1
|
Li RL, Kang S. Rewriting cellular fate: epigenetic interventions in obesity and cellular programming. Mol Med 2024; 30:169. [PMID: 39390356 PMCID: PMC11465847 DOI: 10.1186/s10020-024-00944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
External constraints, such as development, disease, and environment, can induce changes in epigenomic patterns that may profoundly impact the health trajectory of fetuses and neonates into adulthood, influencing conditions like obesity. Epigenetic modifications encompass processes including DNA methylation, covalent histone modifications, and RNA-mediated regulation. Beyond forward cellular differentiation (cell programming), terminally differentiated cells are reverted to a pluripotent or even totipotent state, that is, cellular reprogramming. Epigenetic modulators facilitate or erase histone and DNA modifications both in vivo and in vitro during programming and reprogramming. Noticeably, obesity is a complex metabolic disorder driven by both genetic and environmental factors. Increasing evidence suggests that epigenetic modifications play a critical role in the regulation of gene expression involved in adipogenesis, energy homeostasis, and metabolic pathways. Hence, we discuss the mechanisms by which epigenetic interventions influence obesity, focusing on DNA methylation, histone modifications, and non-coding RNAs. We also analyze the methodologies that have been pivotal in uncovering these epigenetic regulations, i.e., Large-scale screening has been instrumental in identifying genes and pathways susceptible to epigenetic control, particularly in the context of adipogenesis and metabolic homeostasis; Single-cell RNA sequencing (scRNA-seq) provides a high-resolution view of gene expression patterns at the individual cell level, revealing the heterogeneity and dynamics of epigenetic regulation during cellular differentiation and reprogramming; Chromatin immunoprecipitation (ChIP) assays, focused on candidate genes, have been crucial for characterizing histone modifications and transcription factor binding at specific genomic loci, thereby elucidating the epigenetic mechanisms that govern cellular programming; Somatic cell nuclear transfer (SCNT) and cell fusion techniques have been employed to study the epigenetic reprogramming accompanying cloning and the generation of hybrid cells with pluripotent characteristics, etc. These approaches have been instrumental in identifying specific epigenetic marks and pathways implicated in obesity, providing a foundation for developing targeted therapeutic interventions. Understanding the dynamic interplay between epigenetic regulation and cellular programming is crucial for advancing mechanism and clinical management of obesity.
Collapse
Affiliation(s)
- Rui-Lin Li
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Jimo Road 150, Shanghai, 200120, China
| | - Sheng Kang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Jimo Road 150, Shanghai, 200120, China.
| |
Collapse
|
2
|
Fukunaga H, Ikeda A. Mitochondrial DNA copy number variation across three generations: a possible biomarker for assessing perinatal outcomes. Hum Genomics 2023; 17:113. [PMID: 38098033 PMCID: PMC10722810 DOI: 10.1186/s40246-023-00567-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Mitochondria have their own circular multi-copy genome (mtDNA), and abnormalities in the copy number are implicated in mitochondrial dysfunction, which contributes to a variety of aging-related pathologies. However, not much is known about the genetic correlation of mtDNA copy number across multiple generations and its physiological significance. METHODS We measured the mtDNA copy number in cord blood or peripheral blood from 149 three-generation families, specifically the newborns, parents, and grandparents, of 149 families, totaling 1041 individuals. All of the biological specimens and information were provided by the Tohoku Medical Megabank Project in Japan. We also analyzed their maternal factors during pregnancy and neonatal outcomes. RESULTS While the maternal peripheral blood mtDNA copy number was lower than that of other adult family members, it was negatively correlated with cord blood mtDNA copy number in male infants. Also, cord blood mtDNA copy numbers were negatively correlated with perinatal outcomes, such as gestation age, birth weight, and umbilical cord length, for both male and female neonates. Furthermore, the mtDNA copy number in the infants born to mothers who took folic acid supplements during pregnancy would be lower than in the infants born to mothers who did not take them. CONCLUSIONS This data-driven study offers the most comprehensive view to date on the genetic and physiological significance of mtDNA copy number in cord blood or peripheral blood taken from three generations, totaling more than 1000 individuals. Our findings indicate that mtDNA copy number would be one of the transgenerational biomarkers for assessing perinatal outcomes, as well as that appropriate medical interventions could improve the outcomes via quantitative changes in mtDNA.
Collapse
Affiliation(s)
- Hisanori Fukunaga
- Center for Environmental and Health Sciences, Hokkaido University, N12 W7 Kita-ku, Sapporo, 060-0812, Japan.
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.
| | - Atsuko Ikeda
- Center for Environmental and Health Sciences, Hokkaido University, N12 W7 Kita-ku, Sapporo, 060-0812, Japan
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Onuzulu CD, Lee S, Basu S, Comte J, Hai Y, Hizon N, Chadha S, Fauni MS, Kahnamoui S, Xiang B, Halayko AJ, Dolinsky VW, Pascoe CD, Jones MJ. Early-life exposure to cigarette smoke primes lung function and DNA methylation changes at Cyp1a1 upon exposure later in life. Am J Physiol Lung Cell Mol Physiol 2023; 325:L552-L567. [PMID: 37642652 PMCID: PMC11068412 DOI: 10.1152/ajplung.00192.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Prenatal and early-life exposure to cigarette smoke (CS) has repeatedly been shown to induce stable, long-term changes in DNA methylation (DNAm) in offspring. It has been hypothesized that these changes might be functionally related to the known outcomes of prenatal and early-life CS exposure, which include impaired lung development, altered lung function, and increased risk of asthma and wheeze. However, to date, few studies have examined DNAm changes induced by prenatal CS in tissues of the lung, and even fewer have attempted to examine the specific influences of prenatal versus early postnatal exposures. Here, we have established a mouse model of CS exposure which isolates the effects of prenatal and early postnatal CS exposures in early life. We have used this model to measure the effects of prenatal and/or postnatal CS exposures on lung function and immune cell infiltration as well as DNAm and expression of Cyp1a1, a candidate gene previously observed to demonstrate DNAm differences on CS exposure in humans. Our study revealed that exposure to CS prenatally and in the early postnatal period causes long-lasting differences in offspring lung function, gene expression, and lung Cyp1a1 DNAm, which wane over time but are reestablished on reexposure to CS in adulthood. This study creates a testable mouse model that can be used to investigate the effects of prenatal and early postnatal CS exposures and will contribute to the design of intervention strategies to mediate these detrimental effects.NEW & NOTEWORTHY Here, we isolated effects of prenatal from early postnatal cigarette smoke and showed that exposure to cigarette smoke early in life causes changes in offspring DNA methylation at Cyp1a1 that last through early adulthood but not into late adulthood. We also showed that smoking in adulthood reestablished these DNA methylation patterns at Cyp1a1, suggesting that a mechanism other than DNA methylation results in long-term memory associated with early-life cigarette smoke exposures at this gene.
Collapse
Affiliation(s)
- Chinonye Doris Onuzulu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Samantha Lee
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeannette Comte
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Yan Hai
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikho Hizon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shivam Chadha
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maria Shenna Fauni
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shana Kahnamoui
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Bo Xiang
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J Halayko
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vernon W Dolinsky
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher D Pascoe
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Frankenhuis WE, Amir D. What is the expected human childhood? Insights from evolutionary anthropology. Dev Psychopathol 2022; 34:473-497. [PMID: 34924077 DOI: 10.1017/s0954579421001401] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In psychological research, there are often assumptions about the conditions that children expect to encounter during their development. These assumptions shape prevailing ideas about the experiences that children are capable of adjusting to, and whether their responses are viewed as impairments or adaptations. Specifically, the expected childhood is often depicted as nurturing and safe, and characterized by high levels of caregiver investment. Here, we synthesize evidence from history, anthropology, and primatology to challenge this view. We integrate the findings of systematic reviews, meta-analyses, and cross-cultural investigations on three forms of threat (infanticide, violent conflict, and predation) and three forms of deprivation (social, cognitive, and nutritional) that children have faced throughout human evolution. Our results show that mean levels of threat and deprivation were higher than is typical in industrialized societies, and that our species has experienced much variation in the levels of these adversities across space and time. These conditions likely favored a high degree of phenotypic plasticity, or the ability to tailor development to different conditions. This body of evidence has implications for recognizing developmental adaptations to adversity, for cultural variation in responses to adverse experiences, and for definitions of adversity and deprivation as deviation from the expected human childhood.
Collapse
Affiliation(s)
- Willem E Frankenhuis
- Department of Psychology, Utrecht University, Utrecht, the Netherlands
- Max Planck Institute for the Study of Crime, Security and Law, Germany
| | - Dorsa Amir
- Department of Psychology, Boston College, Chestnut Hill, USA
- Department of Psychology, University of California, Berkeley, USA
| |
Collapse
|
5
|
Kuijper B, Leimar O, Hammerstein P, McNamara JM, Dall SRX. The evolution of social learning as phenotypic cue integration. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200048. [PMID: 33993756 PMCID: PMC8126455 DOI: 10.1098/rstb.2020.0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
Most analyses of the origins of cultural evolution focus on when and where social learning prevails over individual learning, overlooking the fact that there are other developmental inputs that influence phenotypic fit to the selective environment. This raises the question of how the presence of other cue 'channels' affects the scope for social learning. Here, we present a model that considers the simultaneous evolution of (i) multiple forms of social learning (involving vertical or horizontal learning based on either prestige or conformity biases) within the broader context of other evolving inputs on phenotype determination, including (ii) heritable epigenetic factors, (iii) individual learning, (iv) environmental and cascading maternal effects, (v) conservative bet-hedging, and (vi) genetic cues. In fluctuating environments that are autocorrelated (and hence predictable), we find that social learning from members of the same generation (horizontal social learning) explains the large majority of phenotypic variation, whereas other cues are much less important. Moreover, social learning based on prestige biases typically prevails in positively autocorrelated environments, whereas conformity biases prevail in negatively autocorrelated environments. Only when environments are unpredictable or horizontal social learning is characterized by an intrinsically low information content, other cues such as conservative bet-hedging or vertical prestige biases prevail. This article is part of the theme issue 'Foundations of cultural evolution'.
Collapse
Affiliation(s)
- Bram Kuijper
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
- Institute for Data Science and Artificial Intelligence, University of Exeter, Exeter EX4 4SB, UK
| | - Olof Leimar
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Peter Hammerstein
- Institute for Theoretical Biology, Humboldt University Berlin, 10115 Berlin, Germany
| | - John M. McNamara
- School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG, UK
| | - Sasha R. X. Dall
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| |
Collapse
|
6
|
Fukunaga H. Mitochondrial DNA Copy Number and Developmental Origins of Health and Disease (DOHaD). Int J Mol Sci 2021; 22:ijms22126634. [PMID: 34205712 PMCID: PMC8235559 DOI: 10.3390/ijms22126634] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction is known to contribute to mitochondrial diseases, as well as to a variety of aging-based pathologies. Mitochondria have their own genomes (mitochondrial DNA (mtDNA)) and the abnormalities, such as point mutations, deletions, and copy number variations, are involved in mitochondrial dysfunction. In recent years, several epidemiological studies and animal experiments have supported the Developmental Origin of Health and Disease (DOHaD) theory, which states that the environment during fetal life influences the predisposition to disease and the risk of morbidity in adulthood. Mitochondria play a central role in energy production, as well as in various cellular functions, such as apoptosis, lipid metabolism, and calcium metabolism. In terms of the DOHaD theory, mtDNA copy number may be a mediator of health and disease. This paper summarizes the results of recent epidemiological studies on the relationship between environmental factors and mtDNA copy number during pregnancy from the perspective of DOHaD theory. The results of these studies suggest a hypothesis that mtDNA copy number may reflect environmental influences during fetal life and possibly serve as a surrogate marker of health risks in adulthood.
Collapse
Affiliation(s)
- Hisanori Fukunaga
- Center for Environmental and Health Sciences, Hokkaido University, N12 W7 Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
7
|
|
8
|
Ellis BJ, Shakiba N, Adkins DE, Lester BM. Early external-environmental and internal-health predictors of risky sexual and aggressive behavior in adolescence: An integrative approach. Dev Psychobiol 2020; 63:556-571. [PMID: 32869286 DOI: 10.1002/dev.22029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/14/2020] [Accepted: 08/04/2020] [Indexed: 11/10/2022]
Abstract
External predictive adaptive response (PAR) models assume that developmental exposures to stress carry predictive information about the future state of the environment, and that development of a faster life history (LH) strategy in this context functions to match the individual to this expected harsh state. More recently internal PAR models have proposed that early somatic condition (i.e., physical health) critically regulates development of LH strategies to match expected future somatic condition. Here we test the integrative hypothesis that poor physical health mediates the relation between early adversity and faster LH strategies. Data were drawn from a longitudinal study (birth to age 16; N = 1,388) of mostly African American participants with prenatal substance exposure. Results demonstrated that both external environmental conditions early in life (prenatal substance exposure, socioeconomic adversity, caregiver distress/depression, and adverse family functioning) and internal somatic condition during preadolescence (birthweight/gestational age, physical illness) uniquely predicted the development of faster LH strategies in adolescence (as indicated by more risky sexual and aggressive behavior). Consistent with the integrative hypothesis, the effect of caregiver distress/depression on LH strategy was mostly mediated by worse physical health. Discussion highlights the implications of these findings for theory and research on stress, development, and health.
Collapse
Affiliation(s)
- Bruce J Ellis
- Departments of Psychology and Anthropology, University of Utah, Salt Lake City, UT, USA
| | - Nila Shakiba
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | - Daniel E Adkins
- Departments of Sociology and Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Barry M Lester
- Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital of Rhode Island, Providence, RI, USA
| |
Collapse
|
9
|
Frankenhuis WE, Young ES, Ellis BJ. The Hidden Talents Approach: Theoretical and Methodological Challenges. Trends Cogn Sci 2020; 24:569-581. [PMID: 32360117 DOI: 10.1016/j.tics.2020.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/31/2022]
Abstract
It is well established that people living in adverse conditions tend to score lower on a variety of social and cognitive tests. However, recent research shows that people may also develop 'hidden talents', that is, mental abilities that are enhanced through adversity. The hidden talents program sets out to document these abilities, their development, and their manifestations in different contexts. Although this approach has led to new insights and findings, it also comes with theoretical and methodological challenges. Here, we discuss six of these challenges. We conclude that the hidden talents approach is promising, but there is much scope for refining ideas and testing assumptions. We discuss our goal to advance this research program with integrity despite the current incentives in science.
Collapse
Affiliation(s)
- Willem E Frankenhuis
- Behavioural Science Institute, Radboud University, Montessorilaan 3, PO Box 9104, 6500, HE, Nijmegen, The Netherlands.
| | - Ethan S Young
- Behavioural Science Institute, Radboud University, Montessorilaan 3, PO Box 9104, 6500, HE, Nijmegen, The Netherlands
| | - Bruce J Ellis
- Departments of Psychology and Anthropology, University of Utah, 380 South 1530 East BEHS 502, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Frankenhuis WE, Walasek N. Modeling the evolution of sensitive periods. Dev Cogn Neurosci 2020; 41:100715. [PMID: 31999568 PMCID: PMC6994616 DOI: 10.1016/j.dcn.2019.100715] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/09/2019] [Accepted: 10/01/2019] [Indexed: 11/28/2022] Open
Abstract
In the past decade, there has been monumental progress in our understanding of the neurobiological basis of sensitive periods. Little is known, however, about the evolution of sensitive periods. Recent studies have started to address this gap. Biologists have built mathematical models exploring the environmental conditions in which sensitive periods are likely to evolve. These models investigate how mechanisms of plasticity can respond optimally to experience during an individual's lifetime. This paper discusses the central tenets, insights, and predictions of these models, in relation to empirical work on humans and other animals. We also discuss which future models are needed to improve the bridge between theory and data, advancing their synergy. Our paper is written in an accessible manner and for a broad audience. We hope our work will contribute to recently emerging connections between the fields of developmental neuroscience and evolutionary biology.
Collapse
Affiliation(s)
| | - Nicole Walasek
- Behavioural Science Institute, Radboud University, the Netherlands
| |
Collapse
|
11
|
Wass SV, Smith CG, Daubney KR, Suata ZM, Clackson K, Begum A, Mirza FU. Influences of environmental stressors on autonomic function in 12-month-old infants: understanding early common pathways to atypical emotion regulation and cognitive performance. J Child Psychol Psychiatry 2019; 60:1323-1333. [PMID: 31259425 DOI: 10.1111/jcpp.13084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Previous research has suggested that children exposed to more early-life stress show worse mental health outcomes and impaired cognitive performance in later life, but the mechanisms subserving these relationships remain poorly understood. METHOD Using miniaturised microphones and physiological arousal monitors (electrocardiography, heart rate variability and actigraphy), we examined for the first time infants' autonomic reactions to environmental stressors (noise) in the home environment, in a sample of 82 12-month-old infants from mixed demographic backgrounds. The same infants also attended a laboratory testing battery where attention- and emotion-eliciting stimuli were presented. We examined how children's environmental noise exposure levels at home related to their autonomic reactivity and to their behavioural performance in the laboratory. RESULTS Individual differences in total noise exposure were independent of other socioeconomic and parenting variables. Children exposed to higher and more rapidly fluctuating environmental noise showed more unstable autonomic arousal patterns overall in home settings. In the laboratory testing battery, this group showed more labile and short-lived autonomic changes in response to novel attention-eliciting stimuli, along with reduced visual sustained attention. They also showed increased arousal lability in response to an emotional stressor. CONCLUSIONS Our results offer new insights into the mechanisms by which environmental noise exposure may confer increased risk of adverse mental health and impaired cognitive performance during later life.
Collapse
Affiliation(s)
- Sam V Wass
- School of Psychology, University of East London, London, UK
| | - Celia G Smith
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Zeynep M Suata
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kaili Clackson
- Department of Experimental Psychology, University of Cambridge, Cambridge, UK
| | - Abdul Begum
- School of Psychology, University of East London, London, UK
| | - Farhan U Mirza
- School of Health Professions, University of Plymouth, Plymouth, UK
| |
Collapse
|
12
|
Raihani NJ, Bell V. An evolutionary perspective on paranoia. Nat Hum Behav 2019; 3:114-121. [PMID: 30886903 PMCID: PMC6420131 DOI: 10.1038/s41562-018-0495-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/15/2018] [Indexed: 12/29/2022]
Abstract
Paranoia is the most common symptom of psychosis but paranoid concerns occur throughout the general population. Here, we argue for an evolutionary approach to paranoia across the spectrum of severity that accounts for its complex social phenomenology - including the perception of conspiracy and selective identification of perceived persecutors - and considers how it can be understood in light of our evolved social cognition. We argue that the presence of coalitions and coordination between groups in competitive situations could favour psychological mechanisms that detect, anticipate and avoid social threats. Our hypothesis makes testable predictions about the environments in which paranoia should be most common as well as the developmental trajectory of paranoia across the lifespan. We suggest that paranoia should not solely be viewed as a pathological symptom of a mental disorder but also as a part of a normally-functioning human psychology.
Collapse
Affiliation(s)
- Nichola J Raihani
- Department of Experimental Psychology, University College London, London, UK.
| | - Vaughan Bell
- Division of Psychiatry, University College London, London, UK
| |
Collapse
|