1
|
Gao SS, Cheng YX, Zhou Y, Liu RC, Li X, Xie XY, Chen C. Comparative Study of Two Erythronium sibiricum Bulb Polysaccharide Fractions in Alleviating Airway Remodeling by Affecting Autophagy and Apoptosis. J Med Food 2025. [PMID: 40151882 DOI: 10.1089/jmf.2024.k.0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Erythronium sibiricum (E. sibiricum), which is an indigenous herb in China, is gathered and consumed by nomads in Xinjiang due to its medicinal value. Only a few studies have evaluated its possible pharmacological activity. This study aims to examine and compare the ways in which two E. sibiricum bulb polysaccharide fractions (ESBP and E1P) alleviate airway remodeling based on apoptosis and autophagy. In a mouse model of chronic asthma produced by ovalbumin, the anti-asthmatic effects of E1P and ESBP were investigated. The expression levels of the proteins linked to autophagy and apoptosis (cleaved-caspase 3, Beclin1, LC3B, Bad, and Bax) as well as the activity of the PI3K/Akt/mTOR signaling pathway were assessed. Airway remodeling was alleviated by E1P and ESBP. While E1P could only prevent the increase in PI3K, ESBP was capable of inhibiting the PI3K/Akt/mTOR signaling pathway. Furthermore, ESBP decreased the levels of cleaved-caspase 3, Beclin1, LC3B, Bad, and Bax protein expressions. By modifying signaling pathways linked to autophagy and apoptosis, E. sibiricum bulb polysaccharides successfully improved the airway remodeling of asthma. Additionally, ESBP exhibited more potent inhibitory effects on asthmatic defective autophagy than E1P.
Collapse
Affiliation(s)
- Shan Shan Gao
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Yue Xuan Cheng
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Yue Zhou
- Xinjiang Uygur Autonomous Region Science and Technology Resources Sharing Service Centre, Urumqi, China
- Xinjiang Key Laboratory of Featured Functional Food Nutrition and Safety Testing, Urumqi, China
| | - Rong Chang Liu
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Xue Li
- Supervision and Testing Center for Quality and Safety of Agri-products of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiang Yun Xie
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Drugs, Urumqi, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, China
| | - Chunli Chen
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Lu Y, Tang X, Wang W, Yang J, Wang S. The role of deacetylase SIRT1 in allergic diseases. Front Immunol 2024; 15:1422541. [PMID: 39081309 PMCID: PMC11286408 DOI: 10.3389/fimmu.2024.1422541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
The silent information regulator sirtuin 1 (SIRT1) protein is an NAD+-dependent class-III lysine deacetylase that serves as an important post-transcriptional modifier targeting lysine acetylation sites to mediate deacetylation modifications of histones and non-histone proteins. SIRT1 has been reported to be involved in several physiological or pathological processes such as aging, inflammation, immune responses, oxidative stress and allergic diseases. In this review, we summarized the regulatory roles of SIRT1 during allergic disorder progression. Furthermore, we highlight the therapeutic effects of targeting SIRT1 in allergic diseases.
Collapse
Affiliation(s)
- Yun Lu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Tang
- Department of Laboratory Medicine, Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| | - Wenxin Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Yang
- Department of Laboratory Medicine, Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Yang Y, Wang L, Wang S, Wang Y, Du Y, Fan Y. Luteolin restored Treg/Th17 balance to ameliorate allergic rhinitis in a mouse model. Immunopharmacol Immunotoxicol 2023:1-8. [PMID: 36946145 DOI: 10.1080/08923973.2023.2166527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
OBJECTIVE Luteolin (LO) has been reported to be a potential drug for allergic rhinitis (AR). This paper explored the mechanism of LO in AR. MATERIALS AND METHODS Mice were treated with ovalbumin (OVA) to construct an AR model in vivo before LO or 3-methyladenine (3-MA) treatment. The frequency of nasal sneezing was counted. The nasal mucosa thickness was assessed by hematoxylin-eosin staining assay. The levels of anti-OVA-immunoglobulin E (IgE)/IgG2a, autophagy-related factors (Beclin1, LC3II/LC3I), and T helper cell 17 (Th17)/regulatory T cell (Treg) markers (interleukin (IL)-17A, retinoic acid receptor-related orphan nuclear receptor γt (RORγt)/IL-10, forkhead box P3 (Foxp3)) were detected through enzyme-linked immunosorbent assay, western blot, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Flow cytometry assay was performed to test the percentage of Th17 and Treg cells. RESULTS The nasal sneezing frequency, nasal mucosa thickness, and levels of anti-OVA-IgE, Beclin1, LC3II/LC3I, IL-17A as well as RORγt were enhanced whereas anti-OVA-IgG2a, IL-10, and Foxp3 levels were inhibited in a mouse model of OVA-induced AR, which were reversed by LO or 3-MA treatment. CONCLUSIONS LO restored Treg/Th17 balance to ameliorate AR in a mouse model.
Collapse
Affiliation(s)
- Yuping Yang
- Department of Allergy, The First Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Lingling Wang
- Department of Allergy, The First Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Song Wang
- Department of Otolaryngology, The First Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Yan Wang
- Department of Allergy, The First Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Yunqiang Du
- Criminal Police, Public Security Bureau of Xinjiang, Urumqi, China
| | - Yuqin Fan
- Department of Otolaryngology and Head and Neck Surgery, Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Kocot AM, Wróblewska B. Nutritional strategies for autophagy activation and health consequences of autophagy impairment. Nutrition 2022; 103-104:111686. [PMID: 35843038 DOI: 10.1016/j.nut.2022.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022]
|
5
|
Li X, Zhao F, Wang A, Cheng P, Chen H. Role and mechanisms of autophagy in lung metabolism and repair. Cell Mol Life Sci 2021; 78:5051-5068. [PMID: 33864479 PMCID: PMC11072280 DOI: 10.1007/s00018-021-03841-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023]
Abstract
Mammalian lungs are metabolically active organs that frequently encounter environmental insults. Stress responses elicit protective autophagy in epithelial barrier cells and the supportive niche. Autophagy promotes the recycling of damaged intracellular organelles, denatured proteins, and other biological macromolecules for reuse as components required for lung cell survival. Autophagy, usually induced by metabolic defects, regulates cellular metabolism. Autophagy is a major adaptive response that protects cells and organisms from injury. Endogenous region-specific stem/progenitor cell populations are found in lung tissue, which are responsible for epithelial repair after lung damage. Additionally, glucose and fatty acid metabolism is altered in lung stem/progenitor cells in response to injury-related lung fibrosis. Autophagy deregulation has been observed to be involved in the development and progression of other respiratory diseases. This review explores the role and mechanisms of autophagy in regulating lung metabolism and epithelial repair.
Collapse
Affiliation(s)
- Xue Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - An Wang
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - Peiyong Cheng
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China.
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China.
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
6
|
Shang Y, Liu Q, Wang L, Qiu X, Chen Y, An J. microRNA-146a-5p negatively modulates PM 2.5 caused inflammation in THP-1 cells via autophagy process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115961. [PMID: 33160737 DOI: 10.1016/j.envpol.2020.115961] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Ambient fine particulate matter (PM2.5) can change the expression profile of microRNAs (miRs), which may play important roles in mediating inflammatory responses. The present study attempts to investigate the roles of miR-146a-5p in regulating cytokine expression in a human monocytic leukemia cell line (THP-1). Four types of PM2.5 extracts obtained from Beijing, China, were subjected to cytotoxic tests in THP-1 cells. These four PM2.5 extracts included two water extracts collected from non-heating and heating season (WN and WH), and two organic extracts from non-heating and heating season (DN and DH). Firstly, the four PM2.5 extracts caused cytotoxicity, oxidative stress responses, cytokine gene expressions and interleukin 8 (IL-8) release in THP-1 cells, with WH showing the highest cytotoxicity, WN showing the highest oxidative stress and inflammatory responses. Additionally, we observed expression of miR-146a-5p was significantly increased, with the maximal response of six folds in WN group. Cellular autophagy was initiated by PM2.5 indicated by related protein and gene expressions. Both RNA interference and autophagy inhibitor were applied to interrupt autophagy process in THP-1 cells. Autophagy dysfunction could alleviate IL-8 expression, suggesting autophagy process regulated cytokine expression and inflammatory response caused by PM2.5. A chemical inhibitor was applied to inhibit the function of miR-146a-5p, and then the expressions of IL-8 and autophagic genes were significantly aggravated. Meanwhile, two target genes of miR-146a-5p, interleukin-1 associated-kinase-1 (IRAK1) and tumor-necrosis factor receptor-associated factor-6 (TRAF6) were increased dramatically, which also played important roles in regulation of autophagy. These data suggested miR-146a-5p negatively modulated cytokine expression caused by PM2.5 via autophagy process through the target genes of IRAK1 and TRAF6. Our findings raised the concerns of the changes of miR expression profile and following responses caused by PM2.5.
Collapse
Affiliation(s)
- Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Qianyun Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Lu Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
7
|
Fan Y, Yang C, Zhou J, Cheng X, Dong Y, Wang Q, Wang Z. Regulatory effect of glutathione on treg/Th17 cell balance in allergic rhinitis patients through inhibiting intracellular autophagy. Immunopharmacol Immunotoxicol 2020; 43:58-67. [PMID: 33285073 DOI: 10.1080/08923973.2020.1850762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Glutathione is a potential therapy for systemic lupus erythematosus, but its role in allergic rhinitis (AR) has not been determined. This report probed into the actions of glutathione in AR, so as to supplement evidence for a therapeutical countermeasure for AR. METHODS In this study, peripheral blood mononuclear cells (PBMCs) of patients were extracted and processed with glutathione. PBMCs and nasal mucosa tissues were collected from AR mouse models treated with or without glutathione. The proportions of Th17/Treg cell markers and autophagy-related molecules in the nasal mucosa, PBMCs or Th17/Treg cells were assessed by quantitative real-time polymerase chain reaction (qRT-PCR), Western blot (WB) or flow cytometry analysis, and serum contents of related factors were analyzed by enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was applied to observe the thickness of mouse mucosa. RESULTS IL-17A, RORγt, Beclin1 and LC3-II/LC3-I levels were increased in AR patients, while Foxp3 and P62 were decreased. The serum contents of IL-17A and eosinophil cationic protein (ECP) in AR patients were elevated, but IL-10 level was reduced. In PBMCs of AR patients, the levels of IL-17A and LC3-II were increased, and the levels of Foxp3 and P62 were decreased, while these changes could be reversed by glutathione. In AR mouse models, glutathione could balance Th17/Treg cells, reduce autophagy, correct the levels of related cytokines in mouse serum, and shrunk mucosa thickness. CONCLUSION Glutathione could rescue the imbalance of Treg/Th17 cells by suppressing intracellular autophagy, which might be beneficial to the treatment of AR patients.
Collapse
Affiliation(s)
- Yuqin Fan
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenchen Yang
- Department of Nursing, Wuxi Taihu University, Wuxi, Jiangsu, China
| | - Jieyu Zhou
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Cheng
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Dong
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Wang
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhentao Wang
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Wu Y, Li W, Hu Y, Liu Y, Sun X. Suppression of sirtuin 1 alleviates airway inflammation through mTOR‑mediated autophagy. Mol Med Rep 2020; 22:2219-2226. [PMID: 32705226 PMCID: PMC7411491 DOI: 10.3892/mmr.2020.11338] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Sirtuin 1 (SIRT1) is involved in the pathogenesis of allergic asthma. This study aimed to investigate whether EX-527, a specific SIRT1 inhibitor, exerted suppressive effects on allergic airway inflammation in mice submitted to ovalbumin (OVA) inhalation. In addition, this study assessed whether such a protective role was mediated by autophagy suppression though mammalian target of rapamycin (mTOR) activation. Female C57BL/6 mice were sensitized to OVA and EX-527 (10 mg/kg) was administered prior to OVA challenge. The study found that EX-527 reversed OVA-induced airway inflammation, and reduced OVA-induced increases in inflammatory cytokine expression, and total cell and eosinophil counts in bronchoalveolar lavage fluid. In addition, EX-527 enhanced mTOR activation, thereby suppressing autophagy in allergic mice. To assess whether EX-527 inhibited airway inflammation in asthma through the mTOR-mediated autophagy pathway, rapamycin was administered to mice treated with EX-527 after OVA sensitization. All effects induced by EX-527, including increased phosphorylated-mTOR and decreased autophagy, were abrogated by rapamycin treatment. Taken together, the present findings indicated that EX-527 may inhibit allergic airway inflammation by suppressing autophagy, an effect mediated by mTOR activation in allergic mice.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yifan Hu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiuzhen Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
9
|
MTOR-Mediated Autophagy Is Involved in the Protective Effect of Ketamine on Allergic Airway Inflammation. J Immunol Res 2019; 2019:5879714. [PMID: 30729138 PMCID: PMC6343142 DOI: 10.1155/2019/5879714] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/29/2018] [Accepted: 11/11/2018] [Indexed: 12/19/2022] Open
Abstract
Unresolved inflammation underpins the pathogenesis of allergic airway diseases, such as asthma. Ketamine, accepted as a promising therapy for resistant asthma, has been demonstrated to attenuate allergic airway inflammation. However, the anti-inflammatory mechanism by ketamine in this setting is largely unknown. We aimed to investigate whether autophagy was involved in the protective effect of ketamine on allergic airway inflammation. Female C57BL/6 mice were sensitized to ovalbumin (OVA) and treated with ketamine at 25, 50, or 100 mg/kg prior to OVA challenge. In this model, the pulmonary morphological findings and airway inflammation were significantly inhibited at 50 mg/kg but not at 25 or 100 mg/kg. Moreover, 50 mg/kg ketamine abrogated the increased concentrations of inflammatory cytokines in bronchoalveolar lavage fluid (BALF) of allergic mice, as well as activated the expression of phosphorylated mammalian target of rapamycin (p-MTOR) and inhibited autophagy in allergic mice. To confirm whether the effect of 50 mg/kg ketamine on asthma was mediated by inhibiting autophagy, rapamycin was administered to mice sensitized to OVA and exposed to 50 mg/kg ketamine. All of the effect of 50 mg/kg ketamine was reversed by rapamycin treatment, including increased p-MTOR and decreased autophagy. Taken together, the present study demonstrates that 50 mg/kg ketamine inhibits allergic airway inflammation by suppressed autophagy, and this effect is mediated by the activation of MTOR in the lungs of allergic mice.
Collapse
|
10
|
Wang X, Gao Y, Yang Q, Fang X, Li Z. Pingchuanning decoction attenuates airway inflammation by suppressing autophagy via phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway in rat models of asthma. J Cell Biochem 2018; 120:3833-3844. [PMID: 30260006 DOI: 10.1002/jcb.27665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/21/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pingchuanning decoction is a well-known traditional Chinese medicine for the treatment of airway inflammatory diseases, including asthma. However, the potential mechanism by which Pingchuanning decoction contributes to the amelioration of airway inflammation remains unknown. METHODS A rat model of asthma was well established by inducing ovalbumin. Lipopolysaccharide-stimulated rat tracheal epithelial (RTE) cells were used as cellular model. Lung histopathology and goblet cell hyperplasia were assessed by hematoxylin-eosin (HE) and periodic acid Schiff staining, respectively. Total inflammatory cells count and RTE cell apoptosis were analyzed by flow cytometry. The autophagic activities were evaluated by immunohistochemical and immunofluorescence analysis and Western blot analysis of autophagy-related proteins. We also detected the effects of Pingchuanning decoction on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) and high-mobility group box 1 (HMGB1)-mediated toll-like receptor 4 (TLR4)/NF-κB pathways-related proteins and inflammatory cytokines using the Western blot analysis and enzyme-linked immunosorbent assay. RESULTS Pingchuanning decoction effectively attenuated pulmonary pathology and autophagy. Treatment with Pingchuanning decoction activated PI3K/Akt/mTOR pathway and inhibited HMGB1/TLR4/NF-κB pathway, which could be overturned by LY294002, a PI3K antagonist, or rapamycin (Rapa), an autophagy inducer. CONCLUSION Pingchuanning decoction exerted a therapeutic effect on asthma by inhibiting autophagy via PI3K/Akt /mTOR signaling pathway.
Collapse
Affiliation(s)
- Xinheng Wang
- Graduate School, Anhui University of Traditional Chinese medicine, Hefei, Anhui, China
| | - Yating Gao
- Graduate School, Anhui University of Traditional Chinese medicine, Hefei, Anhui, China
| | - Qinjun Yang
- Graduate School, Anhui University of Traditional Chinese medicine, Hefei, Anhui, China
| | - Xiangming Fang
- Library of Anhui University of Traditional Chinese Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Zegeng Li
- Institute of Traditional Chinese Medicine of Respiratory Disease Prevention, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
11
|
Zhu C, Xia L, Li F, Zhou L, Weng Q, Li Z, Wu Y, Mao Y, Zhang C, Wu Y, Li M, Ying S, Chen Z, Shen H, Li W. mTOR complexes differentially orchestrates eosinophil development in allergy. Sci Rep 2018; 8:6883. [PMID: 29720621 PMCID: PMC5932055 DOI: 10.1038/s41598-018-25358-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 03/07/2018] [Indexed: 12/29/2022] Open
Abstract
Eosinophil infiltration is considered a hallmark in allergic airway inflammation, and the blockade of eosinophil differentiation may be an effective approach for treating eosinophil-related disorders. Mammalian target of rapamycin (mTOR) is a vital modulator in cell growth control and related diseases, and we have recently demonstrated that rapamycin can suppress eosinophil differentiation in allergic airway inflammation. Considering its critical role in haematopoiesis, we further investigated the role of mTOR in eosinophil differentiation in the context of asthmatic pathogenesis. Intriguingly, the inhibition of mTOR, either by genetic deletion or by another pharmacological inhibitor torin-1, accelerated the eosinophil development in the presence of IL-5. However, this was not observed to have any considerable effect on eosinophil apoptosis. The effect of mTOR in eosinophil differentiation was mediated by Erk signalling. Moreover, myeloid specific knockout of mTOR or Rheb further augmented allergic airway inflammation in mice after allergen exposure. Ablation of mTOR in myeloid cells also resulted in an increased number of eosinophil lineage-committed progenitors (Eops) in allergic mice. Collectively, our data uncovered the differential effects of mTOR in the regulation of eosinophil development, likely due to the distinct functions of mTOR complex 1 or 2, which thus exerts a pivotal implication in eosinophil-associated diseases.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Lixia Xia
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Fei Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Lingren Zhou
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Qingyu Weng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Zhouyang Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Yinfang Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Yuanyuan Mao
- Department of Respiratory Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Chao Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Yanping Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Miao Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.,Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Zhihua Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
12
|
Xia F, Deng C, Jiang Y, Qu Y, Deng J, Cai Z, Ding Y, Guo Z, Wang J. IL4 (interleukin 4) induces autophagy in B cells leading to exacerbated asthma. Autophagy 2018; 14:450-464. [PMID: 29297752 PMCID: PMC5915013 DOI: 10.1080/15548627.2017.1421884] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022] Open
Abstract
Allergic asthma is a common airway inflammatory disease in which B cells play important roles through IgE production and antigen presentation. SNP (single nucleotide polymorphism) analysis showed that Atg (autophagy-related) allele mutations are involved in asthma. It has been demonstrated that macroautophagy/autophagy is essential for B cell survival, plasma cell differentiation and immunological memory maintenance. However, whether B cell autophagy participates in asthma pathogenesis remains to be investigated. In this report, we found that autophagy was enhanced in pulmonary B cells from asthma-prone mice. Autophagy deficiency in B cells led to attenuated immunopathological symptoms in asthma-prone mice. Further investigation showed that IL4 (interleukin 4), a key effector Th2 cytokine in allergic asthma, was critical for autophagy induction in B cells both in vivo and in vitro, which further sustained B cell survival and enhanced antigen presentation by B cells. Moreover, IL4-induced autophagy depended on JAK signaling via an MTOR-independent, PtdIns3K-dependent pathway. Together, our data indicate that B cell autophagy aggravates experimental asthma through multiple mechanisms.
Collapse
Affiliation(s)
- Fucan Xia
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Changwen Deng
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yanyan Jiang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yulan Qu
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jiewen Deng
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Zhijian Cai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Ding
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Jianli Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Sheu CC, Tsai MJ, Chen FW, Chang KF, Chang WA, Chong IW, Kuo PL, Hsu YL. Identification of novel genetic regulations associated with airway epithelial homeostasis using next-generation sequencing data and bioinformatics approaches. Oncotarget 2017; 8:82674-82688. [PMID: 29137293 PMCID: PMC5669919 DOI: 10.18632/oncotarget.19752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/19/2017] [Indexed: 12/28/2022] Open
Abstract
Airway epithelial cells play important roles in airway remodeling. Understanding gene regulations in airway epithelial homeostasis may provide new insights into pathogenesis and treatment of asthma. This study aimed to combine gene expression (GE) microarray, next generation sequencing (NGS), and bioinformatics to explore genetic regulations associated with airway epithelial homeostasis. We analyzed expression profiles of mRNAs (GE microarray) and microRNAs (NGS) in normal and asthmatic bronchial epithelial cells, and identified 9 genes with potential microRNA-mRNA interactions. Of these 9 dysregulated genes, downregulation of MEF2C and MDGA1 were validated in a representative microarray (GSE43696) from the gene expression omnibus (GEO) database. Our findings suggested that upregulated mir-203a may repress MEF2C, a transcription factor, leading to decreased cellular proliferation. In addition, upregulated mir-3065-3p may repress MDGA1, a cell membrane anchor protein, resulting in suppression of cell-cell adhesion. We also found that KCNJ2, a potassium channel, was downregulated in severe asthma and may promote epithelial cell apoptosis. We proposed that aberrant regulations of mir-203a-MEF2C and mir-3065-3p-MDGA1, as well as downregulation of KCNJ2, play important roles in airway epithelial homeostasis in asthma. These findings provide new perspectives on diagnostic or therapeutic strategies targeting bronchial epithelium for asthma. The approach in this study also provides a new aspect of studying asthma.
Collapse
Affiliation(s)
- Chau-Chyun Sheu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Ju Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Feng-Wei Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|