1
|
Dora D, Szőcs E, Soós Á, Halasy V, Somodi C, Mihucz A, Rostás M, Mógor F, Lohinai Z, Nagy N. From bench to bedside: an interdisciplinary journey through the gut-lung axis with insights into lung cancer and immunotherapy. Front Immunol 2024; 15:1434804. [PMID: 39301033 PMCID: PMC11410641 DOI: 10.3389/fimmu.2024.1434804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
This comprehensive review undertakes a multidisciplinary exploration of the gut-lung axis, from the foundational aspects of anatomy, embryology, and histology, through the functional dynamics of pathophysiology, to implications for clinical science. The gut-lung axis, a bidirectional communication pathway, is central to understanding the interconnectedness of the gastrointestinal- and respiratory systems, both of which share embryological origins and engage in a continuous immunological crosstalk to maintain homeostasis and defend against external noxa. An essential component of this axis is the mucosa-associated lymphoid tissue system (MALT), which orchestrates immune responses across these distant sites. The review delves into the role of the gut microbiome in modulating these interactions, highlighting how microbial dysbiosis and increased gut permeability ("leaky gut") can precipitate systemic inflammation and exacerbate respiratory conditions. Moreover, we thoroughly present the implication of the axis in oncological practice, particularly in lung cancer development and response to cancer immunotherapies. Our work seeks not only to synthesize current knowledge across the spectrum of science related to the gut-lung axis but also to inspire future interdisciplinary research that bridges gaps between basic science and clinical application. Our ultimate goal was to underscore the importance of a holistic understanding of the gut-lung axis, advocating for an integrated approach to unravel its complexities in human health and disease.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emőke Szőcs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Viktória Halasy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Csenge Somodi
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Anna Mihucz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Melinda Rostás
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Mógor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Lao P, Chen J, Tang L, Zhang J, Chen Y, Fang Y, Fan X. Regulatory T cells in lung disease and transplantation. Biosci Rep 2023; 43:BSR20231331. [PMID: 37795866 PMCID: PMC10611924 DOI: 10.1042/bsr20231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023] Open
Abstract
Pulmonary disease can refer to the disease of the lung itself or the pulmonary manifestations of systemic diseases, which are often connected to the malfunction of the immune system. Regulatory T (Treg) cells have been shown to be important in maintaining immune homeostasis and preventing inflammatory damage, including lung diseases. Given the increasing amount of evidence linking Treg cells to various pulmonary conditions, Treg cells might serve as a therapeutic strategy for the treatment of lung diseases and potentially promote lung transplant tolerance. The most potent and well-defined Treg cells are Foxp3-expressing CD4+ Treg cells, which contribute to the prevention of autoimmune lung diseases and the promotion of lung transplant rejection. The protective mechanisms of Treg cells in lung disease and transplantation involve multiple immune suppression mechanisms. This review summarizes the development, phenotype and function of CD4+Foxp3+ Treg cells. Then, we focus on the therapeutic potential of Treg cells in preventing lung disease and limiting lung transplant rejection. Furthermore, we discussed the possibility of Treg cell utilization in clinical applications. This will provide an overview of current research advances in Treg cells and their relevant application in clinics.
Collapse
Affiliation(s)
- Peizhen Lao
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jingyi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Longqian Tang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jiwen Zhang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuxi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuyin Fang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Xingliang Fan
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| |
Collapse
|
3
|
Hsu UH, Chiang BL. γδ T Cells and Allergic Diseases. Clin Rev Allergy Immunol 2023; 65:172-182. [PMID: 37395986 DOI: 10.1007/s12016-023-08966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Gamma-delta (γδ) T cells play an essential role in allergic diseases and have emerged as a potential treatment target in recent decades. To clarify the effects of γδ T cells on atopic illnesses, we reviewed the literature on the physical roles and functions of various subsets of γδ T cells, including type 1 T helper (Th1)-like, type 2 T helper- (Th2)-like, and type 17 T helper (Th17)-like γδ T cells. Mouse Vγ1 T cells increase interleukin (IL)-4 levels and trigger B cell class switching and immunoglobulin E production. Meanwhile, mouse Vγ4 T cells and human CD8lowVδ1 T cells secrete interferon-γ and exert an anti-allergy effect similar to that of Th1 cells. Moreover, mouse Vγ6 T cells produce IL-17A, while Th17-like γδ T cells enhance neutrophil and eosinophil infiltration in the acute phase of inflammation, but exert anti-inflammatory effects in the chronic phase. Human Vγ9δ2 T cells may exhibit Th1- or Th2-like characteristics in response to certain types of stimulation. In addition, the microbiota can modulate epithelial γδ T cell survival through aryl hydrocarbon receptors; these γδ T cells play crucial roles in the repair of epithelial damage, antibacterial protection, antigen tolerance, and effects of dysbiosis on allergic diseases.
Collapse
Affiliation(s)
- Uei-Hsiang Hsu
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu City, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Bryant N, Muehling LM. T-cell responses in asthma exacerbations. Ann Allergy Asthma Immunol 2022; 129:709-718. [PMID: 35918022 PMCID: PMC9987567 DOI: 10.1016/j.anai.2022.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Asthma is a chronic lung disease comprising multiple endotypes and characterized by periodic exacerbations. A diverse array of T cells has been found to contribute to all endotypes of asthma in pathogenic and regulatory roles. Here, we review the contributions of CD4+, CD8+, and unconventional T cells in allergic and nonallergic asthma. DATA SOURCES Review of published literature pertaining to conventional and unconventional T-cell types in asthma. STUDY SELECTIONS Recent peer-reviewed articles pertaining to T cells in asthma, with additional peer-reviewed studies for context. RESULTS Much research in asthma has focused on the roles of CD4+ TH cells. Roles for TH2 cells in promoting allergic asthma pathogenesis have been well-described, and the recent description of pathogenic TH2A cells provides additional insight into these responses. Other TH types, notably TH1 and TH17, have been linked to neutrophilic and steroid-resistant asthma phenotypes. Beyond CD4+ T cells, CD8+ Tc2 cells are also strongly associated with allergic asthma. An emerging area for study is unconventional T-cell types, including γδT, invariant natural killer T, and mucosal-associated invariant T cells. Although data in asthma remain limited for these cells, their ability to bridge innate and adaptive responses likely makes them key players in asthma. A number of asthma therapies target T-cell responses, and, although data are limited, they seem to modulate T-cell populations. CONCLUSION Given the diversity and heterogeneity of asthma and T-cell responses, there remain many rich avenues for research to better understand the pathogenesis of asthma. Despite the breadth of T cells in asthma, approved therapeutics remain limited to TH2 networks.
Collapse
Affiliation(s)
- Naomi Bryant
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
5
|
Chen X, Jiang X, Lu Y, Yao Y, Lu J, Zhi Q, Lai L, Liang J, Li C. Aerosol inhalation of Mycobacterium bovis can reduce the Th2 dominant immune response induced by ovalbumin sensitization. Am J Transl Res 2022; 14:3430-3438. [PMID: 35702073 PMCID: PMC9185090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate whether M. vaccae inhalation affects asthma via γδ T cell regulation. METHODS Forty male Balb/c mice were randomly divided into 4 groups: normal group, asthma group, control group and intervention group. The normal group was given no treatment. For the asthma group, control group and intervention group, the mice were sensitized and stimulated with ovalbumin (OVA) to establish asthma models. Mice in the asthma group were not treated. Mice in the control group were treated with γδ T cell suspension from normal mice, and those in the intervention group were treated with γδ T cell suspension from mice intervened by Mycobacterium bovis. ELISA assay was adopted for quantification of IL-4 and IFN-γ in mouse alveolar fluid (BALF), and flow cytometry for determining the percentage of IL-4 and IFN-γ from mononuclear cells of lung tissues. RESULTS The airway responsiveness of the asthma group was higher than that of the normal group. The degree of airway inflammation in the intervention group was lighter than that in the control group, and it was significantly alleviated compared with the asthma group (P<0.05). Compared with the asthma group, the level of IL-4 in the BALF of the control group and the intervention group decreased significantly, while the level of IFN-γ increased significantly (P<0.05). Compared with the control group, the level of IL-4 in the BALF of the intervention group was significantly lower, while the level of IFN-γ was significantly higher (P<0.05). In addition, the results of flow cytometry were basically consistent with the results of Elisa. CONCLUSION Aerosol inhalation of Mycobacterium bovis can alleviate the Th2 dominant immune response induced by OVA sensitization and regulate the Th1/Th2 immune imbalance in patients with asthma.
Collapse
Affiliation(s)
- Xiaoju Chen
- Department of General Internal Medicine, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Xiaohong Jiang
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Yanyan Lu
- Department of General Internal Medicine, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Yien Yao
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Jiali Lu
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Qiang Zhi
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Lejin Lai
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Jie Liang
- Department of General Internal Medicine, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Chaoqian Li
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| |
Collapse
|
6
|
Depletion of γδ T Cells Leads to Reduced Angiogenesis and Increased Infiltration of Inflammatory M1-like Macrophages in Ischemic Muscle Tissue. Cells 2022; 11:cells11091490. [PMID: 35563796 PMCID: PMC9102774 DOI: 10.3390/cells11091490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
γδ T cells, a small subset of T cells in blood, play a substantial role in influencing immunoregulatory and inflammatory processes. The functional impact of γδ T cells on angiogenesis in ischemic muscle tissue has never been reported and is the topic of the present work. Femoral artery ligation (FAL) was used to induce angiogenesis in the lower leg of γδ T cell depleted mice and wildtype and isotype antibody-treated control groups. Gastrocnemius muscle tissue was harvested 3 and 7 days after FAL and assessed using (immuno-)histological analyses. Hematoxylin and Eosin staining showed an increased area of tissue damage in γδ T cell depleted mice 7 days after FAL. Impaired angiogenesis was demonstrated by lower capillary to muscle fiber ratio and decreased number of proliferating endothelial cells (CD31+/BrdU+). γδ T cell depleted mice showed an increased number of total leukocytes (CD45+), neutrophils (MPO+) and neutrophil extracellular traps (NETs) (MPO+/CitH3+), without changes in the neutrophils to NETs ratio. Moreover, the depletion resulted in a higher macrophage count (DAPI/CD68+) caused by an increase in inflammatory M1-like macrophages (CD68+/MRC1−). Altogether, we show that depletion of γδ T cells leads to increased accumulation of leukocytes and M1-like macrophages, along with impaired angiogenesis.
Collapse
|
7
|
Yao YE, Qin CC, Yang CM, Huang TX. γδT17/γδTreg cell subsets: a new paradigm for asthma treatment. J Asthma 2021; 59:2028-2038. [PMID: 34634976 DOI: 10.1080/02770903.2021.1980585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bronchial asthma (abbreviated as asthma), is a heterogeneous disease characterized by chronic airway inflammation and airway hyperresponsiveness. The main characteristics of asthma include variable reversible airflow limitation and airway remodeling. The pathogenesis of asthma is still unclear. Th1/Th2 imbalance, Th1 deficiency and Th2 hyperfunction are classic pathophysiological mechanisms of asthma. Some studies have shown that the imbalance of the Th1/Th2 cellular immune model and Th17/Treg imbalance play a key role in the occurrence and development of asthma; however, these imbalances do not fully explain the disease. In recent years, studies have shown that γδT and γδT17 cells are involved in the pathogenesis of asthma. γδTreg has a potential immunosuppressive function, but its regulatory mechanisms have not been fully elucidated. In this paper, we reviewed the role of γδT17/γδTreg cells in bronchial asthma, including the mechanisms of their development and activation. Here we propose that γδT17/Treg cell subsets contribute to the occurrence and development of asthma, constituting a novel potential target for asthma treatment.
Collapse
Affiliation(s)
- Yi-En Yao
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cai-Cheng Qin
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao-Mian Yang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tian-Xia Huang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Habeler M, Redl B. Phage-display reveals interaction of lipocalin allergen Can f 1 with a peptide resembling the antigen binding region of a human γδT-cell receptor. Biol Chem 2021; 402:433-437. [PMID: 33938175 PMCID: PMC10883907 DOI: 10.1515/hsz-2020-0185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/24/2020] [Indexed: 02/04/2023]
Abstract
Although some progress has been achieved in understanding certain aspects of the allergenic mechanism of animal lipocalins, they still remain largely enigmatic. One possibility to unravel this property is to investigate their interaction with components of the immune system. Since these components are highly complex we intended to use a high-throughput technology for this purpose. Therefore, we used phage-display of a random peptide library for panning against the dog allergen Can f 1. By this method we identified a Can f 1 binding peptide corresponding to the antigen-binding site of a putative γδT-cell receptor. Additional biochemical investigations confirmed this interaction.
Collapse
Affiliation(s)
- Matthias Habeler
- Institute of Molecular Biology, Medical University Innsbruck, Innrain 80, A-6020 Innsbruck, Austria
| | - Bernhard Redl
- Institute of Molecular Biology, Medical University Innsbruck, Innrain 80, A-6020 Innsbruck, Austria
| |
Collapse
|
9
|
Yao YE, Zhang JH, Chen XJ, Huang JL, Sun QX, Liu WW, Zeng H, Li CQ. Regulation of γδT17 cells by Mycobacterium vaccae through interference with Notch/Jagged1 signaling pathway. ACTA ACUST UNITED AC 2020; 53:e9551. [PMID: 33053115 PMCID: PMC7552905 DOI: 10.1590/1414-431x20209551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate the effect of Mycobacterium vaccae on Jagged 1 and gamma delta T17 (γδT17) cells in asthmatic mice. An asthma mouse model was established through immunization with ovalbumin (OVA). Gamma-secretase inhibitor (DAPT) was used to block the Notch signaling pathway. M. vaccae was used to treat asthma, and related indicators were measured. Blocking Notch signaling inhibited the production of γδT17 cells and secretion of cytokine interleukin (IL)-17, which was accompanied by a decrease in Jagged1 mRNA and protein expression in the treated asthma group compared with the untreated asthma group. Similarly, treatment with M. vaccae inhibited Jagged1 expression and γδT17 cell production, which was associated with decreased airway inflammation and reactivity. The Notch signaling pathway may play a role in the pathogenesis of asthma through the induction of Jagged1 receptor. On the other hand, the inhibitory effect of M. vaccae on Jagged1 receptor in γδT17 cells could be used for the prevention and treatment of asthma.
Collapse
Affiliation(s)
- Yi En Yao
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Hong Zhang
- Department of Internal Medicine, Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao Ju Chen
- Department of Critical Care, First People's Hospital of Yulin City, Nanning, Guangxi, China
| | - Jian Lin Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qi Xiang Sun
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Wei Liu
- Department of Emergency Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Huan Zeng
- The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Chao Qian Li
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
10
|
Gubenzhike Recipe Ameliorates Respiratory Mucosal Immunity in Mice with Chronic Obstructive Pulmonary Disease through Upregulation of the γδT Lymphocytes and KGF Levels. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3056797. [PMID: 32280354 PMCID: PMC7128036 DOI: 10.1155/2020/3056797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/22/2020] [Indexed: 11/18/2022]
Abstract
Background Gubenzhike recipe, a traditional Chinese herbal compound, was assumed to have a possible beneficial effect on COPD. This study was designed to elucidate the mechanism from the perspective of respiratory mucosal immunity. Methods COPD model was induced by exposure to cigarette smoke and LPS instillation in mice for 12 weeks. Animals were administered solution of Gubenzhike recipe by intragastric gavage daily for 4 weeks. After that, mice were sacrificed for lung function test and histological examination of lung tissues. The levels of IL-6 and IL-13 in serum, bronchoalveolar lavage fluid (BALF), and intestinal mucus were measured by ELISA. The KGF and KGFR in lung tissue were analysed by immunohistochemical staining, ELISA, and western blotting, and the mRNA expressions were assessed by PCR. γδT lymphocytes in the lungs were isolated and analysed by immunohistochemical staining and flow cytometry. Results Gubenzhike recipe improved the structure of airway and damage of lung tissue and also the respiratory status and lung function, reduced the content of IL-6 in serum and BALF and IL-13 in BALF and intestinal mucus, increased the proportion of γδT cells in lung tissue, and promoted the secretion of KGF and KGFR (P < 0.05). Conclusion We for the first time demonstrated an experimental procedure for the isolation of γδT lymphocytes from lung tissue. This study suggested that Gubenzhike recipe could enhance the respiratory mucosal immunity which provided experimental evidence for its effects of reinforcing "wei qi" by means of strengthening vital qi, tonifying spleen and kidney, relieving cough, and reducing phlegm in TCM.
Collapse
|
11
|
Lung Homeostasis: Influence of Age, Microbes, and the Immune System. Immunity 2017; 46:549-561. [DOI: 10.1016/j.immuni.2017.04.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/24/2022]
|
12
|
Hales BJ, Hizawa N, Jenmalm M, Sverremark-Ekström E, Wardlaw AJ. Developments in the field of allergy in 2014 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2016; 45:1723-45. [PMID: 26492197 DOI: 10.1111/cea.12663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of asthma continues to be a major topic of interest to our authors with reviews and original papers on the role of viruses, mechanisms of inflammation, biomarkers, and phenotypes of asthma being major topics. A number of papers described new treatments for asthma focusing on blocking the Th2 response reflecting the fact that two decades of work in this area is finally bearing fruit. The pathogenesis of chronic rhinosinusitis is a growing area of interest, but there has been less on the genetics of airways disease than in previous years possibly reflecting the degree of rigour (and therefore a smaller body of work), with which these sorts of studies are now being undertaken. There continues to be a wide range of papers dealing with mechanisms of allergic disease ranging from clinical-based studies to basic research and the use of in vivo animal models especially mice. As before, mechanisms and new approaches to immunotherapy are common themes. Several were published in the allergens section investigating modification of allergens to increase their effectiveness and reduce the risk of adverse events. Risk factors for allergic disease was a common theme in the epidemiology section and food allergy a common theme in clinical allergy with papers on the development of protocols to induce tolerance and attempts to find biomarkers to distinguish sensitization from allergic disease. This was another exciting year for the editors, and we hope the readers of the journal.
Collapse
Affiliation(s)
- B J Hales
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - N Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - M Jenmalm
- Unit of Autoimmunity and Immune Regulation, Division of Clinical Immunology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - E Sverremark-Ekström
- M.C., Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - A J Wardlaw
- Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK.,Department of Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|