β and Smad4 mRNA were increased in serum of ovarian cancer patients after DDP chemotherapy as well as in DDP-resistant cells. Activation of autophagy contributed to DDP-resistance cells. Moreover, Bioinformatics software predicted Smad4 to be a target of miR-30a. Overexpression of miR-30a decreased the expression of Smad4 and TGF-β. Additionally, miR-30a-overexpressing inhibited DDP-induce autophagy and promoted DDP-resistant cell apoptosis. In conclusion, miR-30a mediates DDP resistance in ovarian cancer by inhibiting autophagy via the TGF-β/Smad4 pathway.
Collapse
Affiliation(s)
- Yi Cai
- Department of Oncology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Baiping An
- Department of Oncology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dejiao Yao
- Department of Oncology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Zhou
- Department of Oncology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Zhu
- Department of Oncology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
31
|
Akaberi T, Shourgashti K, Emami SA, Akaberi M. Phytochemistry and pharmacology of alkaloids from Glaucium spp. PHYTOCHEMISTRY 2021; 191:112923. [PMID: 34454171 DOI: 10.1016/j.phytochem.2021.112923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Glaucium Mill. comprising 28 species with 78 synonyms, 3 subspecies, and 3 varieties worldwide belongs to the Papaveraceae family. The plants are well known for their different types of alkaloids. In the present study, we attempted to review the chemistry and pharmacology of the alkaloids from the genus Glaucium. For this purpose, the relevant data were collected from different scientific databases including, "Google Scholar", "ISI Web of Knowledge", "PubMed", "Scopus", and available books and e-books. Our results showed that aporphine alkaloids are dominated in the species; however, other types of alkaloids including protopines, benzophenanthridines, benzylisoquinolines, protoberberines, and morphinanes have also been reported from the genus. The pharmacological studies have shown that the alkaloids from Glaucium species have several biological activities of which anti-cancer and anti-cholinesterase effects have been highly reported. Besides, the data indicated that most of the species have been investigated neither phytochemically nor pharmacologically. Glaucium flavum, known as yellow horn poppy, is the most studied species. According to the reports, the plants from this genus have anti-cancer and anti-cholinesterase potentials and can be used as a source for aporphine alkaloids.
Collapse
Affiliation(s)
- Toktam Akaberi
- Department of Organic Chemistry, Ferdowsi University, Mashhad, Iran.
| | - Kamran Shourgashti
- Department of Pharmacognosy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Ahmad Emami
- Department of Pharmacognosy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Traditional Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Akaberi
- Department of Pharmacognosy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Gong TT, Guo Q, Li X, Zhang TN, Liu FH, He XH, Lin B, Wu QJ. Isothiocyanate Iberin inhibits cell proliferation and induces cell apoptosis in the progression of ovarian cancer by mediating ROS accumulation and GPX1 expression. Biomed Pharmacother 2021; 142:111533. [PMID: 34148735 DOI: 10.1016/j.biopha.2021.111533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common gynecologic malignancies with poor survival rate, and Iberin is a member of isothiocyanate family with anti-tumor activity. However, the role of Iberin in OC development has not been reported yet. In this study, A2780 and OVCAR-3 cells were treated with gradient concentrations of Iberin to investigate the effect of Iberin on OC in vitro. Meanwhile, the in vivo tumorgenesis experiment was performed using female BALB/c nude mice treated with Iberin. Iberin inhibited cell proliferation, induced G2 cell cycle arrest and promoted cell apoptosis in OC cells. Besides, Iberin reduced GSH/GSSG level, enhanced ROS accumulation, and activated MAPK signaling in OC cells. More interestingly, ROS scavenger (NAC) compensated the anti-proliferative and pro-apoptotic effects of Iberin on OC cells, suggesting the involvement of ROS in the regulation of Iberin on OC cell growth. Notably, Iberin induced down-regulation of glutathione peroxidase-1 (GPX1), and over-expression of GPX1 reversed Iberin-mediated alterations in the proliferation, apoptosis and ROS accumulation of OC cells. The in vivo tumorgenesis study further evidenced the protection of Iberin against OC development. Besides, Iberin displayed a synergistic effect on the enhancement of chemo-sensitivity in OC cells. In summary, our study demonstrates the anti-tumor effect of Iberin on OC and its potential as a therapeutic agent against OC in the future.
Collapse
Affiliation(s)
- Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Qian Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xin-Hui He
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| |
Collapse
|
33
|
Niu B, Liao K, Zhou Y, Wen T, Quan G, Pan X, Wu C. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials 2021; 277:121110. [PMID: 34482088 DOI: 10.1016/j.biomaterials.2021.121110] [Citation(s) in RCA: 539] [Impact Index Per Article: 134.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023]
Abstract
Glutathione (GSH) is an important member of cellular antioxidative system. In cancer cells, a high level of GSH is indispensable to scavenge excessive reactive oxygen species (ROS) and detoxify xenobiotics, which make it a potential target for cancer therapy. Plenty of studies have shown that loss of intracellular GSH makes cancer cells more susceptible to oxidative stress and chemotherapeutic agents. GSH depletion has been proved to improve the therapeutic efficacy of ROS-based therapy (photodynamic therapy, sonodynamic therapy, and chemodynamic therapy), ferroptosis, and chemotherapy. In this review, various strategies for GSH depletion used in cancer therapy are comprehensively summarized and discussed. First, the functions of GSH in cancer cells are analyzed to elucidate the necessity of GSH depletion in cancer therapy. Then, the synthesis and metabolism of GSH are briefly introduced to bring up some crucial targets for GSH modulation. Finally, different approaches to GSH depletion in the literature are classified and discussed in detail according to their mechanisms. Particularly, functional materials with GSH-consuming ability based on nanotechnology are elaborated due to their unique advantages and potentials. This review presents the ingenious application of GSH-depleting strategy in cancer therapy for improving the outcomes of various therapeutic regimens, which may provide useful guidance for designing intelligent drug delivery system.
Collapse
Affiliation(s)
- Boyi Niu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kaixin Liao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yixian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ting Wen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
34
|
Yang X, Wang X, Gao D, Zhang Y, Chen X, Xia Q, Jin M, Sun C, He Q, Wang R, Liu K. Developmental toxicity caused by sanguinarine in zebrafish embryos via regulating oxidative stress, apoptosis and wnt pathways. Toxicol Lett 2021; 350:71-80. [PMID: 34252508 DOI: 10.1016/j.toxlet.2021.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/20/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022]
Abstract
Sanguinarine, derived from the root of Sanguinaria canadensis, have multiple biological activities, such as antimicrobial, insecticidal, antitumor, anti-inflammatory and anti-angiogenesis effect, but little is known about its toxicity on normal embryonic development. Here, we study the developmental toxicity using zebrafish model. Notably, sanguinarine caused a significant increase of the malformation rate and decrease of hatching rates and body length of zebrafish embryos. Sanguinarine also impaired the normal development of heart, liver and nerve system of zebrafish embryos. Further, the ROS level and MDA concentrations were remarkably increased, while the activity of T-SOD was decreased. In addition, obvious increase of apoptosis were observed by AO staining or TUNEL assay. Further studies showed that the oxidative stress-, apoptosis-related genes were changed, while genes of nrf2 and wnt pathways were inhibited by sangunarine. To sum up, our study will be helpful to understand the adverse effect of sanguinarine on embryonic development and the underlying molecular mechanism.
Collapse
Affiliation(s)
- Xueliang Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China
| | - Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China
| | - Xiqiang Chen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China.
| |
Collapse
|
35
|
Raj Rai S, Bhattacharyya C, Sarkar A, Chakraborty S, Sircar E, Dutta S, Sengupta R. Glutathione: Role in Oxidative/Nitrosative Stress, Antioxidant Defense, and Treatments. ChemistrySelect 2021. [DOI: 10.1002/slct.202100773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sristi Raj Rai
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | | | - Anwita Sarkar
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Surupa Chakraborty
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Esha Sircar
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Sreejita Dutta
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| |
Collapse
|
36
|
Mittal D, Biswas L, Verma AK. Redox resetting of cisplatin-resistant ovarian cancer cells by cisplatin-encapsulated nanostructured lipid carriers. Nanomedicine (Lond) 2021; 16:979-995. [PMID: 33970681 DOI: 10.2217/nnm-2020-0400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: To sensitize cisplatin (Cis)-resistant ovarian cancer cells toward Cis using Cis-loaded nanostructured lipid carriers (CisNLCs). Materials & methods: CisNLCs were synthesized and characterized using dynamic light scattering, Fourier transform IR and x-ray diffraction (XRD). Sensitivity of PA-1 and CaOV3 cells to Cis and its biotoxicity were assessed. Further, expression of the Cis-resistance markers GSTPi and ATP7B, and apoptotic markers Bax, Bcl2 and Cas9 were quantified by real-time PCR. Results: The size of synthesized CisNLCs was approximately 179.3 ± 2.32 nm and surface charge was -33.9 ± 1.47 mV. IC50 was 210 μg/ml in PA-1 and 500 μg/ml in CaOV3. CisNLCs modulated reactive oxygen species levels in CaOV3 cells. Reduced GSTPi and decreased Cis efflux via ATP7B sequestration caused Cis to accumulate in cytoplasm, thereby augmenting apoptosis in cells. Conclusion: CisNLCs sensitize CaOV3 by redox resetting, indicating their immense therapeutic potential.
Collapse
Affiliation(s)
- Disha Mittal
- Department of Zoology, Nanobiotech Lab, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Largee Biswas
- Department of Zoology, Nanobiotech Lab, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Anita Kamra Verma
- Department of Zoology, Nanobiotech Lab, Kirori Mal College, University of Delhi, Delhi, 110007, India
| |
Collapse
|
37
|
Ali I, Li J, Cui L, Zhao H, He Q, Wang D. Efficient extraction and purification of benzo[c]phenanthridine alkaloids from Macleaya cordata (Willd) R. Br. by combination of ultrahigh pressure extraction and pH-zone-refining counter-current chromatography with anti-breast cancer activity in vitro. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:423-432. [PMID: 32898923 DOI: 10.1002/pca.2990] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Macleaya cordata (Willd) R. Br. (Papaveraceae family) is a well-known traditional Chinese medicine used to treat muscle pain, inflamed wounds, and bee bites. Benzo[c]phenanthridine alkaloids are the main active ingredients in M. cordata. In this work, sanguinarine and chelerythrine were efficiently extracted and purified by ultrahigh-pressure extraction (UHPE) technique and pH-zone-refining counter-current chromatography (PZRCCC) from M. cordata. OBJECTIVE To develop an efficient UHPE method followed by an efficient separation technique using PZRCCC for benzo[c]phenanthridine alkaloids from the study plant species, and to evaluate the study samples for anti-breast cancer activity. METHODOLOGY The optimal extraction conditions were optimised as extraction pressure 200 MPa, extraction solvent 95% ethanol, solid-liquid ratio 1:30 (g/mL) and extraction time 2 min. A two-phase n-hexane/ethyl acetate/i-propanol/water (1:3:1.5:4.5, v/v) solvent system was optimised with 10 mmol triethylamine in the upper phase and 10 mmol trifluoroacetic acid in lower phase in PZRCCC. The sample loading was optimised as 2.50 g. Moreover, the samples were evaluated for anti-breast cancer activity later on. RESULTS The 2.50 g sample loading yielded 0.45 g of sanguinarine and 0.59 g chelerythrine in one-step separation using PZRCCC. The anti-breast cancer activities of sanguinarine and chelerythrine were found stronger than positive control (vincristine 5.04 μg/mL) with half-maximal inhibitory concentration values of 0.96 and 3.00 μg/mL, respectively. CONCLUSION This study showed that the established methods were efficient in extraction (UHPE) and separation (PZRCCC) of the sanguinarine and chelerythrine from M. cordata.
Collapse
Affiliation(s)
- Iftikhar Ali
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Department of Chemistry, Karakoram International University, Gilgit, Pakistan
| | - Jingchao Li
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Cui
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongwei Zhao
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Daijie Wang
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
38
|
Khan AQ, Mohamed EAN, Hakeem I, Nazeer A, Kuttikrishnan S, Prabhu KS, Siveen KS, Nawaz Z, Ahmad A, Zayed H, Uddin S. Sanguinarine Induces Apoptosis in Papillary Thyroid Cancer Cells via Generation of Reactive Oxygen Species. Molecules 2020; 25:1229. [PMID: 32182833 PMCID: PMC7179475 DOI: 10.3390/molecules25051229] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
Sanguinarine (SNG), a natural compound with an array of pharmacological activities, has promising therapeutic potential against a number of pathological conditions, including malignancies. In the present study, we have investigated the antiproliferative potential of SNG against two well-characterized papillary thyroid cancer (PTC) cell lines, BCPAP and TPC-1. SNG significantly inhibited cell proliferation of PTC cells in a dose and time-dependent manner. Western blot analysis revealed that SNG markedly attenuated deregulated expression of p-STAT3, without affecting total STAT3, and inhibited growth of PTC via activation of apoptotic and autophagy signaling cascade, as SNG treatment of PTC cells led to the activation of caspase-3 and caspase-8; cleavage of PARP and activation of autophagy markers. Further, SNG-mediated anticancer effects in PTC cells involved the generation of reactive oxygen species (ROS) as N-acetyl cysteine (NAC), an inhibitor of ROS, prevented SNG-mediated antiproliferative, apoptosis and autophagy inducing action. Interestingly, SNG also sensitized PTC cells to chemotherapeutic drug cisplatin, which was inhibited by NAC. Finally, SNG suppressed the growth of PTC thyrospheres and downregulated stemness markers ALDH2 and SOX2. Altogether, the findings of the current study suggest that SNG has anticancer potential against PTC cells as well its derived cancer stem-like cells, most likely via inactivation of STAT3 and its associated signaling molecules.
Collapse
Affiliation(s)
- Abdul Q. Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| | - Elham A. N. Mohamed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
- Department of Lab Medicine and Pathology, Hamad Medical Corporation, Doha 3050, Qatar;
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 3050, Qatar;
| | - Ishrat Hakeem
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| | - Aneeza Nazeer
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| | - Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| | - Kodappully S. Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| | - Zafar Nawaz
- Department of Lab Medicine and Pathology, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Aamir Ahmad
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 3050, Qatar;
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| |
Collapse
|
39
|
Wang H, Wang H, Li K, Li S, Sun B. IGFBP-3 Is the Key Target of Sanguinarine in Promoting Apoptosis in Hepatocellular Carcinoma. Cancer Manag Res 2020; 12:1007-1015. [PMID: 32104082 PMCID: PMC7023858 DOI: 10.2147/cmar.s234291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/11/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Chemotherapeutic treatment of hepatocellular carcinoma (HCC) has always been plagued by nonspecific and side effects. Plant extracts have potential anticancer capabilities with low cytotoxicity and few side effects, but their detailed mechanisms are still unclear, thus limiting their clinical applications. Methods In this study, five plant extracts were chosen, their inhibition on HCC cell viability was compared by CCK-8 assay and sanguinarine (SAN) was selected. Then, wound healing assay, transwell assay, and apoptosis assay were carried out in Hep3B cells. Bioinformatics methods were performed and IGFBP-3 was predicted the targets of SAN in HCC. The mechanism of SAN regulating IGFBP-3 was explored using qRT-PCR, Western blotting, cell viability assay and apoptosis assay. Meanwhile, knockdown of IGFBP-3 were used by small interfering RNA (siRNA). Results In five plant extracts, SAN inhibited the proliferation of HCC cell lines most considerably. In addition, apoptosis was promoted, and invasion and migration were inhibited in the Hep3B cell line by treatment with SAN at 2 μM. Bioinformatics indicated that SAN could affect HCC apoptosis through the TP53/IGFBP-3 pathway, and further verification experiments showed that SAN upregulated the expression of insulin-like growth factor binding protein-3 (IGFBP-3) in the Hep3B cell line; SAN also inhibited the expression of Bcl-2 and promoted the expression of BAX and caspase-3. After using siRNA to inhibit the expression of IGFBP-3, the effect of SAN was blocked. Conclusion Our study further reveals a novel mechanism that IGFBP-3 is an important target of SAN, by upregulating expression of IGFBP-3, SAN promotes apoptosis in HCC.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Interventional, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, People's Republic of China
| | - He Wang
- Department of Interventional, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, People's Republic of China
| | - Kai Li
- Department of Interventional, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, People's Republic of China
| | - Shijie Li
- Department of Interventional, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, People's Republic of China
| | - Bingyi Sun
- Department of General Surgery, The First Hospital of Qiqihar, Qiqihar 161005, Heilongjiang Province, People's Republic of China
| |
Collapse
|