1
|
He X, Han X, Yang Y, Li F, Li D, Luo L, Liu H, Chen G, Chen X, Liu G. Non-allergenic mixed T cell epitope peptides for preventing Scy p 9 allergic reactions. Food Chem Toxicol 2025; 202:115512. [PMID: 40350021 DOI: 10.1016/j.fct.2025.115512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/16/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
Filamin c is an allergen with strong IgE-binding activity of Scylla paramamosain (named Scy p 9). In this study, the T cell epitopes of Scy p 9 were identified using the CD4+T lymphocyte proliferation assay in the mononuclear cells of the spleen allergic mice. Nine of the thirteen T cell epitope peptides that have been found have the ability to trigger the production of the Th1 cytokine (IFN-γ) and TGF-β. Meanwhile, the findings of the inhibitory Dot blot and basophil activation test of crab allergy patients showed that the mixed nine T cell epitope peptides lacked IgE-binding activity and was unable to stimulate the expression of CD63 and CD203c on the surface of basophils. Non-allergenic mixed T cell epitope peptides (NAMTEP) demonstrate the potential for preventing Scy p 9 allergies. According to the evaluation of the preventive effect of Scy p 9 allergy mouse model, mice challenged with oral administration of Scy p 9 after early injection of NAMTEP did not show any allergic symptoms. NAMTEP inhibited IgE generation and Th2 immune response, preventing Scy p 9 allergy reactions in mice. These results would provide a theoretical foundation for the specific prevention of allergens in crustacean aquatic products.
Collapse
Affiliation(s)
- Xinrong He
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian, 361021, China; The First Affiliated Hospital to Xiamen University, Xiamen, Fujian, 361000, China
| | - Xinyu Han
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian, 361021, China
| | - Yang Yang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian, 361021, China; College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361000, China
| | - Fajie Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian, 361021, China
| | - Dongxiao Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian, 361021, China
| | - Lianzhong Luo
- Engineering Research Center of Marine Biopharmaceutical Resource Fujian Province University, Xiamen Medical College, Xiamen, Fujian, 361023, China
| | - Hong Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian, 361021, China
| | - Guixia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian, 361003, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian, 361021, China
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian, 361021, China; College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian, 361100, China.
| |
Collapse
|
2
|
Han XY, Huan F, Yang SY, He XR, Lai D, Liu QM, Tsui SKW, Xiao AF, Rao ST, Liu GM. Deciphering the Cross-Reactivity of Tropomyosin across Three Molluscan Species: Insights into the Role of Conserved T-Cell and B-Cell Epitopes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9370-9381. [PMID: 40183940 DOI: 10.1021/acs.jafc.5c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Haliotis discus hannai tropomyosin (HTM), Alectryonella plicatula tropomyosin (ATM), and Mimachlamys nobilis tropomyosin (MTM) were reported as significant seafood allergens capable of eliciting severe allergic reactions. However, studies of cross-reactivity and epitope mapping among them are notably limited. This study discovered their cross-reactivity property through inhibition of IgG/IgE binding capacity and promotion of specific CD4+T-cell proliferation. For T-cell epitopes, 3, 4, and 3 epitopes were identified from the splenocytes of mice immunized with HTM, ATM, and MTM, respectively. In terms of B-cell epitopes, a combination of bioinformatics techniques and serological assays identified 4, 3, and 4 epitopes for HTM, ATM, and MTM, respectively. Sequence logo analysis revealed 2 conserved T-cell epitopes and 5 conserved B-cell epitopes, which may be critical for the observed cross-reactivity property. In conclusion, these findings provide crucial molecular evidence that could enhance the prevention of allergic reactions to aquatic mollusks.
Collapse
Affiliation(s)
- Xin-Yu Han
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Fei Huan
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Sheng-Yan Yang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Xin-Rong He
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Dong Lai
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian 361021, China
| | - Qing-Mei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - An-Feng Xiao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Shi-Tao Rao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China
| |
Collapse
|
3
|
Huan F, Gao S, Gu Y, Ni L, Wu M, Li Y, Liu M, Yang Y, Xiao A, Liu G. Molecular Allergology: Epitope Discovery and Its Application for Allergen-Specific Immunotherapy of Food Allergy. Clin Rev Allergy Immunol 2025; 68:37. [PMID: 40198416 DOI: 10.1007/s12016-025-09052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
The prevalence of food allergy continues to rise, posing a significant burden on health and quality of life. Research on antigenic epitope identification and hypoallergenic agent design is advancing allergen-specific immunotherapy (AIT). This review focuses on food allergens from the perspective of molecular allergology, provides an overview of integration of bioinformatics and experimental validation for epitope identification, highlights hypoallergenic agents designed based on epitope information, and offers a valuable guidance to the application of hypoallergenic agents in AIT. With the development of molecular allergology, the characterization of the amino acid sequence and structure of the allergen at the molecular level facilitates T-/B-cell epitope identification. Alignment of the identified epitopes in food allergens revealed that the amino acid sequence of T-/B-cell epitopes barely overlapped, providing crucial data to design allergen molecules as a promising form for treating (FA) food allergy. Manipulating antigenic epitopes can reduce the allergenicity of allergens to obtain hypoallergenic agents, thereby minimizing the severe side effects associated with AIT. Currently, hypoallergenic agents are mainly developed through synthetic epitope peptides, genetic engineering, or food processing methods based on the identified epitope. New strategies such as DNA vaccines, signaling molecules coupling, and nanoparticles are emerging to improve efficiency. Although significant progress has been made in designing hypoallergenic agents for AIT, the challenge in clinical translation is to determine the appropriate dose and duration of treatment to induce long-term immune tolerance.
Collapse
Affiliation(s)
- Fei Huan
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Shuai Gao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Yi Gu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Lingna Ni
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Mingxuan Wu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Yongpeng Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Meng Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Food Nutrition Safety and Advanced Processing, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, 361100, Fujian, China
| | - Yang Yang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
- College of Environment and Public Health, Xiamen Huaxia University, 288 Tianma Road, Xiamen, 361024, Fujian, China
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China.
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Food Nutrition Safety and Advanced Processing, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, 361100, Fujian, China.
| |
Collapse
|
4
|
Ni LN, Huan F, Gao S, Liu M, Wu MX, Gu Y, Lai D, Liu QM, Liu GM. Antigenic epitopes and cross-reactivity analysis of tropomyosin from Oratosquilla oratorio. Food Funct 2024; 15:12180-12192. [PMID: 39587923 DOI: 10.1039/d4fo04792c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Tropomyosin (TM) has been determined as the major allergen in Oratosquilla oratoria. However, little information is available about its antigenic epitopes and cross-reactivity. In this study, recombinant TM was obtained through genetic engineering and its IgG-/IgE-binding activity was similar to native TM. Subsequently, four T-cell epitopes were identified by using bioinformatics technology combined with CD4+ T-cell proliferation assay, and seven B-cell epitopes were identified by bioinformatics technology combined with serological assay. Moreover, dot blot analysis showed that TM had cross-reactivity among O. oratoria and other shellfish by using IgE polycolonal antibody from sera of shrimp-sensitive individuals or O. oratoria TM-immunized mice. Interestingly, three T-cell epitopes (AA4-24, AA194-212, and AA221-243) and four B-cell epitopes (AA85-100, AA121-138, AA209-233, and AA242-259) of TM in O. oratoria were conserved between O. oratoria and other shellfish, which may be the main reason for the cross-reactivity between them. In summary, these findings could serve for the diagnosis and prevention of shrimp allergy.
Collapse
Affiliation(s)
- Ling-Na Ni
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Fei Huan
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Shuai Gao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Meng Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361102, China
| | - Ming-Xuan Wu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Yi Gu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Dong Lai
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian 361021, China
| | - Qing-Mei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361102, China
| |
Collapse
|
5
|
Su BB, Blackmon W, Xu C, Holt C, Boateng N, Wang D, Szafron V, Anagnostou A, Anvari S, Davis CM. Diagnosis and management of shrimp allergy. FRONTIERS IN ALLERGY 2024; 5:1456999. [PMID: 39493746 PMCID: PMC11527777 DOI: 10.3389/falgy.2024.1456999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/13/2024] [Indexed: 11/05/2024] Open
Abstract
Shrimp allergy, the most common food allergy in the United States, affects up to 2% of the population. Its etiology is multi-factorial with the combination of genetic predisposition and environmental exposures. This review summarizes the latest diagnosis and management strategies for shrimp allergy. Currently, the double-blind, placebo-controlled food challenge is the gold standard for diagnosis. Moreover, mainstream and experimental management strategies include food allergen avoidance, the FDA-approved omalizumab, and oral immunotherapy. Herein, we emphasize the urgent need to develop more effective diagnostic tools and therapies for shrimp allergy.
Collapse
Affiliation(s)
- Bin Brenda Su
- Immunology, Allergy, and Retrovirology Division of the Department of Pediatrics at Baylor College of Medicine, William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
| | - Warren Blackmon
- Immunology, Allergy, and Retrovirology Division of the Department of Pediatrics at Baylor College of Medicine, William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
| | - Chun Xu
- Department of Health and Biomedical Sciences at the University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, United States
| | - Christopher Holt
- Immunology, Allergy, and Retrovirology Division of the Department of Pediatrics at Baylor College of Medicine, William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
| | - Nathaniel Boateng
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Darren Wang
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Vibha Szafron
- Immunology, Allergy, and Retrovirology Division of the Department of Pediatrics at Baylor College of Medicine, William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
| | - Aikaterini Anagnostou
- Immunology, Allergy, and Retrovirology Division of the Department of Pediatrics at Baylor College of Medicine, William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
| | - Sara Anvari
- Immunology, Allergy, and Retrovirology Division of the Department of Pediatrics at Baylor College of Medicine, William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
| | - Carla M. Davis
- Immunology, Allergy, and Retrovirology Division of the Department of Pediatrics at Baylor College of Medicine, William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
| |
Collapse
|
6
|
Huan F, Gao S, Ni LN, Wu MX, Gu Y, Yun X, Liu M, Lai D, Xiao AF, Liu GM. Development of Hypoallergenic Derivatives of Cra a 1 with B Cell Epitope Deletion and T Cell Epitope Retention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19494-19504. [PMID: 39168117 DOI: 10.1021/acs.jafc.4c04475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Tropomyosin was reported as an important allergen in Crassostrea angulata and designated as Cra a 1. The localization of the T cell epitopes and the reduction of the immunoreactivity of Cra a 1 are still lacking. In this study, four T cell epitopes were identified by using wild-type Cra a 1 (wtCra a 1)-immunized mouse splenocytes cultured with synthetic peptides. The immunoreactivity was maintained after chemical denaturation treatment, indicating that the linear epitope is an immunodominant epitope of wtCra a 1. Furthermore, the hypoallergenic derivative (mCra a 1) was developed by the deletion of linear B cell epitopes and retention of T cell epitopes. mCra a 1 could stimulate CD4+T cell proliferation and upregulate interleukin-10 secretion. Overall, basophil activation by mCra a 1 was low, but its ability to induce T cell proliferation was retained, suggesting that mCra a 1 may serve as a viable candidate for treating oyster allergy.
Collapse
Affiliation(s)
- Fei Huan
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Shuai Gao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Ling-Na Ni
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Ming-Xuan Wu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Yi Gu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Xiao Yun
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Meng Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China
| | - Dong Lai
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian 361021, China
| | - An-Feng Xiao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China
| |
Collapse
|
7
|
Tong WS, Li S, Leung NYH, Wong WT, Leung TF, Leung PSC, Chu KH, Wai CYY. Shrimp Extract Exacerbates Allergic Immune Responses in Mice: Implications on Clinical Diagnosis of Shellfish Allergy. Clin Rev Allergy Immunol 2024; 66:250-259. [PMID: 38775874 PMCID: PMC11193834 DOI: 10.1007/s12016-024-08994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2024] [Indexed: 06/23/2024]
Abstract
Tropomyosin has been identified as the major cross-reactive shellfish allergen, but recent studies showed the presence of other clinically relevant allergens. This study aims at determining the allergic immune responses of mice sensitized with raw and boiled shrimp extracts in comparison to recombinant tropomyosin (rTM). Female Balb/c mice were intragastrically sensitized and challenged with raw, boiled shrimp or rTM. Systemic, cellular and humoral allergic responses were compared, while allergenicity of the extracts was also compared by skin prick test (SPT) and immunoblot on shrimp allergic subjects. We showed that rTM and shrimp extracts induced IgE- and Th2-mediated allergic responses in mice, distinguished by remarkable intestinal inflammation in small intestine across all regimens. Notably, boiled shrimp extract exhibited the highest sensitization rate (73.7% of mice developed positive TM-specific IgE response) when compared with raw extract (47.8%) and rTM (34.8%). Mice sensitized with boiled extract manifested the highest allergen-specific IgE and Th2 cytokine responses than the others. Immunoblot results indicated that tropomyosin remained the major allergen in extract-based sensitization and had stronger allergenicity in a heat-treated form comparing to untreated TM, which was in line with the SPT results that boiled extract induced larger wheal size in patients. Hemocyanin and glycogen phosphorylase were also identified as minor allergens associated with manifestation of shrimp allergy. This study shows that boiled extract enhanced sensitization and Th2 responses in agreement with the higher allergenicity of heat-treated TM. This study thus presents three shrimp allergy murine models suitable for mechanistic and intervention studies, and in vivo evidence implies higher effectiveness of boiled extract for the clinical diagnosis of shellfish allergy.
Collapse
Affiliation(s)
- Wai Sze Tong
- School of Life Sciences, The Chinese University of Hong Kong, HKSAR, China
| | - Shanshan Li
- School of Life Sciences, The Chinese University of Hong Kong, HKSAR, China
| | - Nicki Y H Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, HKSAR, China
| | - Wing Tak Wong
- School of Life Sciences, The Chinese University of Hong Kong, HKSAR, China
| | - Ting Fan Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, HKSAR, China
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, HKSAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Christine Y Y Wai
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, HKSAR, China.
- Hong Kong Hub of Paediatric Excellence (HK HOPE), Faculty of Medicine, The Chinese University of Hong Kong, HKSAR, China.
| |
Collapse
|
8
|
Han X, Wang X, Chen X, Liu H, Liu J, Waye MMY, Liu G, Rao S. Intervention Efficacy of Slightly Processed Allergen/Meat in Oral Immunotherapy for Seafood Allergy: A Systematic Review, Meta-Analysis, and Meta-Regression Analysis in Mouse Models and Clinical Patients. Nutrients 2024; 16:667. [PMID: 38474795 PMCID: PMC10934674 DOI: 10.3390/nu16050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Background: Seafood allergy is a significant global health concern that greatly impacts a patient's quality of life. The intervention efficacy of oral immunotherapy (OIT), an emerging intervention strategy, for seafood allergy remains controversial. This study aimed to perform a systematic review and meta-analysis to evaluate the efficacy of slightly processed allergen/meat from fish and crustacea in OIT, both in mouse models and clinical patients. Methods: A comprehensive literature search was performed in four mainstream databases and the EBSCOhost database to identify all relevant case-control and cohort studies. The aim was to elucidate the intervention efficacy, encompassing various processing methods and assessing the efficacy of multiple major allergens in OIT. Results: The meta-analysis included five case-control studies on crustacean allergens in mouse models and 11 cohort studies on meat from fish and crustacea in clinical patients for final quantitative assessments. In mouse models, crustacean allergen substantially decreased the anaphylactic score after OIT treatment (mean difference (MD) = -1.30, p < 0.01). Subgroup analyses with low-level heterogeneities provided more reliable results for crab species (MD = -0.63, p < 0.01, I2 = 0), arginine kinase allergen (MD = -0.83, p < 0.01, I2 = 0), and Maillard reaction processing method (MD = -0.65, p < 0.01, I2 = 29%), respectively. In clinical patients, the main meta-analysis showed that the slightly processed meat significantly increased the incidence rate of oral tolerance (OT, incidence rate ratio (IRR) = 2.90, p < 0.01). Subgroup analyses for fish meat (IRR = 2.79, p < 0.01) and a simple cooking treatment (IRR = 2.36, p = 0.01) also demonstrated a substantial increase in the incidence rate of OT. Sensitivity and meta-regression analyses successfully identified specific studies contributing to heterogeneity in mouse models and clinical patients, although these studies did not impact the overall significant pooled effects. Conclusions: This meta-analysis provides preliminary evidence for the high intervention efficacy of slightly processed allergen/meat from fish and crustacea in OIT, both in mouse models and clinical patients. The Maillard reaction and cooking processing methods may emerge as potentially effective approaches to treating allergen/meat in OIT for clinical patients, offering a promising and specific treatment strategy for seafood allergy. However, these findings should be interpreted cautiously, and further supporting evidence is necessary.
Collapse
Affiliation(s)
- Xinyu Han
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, China; (X.H.); (H.L.); (J.L.)
| | - Xinya Wang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China; (X.W.); (X.C.)
| | - Xiaotong Chen
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China; (X.W.); (X.C.)
| | - Hong Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, China; (X.H.); (H.L.); (J.L.)
| | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, China; (X.H.); (H.L.); (J.L.)
| | - Mary Miu Yee Waye
- The Nethersole School of Nursing, Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China;
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, China; (X.H.); (H.L.); (J.L.)
| | - Shitao Rao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China; (X.W.); (X.C.)
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
9
|
Cheng JH, Li J, Sun DW. In vivo biological analysis of cold plasma on allergenicity reduction of tropomyosin in shrimp. Food Chem 2024; 432:137210. [PMID: 37659333 DOI: 10.1016/j.foodchem.2023.137210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
In vivo biological regulations of the allergenicity of tropomyosin (TM) treated by cold plasma (CP) were investigated by in vivo mouse model. The sensitization models of Balb/c mice were successfully established. CP treatment reduced the allergic symptoms of mice and regulated the Th1/Th2 balance to prevent allergy by activating Treg cells, which was deduced by serum and cytokines analysis. For intestinal flora analysis, allergy occurrence was accompanied by the decreased species abundance and the increased species diversity of intestinal flora. The significant species composition difference between the TM group and the PBS group showed a possible connection between bacterial diversity and allergy. Furthermore, Firmicutes, Bacteroidetes, Parabacteroides, Alloprevotella, Bacteroides, and Lachnospiraceae could relate to allergy occurrence. Intestinal section analysis suggested that allergy occurrence was accompanied by the damaged intestinal structure, and CP treatment could relieve the damage caused by an allergy.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
10
|
Giannetti A, Pession A, Bettini I, Ricci G, Giannì G, Caffarelli C. IgE Mediated Shellfish Allergy in Children-A Review. Nutrients 2023; 15:3112. [PMID: 37513530 PMCID: PMC10386692 DOI: 10.3390/nu15143112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Shellfish is a leading cause of food allergy and anaphylaxis worldwide. Recent advances in molecular characterization have led to a better understanding of the allergen profile. High sequence homology between shellfish species and between shellfish and house dust mites leads to a high serological cross-reactivity, which does not accurately correlate with clinical cross-reactions. Clinical manifestations are immediate and the predominance of perioral symptoms is a typical feature of shellfish allergy. Diagnosis, as for other food allergies, is based on SPTs and specific IgE, while the gold standard is DBPCFC. Cross-reactivity between shellfish is common and therefore, it is mandatory to avoid all shellfish. New immunotherapeutic strategies based on hypoallergens and other innovative approaches represent the new frontiers for desensitization.
Collapse
Affiliation(s)
- Arianna Giannetti
- Paediatrics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.G.); (A.P.)
| | - Andrea Pession
- Paediatrics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.G.); (A.P.)
| | - Irene Bettini
- Paediatrics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.G.); (A.P.)
| | - Giampaolo Ricci
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy;
| | - Giuliana Giannì
- Clinica Pediatrica, Azienda Ospedaliero-Universitaria, Medicine and Surgery Department, Università di Parma, 43126 Parma, Italy;
| | - Carlo Caffarelli
- Clinica Pediatrica, Azienda Ospedaliero-Universitaria, Medicine and Surgery Department, Università di Parma, 43126 Parma, Italy;
| |
Collapse
|
11
|
Huang M, Shao H, Wang Z, Chen H, Li X. Specific and nonspecific nutritional interventions enhance the development of oral tolerance in food allergy. Crit Rev Food Sci Nutr 2023; 64:10303-10318. [PMID: 37313721 DOI: 10.1080/10408398.2023.2222803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The goal of food allergy (FA) prevention and treatment is to induce oral tolerance (OT). Appropriate nutritional interventions are essential to induce OT to food allergens. This review introduces the mechanism of OT and the importance of early nutritional interventions, and then firstly summarizes specific nutritional factors to induce the development of OT of FA, including proteins, vitamins, fatty acids, saccharides and probiotics. The regulatory mechanism mainly induces the development of tolerance by increasing local or systemic protective regulatory T cells (Tregs) to suppress FA, while the gut microbiota may also be changed to maintain intestinal homeostasis. For allergens-specific OT, the disruption to the structure of proteins and epitopes is critical for the induction of tolerance by hydrolyzed and heated proteins. Vitamins (vitamin A, D), fatty acids, saccharides and probiotics as allergens nonspecific OT also induce the development of OT through immunomodulatory effects. This review contributes to our understanding of OT in FA through nutritional interventions. Nutritional interventions play an important role in the induction of OT, and offer promising approaches to reduce allergy risk and alleviate FA. Moreover, due to the importance and diversity of nutrition, it must be the future trend of induction of OT in FA.
Collapse
Affiliation(s)
- Meijia Huang
- School of Food Science and Technology, Nanchang University, Nanchang, P.R. China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P.R. China
| | - Huming Shao
- School of Food Science and Technology, Nanchang University, Nanchang, P.R. China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P.R. China
| | - Zhongliang Wang
- School of Food Science and Technology, Nanchang University, Nanchang, P.R. China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P.R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P.R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, P.R. China
| | - Xin Li
- School of Food Science and Technology, Nanchang University, Nanchang, P.R. China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, P.R. China
| |
Collapse
|
12
|
Giovannini M, Beken B, Buyuktiryaki B, Barni S, Liccioli G, Sarti L, Lodi L, Pontone M, Bartha I, Mori F, Sackesen C, du Toit G, Lopata AL, Muraro A. IgE-Mediated Shellfish Allergy in Children. Nutrients 2023; 15:2714. [PMID: 37375617 DOI: 10.3390/nu15122714] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Shellfish, including various species of mollusks (e.g., mussels, clams, and oysters) and crustaceans (e.g., shrimp, prawn, lobster, and crab), have been a keystone of healthy dietary recommendations due to their valuable protein content. In parallel with their consumption, allergic reactions related to shellfish may be increasing. Adverse reactions to shellfish are classified into different groups: (1) Immunological reactions, including IgE and non-IgE allergic reactions; (2) non-immunological reactions, including toxic reactions and food intolerance. The IgE-mediated reactions occur within about two hours after ingestion of the shellfish and range from urticaria, angioedema, nausea, and vomiting to respiratory signs and symptoms such as bronchospasm, laryngeal oedema, and anaphylaxis. The most common allergenic proteins involved in IgE-mediated allergic reactions to shellfish include tropomyosin, arginine kinase, myosin light chain, sarcoplasmic calcium-binding protein, troponin c, and triosephosphate isomerase. Over the past decades, the knowledge gained on the identification of the molecular features of different shellfish allergens improved the diagnosis and the potential design of allergen immunotherapy for shellfish allergy. Unfortunately, immunotherapeutic studies and some diagnostic tools are still restricted in a research context and need to be validated before being implemented into clinical practice. However, they seem promising for improving management strategies for shellfish allergy. In this review, epidemiology, pathogenesis, clinical features, diagnosis, and management of shellfish allergies in children are presented. The cross-reactivity among different forms of shellfish and immunotherapeutic approaches, including unmodified allergens, hypoallergens, peptide-based, and DNA-based vaccines, are also addressed.
Collapse
Affiliation(s)
- Mattia Giovannini
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Burcin Beken
- Department of Pediatric Allergy & Immunology, School of Medicine, Acibadem University, 34303 Istanbul, Turkey
| | - Betul Buyuktiryaki
- Division of Pediatric Allergy, Department of Pediatrics, School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - Simona Barni
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Giulia Liccioli
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Lucrezia Sarti
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Lorenzo Lodi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
- Immunology Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Matteo Pontone
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Irene Bartha
- Pediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, King's College London, London SE1 9RT, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Francesca Mori
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Cansin Sackesen
- Division of Pediatric Allergy, Department of Pediatrics, School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - George du Toit
- Pediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, King's College London, London SE1 9RT, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London SE5 9NU, UK
| | - Andreas L Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Tropical Futures Institute, James Cook University, Singapore 387380, Singapore
| | - Antonella Muraro
- Food Allergy Referral Centre, Department of Mother and Child Health, University of Padua, 35128 Padua, Italy
| |
Collapse
|
13
|
Kamath SD, Bublin M, Kitamura K, Matsui T, Ito K, Lopata AL. Cross-reactive epitopes and their role in food allergy. J Allergy Clin Immunol 2023; 151:1178-1190. [PMID: 36932025 DOI: 10.1016/j.jaci.2022.12.827] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 03/17/2023]
Abstract
Allergenic cross-reactivity among food allergens complicates the diagnosis and management of food allergy. This can result in many patients being sensitized (having allergen-specific IgE) to foods without exhibiting clinical reactivity. Some food groups such as shellfish, fish, tree nuts, and peanuts have very high rates of cross-reactivity. In contrast, relatively low rates are noted for grains and milk, whereas many other food families have variable rates of cross-reactivity or are not well studied. Although classical cross-reactive carbohydrate determinants are clinically not relevant, α-Gal in red meat through tick bites can lead to severe reactions. Multiple sensitizations to tree nuts complicate the diagnosis and management of patients allergic to peanut and tree nut. This review discusses cross-reactive allergens and cross-reactive carbohydrate determinants in the major food groups, and where available, describes their B-cell and T-cell epitopes. The clinical relevance of these cross-reactive B-cell and T-cell epitopes is highlighted and their possible impact on allergen-specific immunotherapy for food allergy is discussed.
Collapse
Affiliation(s)
- Sandip D Kamath
- Division of Medical Biotechnology, Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia.
| | - Merima Bublin
- Division of Medical Biotechnology, Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Katsumasa Kitamura
- Department of Allergy, Allergy and Immunology Center, Aichi Children's Health and Medical CenterAichi, Japan
| | - Teruaki Matsui
- Department of Allergy, Allergy and Immunology Center, Aichi Children's Health and Medical CenterAichi, Japan
| | - Komei Ito
- Department of Allergy, Allergy and Immunology Center, Aichi Children's Health and Medical CenterAichi, Japan; Comprehensive Pediatric Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Andreas L Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia; Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia; Tropical Futures Institute, James Cook University, Singapore; Centre for Food and Allergy Research, Murdoch Childrens Research Institute, Melbourne, Australia.
| |
Collapse
|
14
|
Marhaeny HD, Pratama YA, Rohmah L, Kasatu SM, Miatmoko A, Khotib J. Development of gastro-food allergy model in shrimp allergen extract-induced sensitized mice promotes mast cell degranulation. J Public Health Afr 2023. [PMID: 37492545 PMCID: PMC10365647 DOI: 10.4081/jphia.2023.2512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Background: Food allergies have become more common in the last decade. Shrimp is one of the most dominant food allergy triggers in Asian countries, including Indonesia. After ingesting allergens, B cells will produce allergen-specific Immunoglobin E (IgE). In the sensitization period, repeated allergen exposure promotes Mast Cell (MC) degranulation in intestinal tissue and releases several inflammatory mediators, thereby causing hypersensitivity reactions. Shrimp Allergen Extract (SAE) is an immunotherapy and diagnostic agent currently being developed in Indonesia. In this study, we investigated the effect of SAE administration on eliciting an MC immunological response.
Methods: Mice were divided into a non-sensitized and sensitized group. The non-sensitized group only received 1 mg of alum (i.p), whereas the sensitized group received 1 mg of alum and 100 μg of SAE on days 0, 7, and 14. Then, both groups were challenged with 400 μg SAE (p.o) on days 21, 22, and 23 following systemic allergic symptom observation.
Results: We showed that SAE was able to increase systemic allergic symptoms significantly in the sensitized mice through repeated challenge (1.33±0.21; 1.83±0.17; and 2.00±0.00), compared to non-sensitized mice (0.17±0.17). Moreover, histopathological analysis showed that the SAE administration causes an increase of MC degranulation in the ileum tissue of the sensitized mice (44.43%±0.01), compared to non-sensitized mice (35.45%±0.01)
Conclusions: This study found that SAE could induce allergic reactions in mice by influencing critical effector cells, MCs.
Collapse
|
15
|
Özdemir PG, Sato S, Yanagida N, Ebisawa M. Oral Immunotherapy in Food Allergy: Where Are We Now? ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:125-144. [PMID: 37021501 PMCID: PMC10079524 DOI: 10.4168/aair.2023.15.2.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
Food allergy (FA) has become more prevalent and problematic in the last 2 decades, and it poses important individual, social, and economic burdens. Besides treating reactions induced by accidental exposure and periodic evaluation for acquiring natural tolerance, the primary management approach is still allergen avoidance as a global standard. However, an active therapeutic approach that can raise the reaction threshold or accelerate tolerance is needed. This review aimed to provide an overview and the latest evidence of oral immunotherapy (OIT), which has recently been used in the active treatment of FA. FA immunotherapy, particularly OIT, is gaining considerable interest, and substantial effort has been made to integrate this active treatment into clinical practice. Consequently, growing evidence has been obtained regarding the efficacy and safety of OIT, particularly for allergens such as peanuts, eggs, and milk. However, several issues need to be addressed regarding the availability, safety, and long-term effects of this intervention. In this review, we summarize currently available information regarding tolerance-inducing immune mechanisms of OIT, data on efficacy and safety, gaps in current evidence, and ongoing research to develop new therapeutic molecules in order to enhance safety.
Collapse
Affiliation(s)
- Pınar Gökmirza Özdemir
- Department of Pediatric Allergy and Immunology, Trakya University School of Medicine, Edirne, Turkey
- Department of Allergy, Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Sakura Sato
- Department of Allergy, Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Noriyuki Yanagida
- Department of Allergy, Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Motohiro Ebisawa
- Department of Allergy, Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan.
| |
Collapse
|
16
|
Xu L, Zhang XM, Wen YQ, Zhao JL, Xu TC, Yong L, Lin H, Zhang HW, Li ZX. Comparison of tropomyosin released peptide and epitope mapping after in vitro digestion from fish (Larimichthys crocea), shrimp (Litopenaeus vannamei) and clam (Ruditapes philippinarum) through SWATH-MS based proteomics. Food Chem 2023; 403:134314. [DOI: 10.1016/j.foodchem.2022.134314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
|
17
|
Zhang Z, Li XM, Wang H, Lin H, Xiao H, Li Z. Seafood allergy: Allergen, epitope mapping and immunotherapy strategy. Crit Rev Food Sci Nutr 2023; 63:1314-1338. [PMID: 36825451 DOI: 10.1080/10408398.2023.2181755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Seafoods are fashionable delicacies with high nutritional values and culinary properties, while seafood belongs to worldwide common food allergens. In recent years, many seafood allergens have been identified, while the diversity of various seafood species give a great challenge in identifying and characterizing seafood allergens, mapping IgE-binding epitopes and allergen immunotherapy development, which are critical for allergy diagnostics and immunotherapy treatments. This paper reviewed the recent progress on seafood (fish, crustacean, and mollusk) allergens, IgE-binding epitopes and allergen immunotherapy for seafood allergy. In recent years, many newly identified seafood allergens were reported, this work concluded the current situation of seafood allergen identification and designation by the World Health Organization (WHO)/International Union of Immunological Societies (IUIS) Allergen Nomenclature Sub-Committee. Moreover, this review represented the recent advances in identifying the IgE-binding epitopes of seafood allergens, which were helpful to the diagnosis, prevention and treatment for seafood allergy. Furthermore, the allergen immunotherapy could alleviate seafood allergy and provide promising approaches for seafood allergy treatment. This review represents the recent advances and future outlook on seafood allergen identification, IgE-binding epitope mapping and allergen immunotherapy strategies for seafood allergy prevention and treatment.
Collapse
Affiliation(s)
- Ziye Zhang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology and Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Hao Wang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Zhenxing Li
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
18
|
Huang M, Yang F, Wu Y, Meng X, Shi L, Chen H, Li X. Identification of peptides sequence and conformation contributed to potential allergenicity of main allergens in yogurts. Front Nutr 2023; 9:1038466. [PMID: 36687717 PMCID: PMC9849743 DOI: 10.3389/fnut.2022.1038466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 01/07/2023] Open
Abstract
Yogurts provide a good source of nutrition and may induce tolerance in people with cow's milk allergy (CMA). This study aimed to investigate the IgE-binding capacity of main allergens in the different yogurts which provide a reference for people with a high risk of CMA, and analyze the epitopes of major allergen peptides in yogurt. We assessed the degradation and the allergenic properties of major allergens in six commercial yogurts and fresh milk. The degradation of major allergens was analyzed by SDS-PAGE and RP-HPLC. Western blot and ELISA experiments detected allergenic characteristics by using specific sera. The results showed that β-lactoglobulin (Bos d 5) and α-lactalbumin (Bos d 4) were obviously degraded in yogurts but caseins were still present in abundance, which indicated that the proteases in yogurts were specific to whey proteins. IgE and IgG binding ability of major allergens were obviously reduced in yogurts, especially GuMi yogurt. In addition, 17 peptides of major allergens in GuMi yogurt were identified by LC-MS/MS and most of them were located in the interior of the spatial structure of proteins. Among them, 8 peptides had specific biological functions for health benefits, such as antibacterial, antioxidant, and ACE-inhibitory. We also found that 6 and 14 IgE epitopes of Bos d 5 and caseins were destroyed in GuMi yogurt, which could lead to the reduction of IgE-binding capacity. Meanwhile, peptides [Bos d 5 (AA15-40), Bos d 9 (AA120-151, AA125-151)] also preserved T cell epitopes, which might also induce the development of oral tolerance. Therefore, this study suggested that the sequence and conformation of peptides in yogurts contributed to hypoallergenicity.
Collapse
Affiliation(s)
- Meijia Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Fan Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Linbo Shi
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,School of Food Science and Technology, Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China,*Correspondence: Xin Li,
| |
Collapse
|
19
|
Du JY, Lai HY, Hsiao YW, Chi JY, Wang JM. Pentraxin 3 Facilitates Shrimp-Allergic Responses in IgE-Activated Mast Cells. J Immunol Res 2022; 2022:8953235. [PMID: 36530573 PMCID: PMC9750785 DOI: 10.1155/2022/8953235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Since food avoidance is currently the only way to prevent allergic reactions to shrimp, a better understanding of molecular events in the induction and progression of allergy, including food allergy, is needed for developing strategies to inhibit allergic responses. Pentraxin 3 (PTX3) is rapidly produced directly from inflammatory or damaged tissues and is involved in acute immunoinflammatory responses. However, the role of PTX3 in the development of immediate IgE-mediated shrimp allergy remains unknown. METHODS Wild-type BALB/c mice were immunized intraperitoneally and were challenged with shrimp extract. Serum IgE and PTX3 levels were analyzed. RBL-2H3 cells were stimulated with either dinitrophenyl (DNP) or serum of shrimp-allergic mice, and markers of degranulation, proinflammatory mediators, and phosphorylation of signal proteins were analyzed. We further examined the effect of PTX3 in shrimp extract-induced allergic responses in vitro and in vivo. RESULTS Mice with shrimp allergy had increased PTX3 levels in the serum and small intestine compared with healthy mice. PTX3 augmented degranulation, the production of proinflammatory mediators, and activation of the Akt and MAPK signaling pathways in mast cells upon DNP stimulation. Furthermore, the expression of transcription factor CCAAT/enhancer-binding protein delta (CEBPD) was elevated in PTX3-mediated mast cell activation. Finally, the PTX3 inhibitor RI37 could attenuate PTX3-induced degranulation, proinflammatory mediator expression, and phosphorylation of the Akt and MAPK signaling. CONCLUSIONS The results suggested that PTX3 can facilitate allergic responses. Our data provide new insight to demonstrate that PTX3 is a cause of allergic inflammation and that RI37 can serve as a therapeutic agent in shrimp allergy.
Collapse
Affiliation(s)
- Jyun-Yi Du
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Yue Lai
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Wei Hsiao
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jhih-Ying Chi
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- International Research Center for Wound Repair and Regeneration, National Cheng-Kung University, Tainan, Taiwan
| |
Collapse
|
20
|
Kubo K, Takeda S, Uchida M, Maeda M, Endo N, Sugahara S, Suzuki H, Fukahori H. Lit-LAMP-DNA-vaccine for shrimp allergy prevents anaphylactic symptoms in a murine model. Int Immunopharmacol 2022; 113:109394. [DOI: 10.1016/j.intimp.2022.109394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
21
|
Dong X, Raghavan V. Recent advances of selected novel processing techniques on shrimp allergenicity: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Emerging approaches in the diagnosis and therapy in shellfish allergy. Curr Opin Allergy Clin Immunol 2022; 22:202-212. [DOI: 10.1097/aci.0000000000000827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Zhou F, He S, Zhang Y, Wang Y, Sun H, Liu Q. Prediction and characterization of the T cell epitopes for the major soybean protein allergens using bioinformatics approaches. Proteins 2022; 90:418-434. [PMID: 34486167 DOI: 10.1002/prot.26233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/14/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Protein allergens is a health risk for consumption of soybeans. To understand allerginicity mechanism, T cell epitopes of 7 soybean allergens were predicted and screened by abilities to induce cytokine interleukin (IL) 4. The relationships among amino acid composition, properties, allergenicity, and pepsin hydrolysis sites were analyzed. Among the 138 T cell epitopes identified, YIKDVFRVIPSEVLS, KDVFRVIPSEVLSNS, DVFRVIPSEVLSNSY of Gly m 6.0501 (P04347), and AKADALFKAIEAYLL, ADALFKAIEAYLLAH of Gly m 4.0101 (P26987) were the most possible epitope candidates. In T cell epitopes pattern, the frequencies of amino acids Q, D, E, P, and G decreased, while F, I, N, V, K, H, A, L, and S increased. Hydrophobic residues at positions p1 and p2 and positively charged residues in positions p13 might contribute to allergenicity. Most of epitopes could be hydrolyzed by pepsin into small polypeptides within 12 residues length, and the anti-digestive epitope regions contained I, V, S, N, and Q residues. T cell epitopes EEQRQQEGVIVELSK from Gly m 5.03 (P25974) showed resistance to pepsin hydrolysis and would cause a higher Th2 cell response. This research provides basis for the development of hypoallergenic soybean products in the soybean industry as well as for the immunotherapy design for protein allergy.
Collapse
Affiliation(s)
- Fanlin Zhou
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Shudong He
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yi Zhang
- IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, Pau, France
| | - Yongfei Wang
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Hanju Sun
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
24
|
Xu LL, Gasset M, Lin H, Yu C, Zhao JL, Dang XW, Li ZX. Identification of the Dominant T-Cell Epitopes of Lit v 1 Shrimp Major Allergen and Their Functional Overlap with Known B-Cell Epitopes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7420-7428. [PMID: 34170668 DOI: 10.1021/acs.jafc.1c02231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Development of efficient peptide-based immunotherapy for shrimp allergy relies on the identification of the dominant T-cell epitopes of its major allergen, tropomyosin. In this study, immunoinformatic tools, T-cell proliferation, cytokine release, IgG/IgE binding, and degranulation assays were used to identify and characterize the T-cell epitopes in Lit v 1 in comparison with previously validated B-cell epitopes. The results showed that of the six in silico predicted T-cell epitopes only one (T2: VQESLLKANIQLVEK, 60-74) promoted T-cell proliferation, the release of IL-2, and upregulated secretion of Th2-associated cytokines in the absence of IgG/IgE binding and degranulation activities. These findings support T2 as a candidate for the development of an efficient peptide-based vaccine for the immunotherapy for shrimp-allergic patients.
Collapse
Affiliation(s)
- Li Li Xu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - María Gasset
- Institute of Physical Chemistry Rocasolano (IQFR), Spanish National Research Council (CSIC), 28006 Madrid, Spain
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Chuang Yu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Jin Long Zhao
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Xue Wen Dang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Zhen Xing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| |
Collapse
|
25
|
Wai CYY, Leung NYH, Chu KH, Leung PSC. T-Cell Epitope Immunotherapy in Mouse Models of Food Allergy. Methods Mol Biol 2021; 2223:337-355. [PMID: 33226603 DOI: 10.1007/978-1-0716-1001-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Food allergy has been rising in prevalence over the last two decades, affecting more than 10% of the world population. Current management of IgE-mediated food allergy relies on avoidance and rescue medications; research into treatments that are safer and providing guaranteed and durable curative effects is, therefore, essential. T-cell epitope-based immunotherapy holds the potential for modulating food allergic responses without IgE cross-linking. In this chapter, we describe the methods in evaluating the therapeutic capacities of immunodominant T-cell epitopes in animal models of food allergy. Moreover, we explain in detail the methods to measure the allergen-specific antibody levels, prepare single-cell suspension from spleen, and prepare small intestine for immunohistochemical analysis of eosinophils and Foxp3+ cells.
Collapse
Affiliation(s)
- Christine Y Y Wai
- Department of Paediatrics, School of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Nicki Y H Leung
- Department of Paediatrics, School of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Patrick S C Leung
- Division of Rheumatology/Allergy, School of Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
26
|
|
27
|
Candreva ÁM, Smaldini PL, Cauerhff A, Petruccelli S, Docena GH. A novel approach to ameliorate experimental milk allergy based on the oral administration of a short soy cross-reactive peptide. Food Chem 2020; 346:128926. [PMID: 33484948 DOI: 10.1016/j.foodchem.2020.128926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/05/2020] [Accepted: 12/20/2020] [Indexed: 02/04/2023]
Abstract
Food allergy is on the rise, and preventive/therapeutic procedures are needed. We explored a preventive protocol for milk allergy with the oral administration of a Gly-m-Bd-30K soy-derived peptide that contains cross-reactive epitopes with bovine caseins. B/T-cross-reactive epitopes were mapped using milk-specific human sera and monoclonal antibodies on overlapping and recombinant peptides of Gly-m-Bd-30K by SPOT and cell proliferation assays. Bioinformatics tools were used to characterize epitopes on the 3D-modelled molecule, and to predict the binding to HLA alleles. The peptide was orally administrated to mice that were then IgE-sensitized to milk proteins. Immunodominant B-epitopes were mainly located on the surface of the Nt-fragment. The use of a soy-peptide-containing an immunodominant cross-reactive T-epitope, along with a single B epitope, prevents IgE-mediated milk sensitization through the induction of Th1-mediated immunity and induction of blocking IgG. The use of a safe soy-peptide may represent a promising alternative for preventing milk allergy.
Collapse
Affiliation(s)
- Ángela María Candreva
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Paola L Smaldini
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Ana Cauerhff
- Departamento Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvana Petruccelli
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CONICET y Universidad Nacional de La Plata, La Plata, Argentina
| | - Guillermo H Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina.
| |
Collapse
|
28
|
Xu LL, Chen J, Sun LR, Gao X, Lin H, Ahmed I, Pramod SN, Li ZX. Analysis of the allergenicity and B cell epitopes in tropomyosin of shrimp (Litopenaeus vannamei) and correlation to cross-reactivity based on epitopes with fish (Larimichthys crocea) and clam (Ruditapes philippinarum). Food Chem 2020; 323:126763. [PMID: 32334299 DOI: 10.1016/j.foodchem.2020.126763] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/26/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Tropomyosin (TM) is a highly conserved protein that considered as the major allergen of crustacean and mollusk species, while, fish-TM also shares high homology with low allergenicity. In this study, the amino acid sequence, B cell epitopes and allergenicity of shrimp (Litopenaeus vannamei), which is widely consumed, were evaluated by using immunoinformatic tools, dot-blot, enzyme-linked immunosorbent assay (ELISA) and mediator release assay. Meanwhile, cross-reactivity of allergic epitopes of fish-TM, shrimp-TM and clam-TM were assessed. Results showed that three IgE-binding epitopes (X1: 47-61, QKRMQQLENDLDQVQ; X2: 97-108, EDLERSEERLNT and X3: 244-257, RSVQKLQKEVDRLE) of shrimp-TM also exhibited degranulation ability. In comparison with epitopes from shrimp-TM, those from clam-TM showed high cross-reactivity (>80%) and degranulation ability, while those from fish-TM showed low cross-reactivity (<20%). These findings would apply a new understanding of the cross-reactivity of TM from fish, shrimp and clam in terms of allergenic epitopes.
Collapse
Affiliation(s)
- Li Li Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Jin Chen
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Li Rui Sun
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Xiang Gao
- Department of Allergy, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266071, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - S N Pramod
- Department of Studies in Biochemistry, Sahyadri Science College, Kuvempu University, Shimoga-577203, Karnataka 560037, India
| | - Zhen Xing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|
29
|
O'Konek JJ, Landers JJ, Janczak KW, Lindsey HK, Mondrusov AM, Totten TD, Baker JR. Intranasal nanoemulsion vaccine confers long-lasting immunomodulation and sustained unresponsiveness in a murine model of milk allergy. Allergy 2020; 75:872-881. [PMID: 31557317 DOI: 10.1111/all.14064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/05/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Immunotherapy for food allergy requires prolonged treatment protocols and, in most cases, does not lead to durable modulation of the allergic immune response. We have demonstrated an intranasal (IN) nanoemulsion adjuvant that redirects allergen-specific Th2 responses toward Th1 and Th17 immunity, and protects from allergen challenge after only 2-4 monthly administrations. Here, we investigate the ability of this technology to provide long-term modulation of allergy in a murine model of cow's milk allergy. METHODS Six weeks after sensitization to bovine casein, mice received four, monthly IN immunizations with nanoemulsion formulated with casein. Protection from casein challenge was assessed at 4 and 16 weeks after the final vaccine administration. RESULTS The NE vaccine significantly blunted the physiological responses to allergen challenge, and this effect persisted for at least 16 weeks. The protection from challenge was associated with the suppression of casein-specific Th2 immunity and induced Th1 and Th17 cytokines as well as induction of IL-10. Of interest, while immunized animals showed significantly decreased Th2 cytokine responses, cow's milk-specific IgE remained elevated in the serum at levels associated with reactivity in control sensitized animals. Protection was associated with suppressed mast cell activation and markedly reduced mast cell infiltration into the small intestine. CONCLUSION The sustained unresponsiveness of at least 16 weeks after vaccination suggests that the nanoemulsion vaccine alters the allergic phenotype in a persistent manner different from traditional desensitization, and this leads to long-term suppressive effects on allergic disease without eliminating serum IgE.
Collapse
Affiliation(s)
- Jessica J. O'Konek
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| | - Jeffrey J. Landers
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| | | | - Hayley K. Lindsey
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| | - Anna M. Mondrusov
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| | - Tiffanie D. Totten
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| | - James R. Baker
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| |
Collapse
|
30
|
Wai CY, Leung NY, Chu KH, Leung PS, Leung AS, Wong GW, Leung TF. Overcoming Shellfish Allergy: How Far Have We Come? Int J Mol Sci 2020; 21:ijms21062234. [PMID: 32210187 PMCID: PMC7139905 DOI: 10.3390/ijms21062234] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
Shellfish allergy caused by undesirable immunological responses upon ingestion of crustaceans and mollusks is a common cause of food allergy, especially in the Asia-Pacific region. While the prevalence of shellfish allergy is increasing, the mainstay of clinical diagnosis for these patients includes extract-based skin prick test and specific IgE measurement while clinical management consists of food avoidance and as-needed use of adrenaline autoinjector should they develop severe allergic reactions. Such a standard of care is unsatisfactory to both patients and healthcare practitioners. There is a pressing need to introduce more specific diagnostic methods, as well as effective and safe therapies for patients with shellfish allergy. Knowledge gained on the identifications and defining the immuno-molecular features of different shellfish allergens over the past two decades have gradually translated into the design of new diagnostic and treatment options for shellfish allergy. In this review, we will discuss the epidemiology, the molecular identification of shellfish allergens, recent progress in various diagnostic methods, as well as current development in immunotherapeutic approaches including the use of unmodified allergens, hypoallergens, immunoregulatory peptides and DNA vaccines for the prevention and treatment of shellfish allergy. The prospect of a “cure “for shellfish allergy is within reach.
Collapse
Affiliation(s)
- Christine Y.Y. Wai
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nicki Y.H. Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong;
| | - Patrick S.C. Leung
- Division of Rheumatology/Allergy, School of Medicine, University of California, Davis, CA 95616, USA;
| | - Agnes S.Y. Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Gary W.K. Wong
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Ting Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong
- Correspondence: ; Tel.: +852-3505-2981; Fax: +852-2636-0020
| |
Collapse
|
31
|
Xu L, Sun L, Lin H, Ishfaq A, Li Z. Allergenicity of tropomyosin of shrimp (Litopenaeus vannamei) and clam (Ruditapes philippinarum) is higher than that of fish (Larimichthys crocea) via in vitro and in vivo assessment. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03402-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Wai CYY, Leung NYH, Leung PSC, Chu KH. Modulating Shrimp Tropomyosin-Mediated Allergy: Hypoallergen DNA Vaccines Induce Regulatory T Cells to Reduce Hypersensitivity in Mouse Model. Int J Mol Sci 2019; 20:ijms20184656. [PMID: 31546958 PMCID: PMC6769673 DOI: 10.3390/ijms20184656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/07/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Shellfish allergy is one of the most common food allergies, with tropomyosin as the major cross-reactive allergen. However, no allergen-specific immunotherapy is clinically available. Recently, we designed two shrimp hypoallergens MEM49 and MED171. This study aimed to examine and compare the efficacy of the MEM49- and MED171-based DNA vaccines (pMEM49 and pMED171) in modulating shrimp allergy in a murine model of shrimp tropomyosin sensitivity. Intradermal immunization of BALB/c mice with pMEM49 or pMED171 effectively down-modulated allergic symptoms, tropomyosin-specific IgE levels, intestinal Th2 cytokines expression, and inflammatory cell infiltration. Both pMEM49 and pMED171 increased the frequency of regulatory T cells, but to a greater extent by pMED171 with upregulation of gut-homing molecules integrin-α4β7. The functionality of the pMED171-induced Treg cells was further illustrated by anti-CD25-mediated depletion of Treg cells and the adoptive transfer of CD4+CD25+Foxp3+Treg cells. Collectively, the data demonstrate that intradermal administration of pMED171 leads to the priming, activation, and migration of dermal dendritic cells which subsequently induce Treg cells, both locally and systemically, to downregulate the allergic responses to tropomyosin. This study is the first to demonstrate the potency of hypoallergen-encoding DNA vaccines as a therapeutic strategy for human shellfish allergy via the vigorous induction of functional Treg cells.
Collapse
Affiliation(s)
- Christine Y Y Wai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Paediatrics, School of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Nicki Y H Leung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Paediatrics, School of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Patrick S C Leung
- Division of Rheumatology/Allergy, School of Medicine, University of California, Davis, CA 95616, USA.
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
33
|
|
34
|
Applying the adverse outcome pathway (AOP) for food sensitization to support in vitro testing strategies. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Jensen L, Larsen J, Madsen C, Laursen R, Jacobsen L, Bøgh K. Preclinical Brown Norway Rat Models for the Assessment of Infant Formulas in the Prevention and Treatment of Cow’s Milk Allergy. Int Arch Allergy Immunol 2019; 178:307-314. [DOI: 10.1159/000495801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/27/2018] [Indexed: 11/19/2022] Open
|
36
|
Leung ASY, Leung NYH, Wai CYY, Leung TF, Wong GWK. Allergen immunotherapy for food allergy from the Asian perspective: key challenges and opportunities. Expert Rev Clin Immunol 2018; 15:153-164. [PMID: 30488732 DOI: 10.1080/1744666x.2019.1554432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Introduction: Prevalence of food allergy is rising in different regions of the world. Asia has not been spared from this epidemic, but epidemiological data have revealed a different pattern of food allergens in this continent. Allergen-specific immunotherapy (AIT) for food allergy, which has been revolutionary as the main focus of research in recent years, needs to be adapted for the different populations in Asia. Areas covered: Recent evidence shows increasing popularity and superiority of AIT over strict food avoidance as the cornerstone of food allergy management. Asia is a distinctive continent with specific food allergy triggers, in particular, seafood, and wheat. Peanut, on the contrary, is not a common food allergen in most parts of Asia. The common Asian food allergens, as well as the rapidly developing food-specific AIT in this region will be covered in this article. Expert commentary: Evidence on oral immunotherapy for wheat allergy and preclinical data on shellfish AIT are promising. Further work should be done on resolving cross-sensitization between environmental allergens with wheat and shellfish allergens, and a modified AIT approach to enhance the safety and effectiveness of food-specific immunotherapy.
Collapse
Affiliation(s)
- Agnes Sze Yin Leung
- a Department of Paediatrics , The Chinese University of Hong Kong, Prince of Wales Hospital Shatin , New Territories , Hong Kong
| | - Nicki Yat Hin Leung
- a Department of Paediatrics , The Chinese University of Hong Kong, Prince of Wales Hospital Shatin , New Territories , Hong Kong
| | - Christine Yee Yan Wai
- a Department of Paediatrics , The Chinese University of Hong Kong, Prince of Wales Hospital Shatin , New Territories , Hong Kong
| | - Ting Fan Leung
- a Department of Paediatrics , The Chinese University of Hong Kong, Prince of Wales Hospital Shatin , New Territories , Hong Kong
| | - Gary Wing Kin Wong
- a Department of Paediatrics , The Chinese University of Hong Kong, Prince of Wales Hospital Shatin , New Territories , Hong Kong
| |
Collapse
|
37
|
Abstract
With the increased global awareness and rise in food allergies, a multifold interest in food allergens is evident. The presence of undeclared food allergens results in expensive food recalls and increased risks of anaphylaxis for the sensitive individuals. Regardless of the allergenic food, the immunogen needs to be identified and detected before making any efforts to inactivate/eliminate it. In type I food allergies, protein immunogen cross-links immunoglobulin E, leading to basophil/mast cell degranulation, resulting in the symptoms that range from mild irritation to anaphylaxis. A portion/part of the protein, known as the epitope, can interact with either antibodies to elicit allergic reactions or T-cell receptors to initiate allergic sensitization. Antibody-recognized epitopes can be either a linear sequence of amino acids (linear epitope) or a three-dimensional motif (conformational epitope), while T-cell-receptor-recognized epitopes are exclusively linear peptides. Identifying and characterizing human-allergy-relevant epitopes are important for allergy diagnosis/prognosis, immunotherapy, and developing food processing methods that can reduce/eliminate immunogencity/immunoreactivity of the allergen.
Collapse
Affiliation(s)
- Changqi Liu
- School of Exercise and Nutritional Sciences, College of Health and Human Services , San Diego State University , 308 ENS Building, 5500 Campanile Drive , San Diego , California 92182-7251 , United States
| | - Shridhar K Sathe
- Department of Nutrition, Food & Exercise Sciences, College of Human Sciences , Florida State University , 402 SAN, 120 Convocation Way , Tallahassee , Florida 32306-1493 , United States
| |
Collapse
|
38
|
Larsen JM, Bøgh KL. Animal models of allergen-specific immunotherapy in food allergy: Overview and opportunities. Clin Exp Allergy 2018; 48:1255-1274. [DOI: 10.1111/cea.13212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/26/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022]
|
39
|
Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol Immunol 2018; 100:28-57. [PMID: 29858102 DOI: 10.1016/j.molimm.2018.04.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
Abstract
Seafood refers to several distinct groups of edible aquatic animals including fish, crustacean, and mollusc. The two invertebrate groups of crustacean and mollusc are, for culinary reasons, often combined as shellfish but belong to two very different phyla. The evolutionary and taxonomic diversity of the various consumed seafood species poses a challenge in the identification and characterisation of the major and minor allergens critical for reliable diagnostics and therapeutic treatments. Many allergenic proteins are very different between these groups; however, some pan-allergens, including parvalbumin, tropomyosin and arginine kinase, seem to induce immunological and clinical cross-reactivity. This extensive review details the advances in the bio-molecular characterisation of 20 allergenic proteins within the three distinct seafood groups; fish, crustacean and molluscs. Furthermore, the structural and biochemical properties of the major allergens are described to highlight the immunological and subsequent clinical cross-reactivities. A comprehensive list of purified and recombinant allergens is provided, and the applications of component-resolved diagnostics and current therapeutic developments are discussed.
Collapse
|
40
|
Thong BYH, Arulanandam S, Tan SC, Tan TC, Chan GYL, Tan JWL, Yeow MCW, Tang CY, Hou J, Leong KP. Shellfish/crustacean oral allergy syndrome among national service pre-enlistees in Singapore. Asia Pac Allergy 2018; 8:e18. [PMID: 29732294 PMCID: PMC5931925 DOI: 10.5415/apallergy.2018.8.e18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/08/2018] [Indexed: 02/04/2023] Open
Abstract
Background All Singaporean males undergo medical screening prior to compulsory military service. A history of possible food allergy may require referral to a specialist Allergy clinic to ensure that special dietary needs can be taken into account during field training and deployment. Objective To study the pattern of food allergy among pre-enlistees who were referred to a specialist allergy clinic to work up suspected food allergy. Methods Retrospective study of all pre-enlistees registered in the Clinical Immunology/Allergy New Case Registry referred to the Allergy Clinic from 1 August 2015 to 31 May 2016 for suspected food allergy. Results One hundred twenty pre-enlistees reporting food allergy symptoms other than rash alone were referred to the Allergy Clinic during the study period. Of these, 77 (64.2%) had food allergy. Among those with food allergy, mean age was 19.1 ± 1.5 years. They comprised predominantly Chinese (66.2%) and Malays (20.8%). The most commonly reported foods were shellfish/crustaceans (78%), peanut (15.6%), and egg (6.5%). Self-limiting oral allergy syndrome, OAS (itchy lips and throat with/without lip angioedema) was the most common manifestation (n = 33, 42.9%) followed by anaphylaxis (n = 23, 29.9%). Majority of OAS was from shellfish/crustacean (90.6%); of which shrimp (30.3%), crab (15.2%), and lobster (3.0%) were the most common. Mild childhood asthma (69.7%), allergic rhinitis (6.3%), and eczema (6.1%) were the most common atopic conditions among individuals with shellfish/crustacean OAS. This pattern was similar for shellfish/crustacean anaphylaxis. Skin prick tests were most commonly positive for shrimp (OAS 87.1% vs. anaphylaxis 100%), crab (OAS 95.8% vs. 90.9%), and lobster (OAS 91.7% vs. 63.6%). Conclusion OAS to shellfish/crustaceans was more common than anaphylaxis among this study population of young males referred for food allergy symptoms other than rash alone.
Collapse
Affiliation(s)
- Bernard Yu-Hor Thong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433
| | | | - Sze-Chin Tan
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433
| | - Teck-Choon Tan
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433
| | - Grace Yin-Lai Chan
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433
| | - Justina Wei-Lyn Tan
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433
| | | | - Chwee-Ying Tang
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433
| | - Jinfeng Hou
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433
| | - Khai-Pang Leong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433
| |
Collapse
|
41
|
Rajakulendran M, Tham EH, Soh JY, Van Bever HP. Novel strategies in immunotherapy for allergic diseases. Asia Pac Allergy 2018; 8:e14. [PMID: 29732290 PMCID: PMC5931921 DOI: 10.5415/apallergy.2018.8.e14] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/02/2018] [Indexed: 11/04/2022] Open
Abstract
Conventional immunotherapy (IT) for optimal control of respiratory and food allergies has been fraught with concerns of efficacy, safety, and tolerability. The development of adjuvants to conventional IT has potentially increased the effectiveness and safety of allergen IT, which may translate into improved clinical outcomes and sustained unresponsiveness even after cessation of therapy. Novel strategies incorporating the successful use of adjuvants such as allergoids, immunostimulatory DNA sequences, monoclonal antibodies, carriers, recombinant proteins, and probiotics have now been described in clinical and murine studies. Future approaches may include fungal compounds, parasitic molecules, vitamin D, and traditional Chinese herbs. More robust comparative clinical trials are needed to evaluate the safety, clinical efficacy, and cost effectiveness of various adjuvants in order to determine ideal candidates in disease-specific and allergen-specific models. Other suggested approaches to further optimize outcomes of IT include early introduction of IT during an optimal window period. Alternative routes of administration of IT to optimize delivery and yet minimize potential side effects require further evaluation for safety and efficacy before they can be recommended.
Collapse
Affiliation(s)
- Mohana Rajakulendran
- Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore 119229
| | - Elizabeth Huiwen Tham
- Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore 119229.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119229
| | - Jian Yi Soh
- Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore 119229.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119229
| | - H P Van Bever
- Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore 119229.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119229
| |
Collapse
|
42
|
Adult-onset food allergies. Ann Allergy Asthma Immunol 2017; 119:111-119. [PMID: 28801016 DOI: 10.1016/j.anai.2017.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 02/07/2023]
|
43
|
Roberts G, Boyle R, Crane J, Hogan SP, Saglani S, Wickman M, Woodfolk JA. Developments in the field of allergy in 2016 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2017; 47:1512-1525. [PMID: 29068551 DOI: 10.1111/cea.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this article, we described the development in the field of allergy as described by Clinical and Experimental Allergy in 2016. Experimental models of allergic disease, basic mechanisms, clinical mechanisms, allergens, asthma and rhinitis, and clinical allergy are all covered.
Collapse
Affiliation(s)
- G Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| | - R Boyle
- Department of Paediatrics, Imperial College London, London, UK
| | - J Crane
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - S P Hogan
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - S Saglani
- National Heart & Lung Institute, Imperial College London, London, UK
| | - M Wickman
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - J A Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
44
|
Leung NYH, Wai CYY, Shu SA, Chang CC, Chu KH, Leung PSC. Low-Dose Allergen-Specific Immunotherapy Induces Tolerance in a Murine Model of Shrimp Allergy. Int Arch Allergy Immunol 2017; 174:86-96. [PMID: 29065408 DOI: 10.1159/000479694] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The efficacy and safety of allergen-specific immunotherapy (AIT) are highly dose-dependent. METHODS We investigated the dosage effects of AIT and the underlying mechanisms in a murine model of shrimp hypersensitivity. BALB/c mice were sensitized with recombinant shrimp allergen rMet e 1 and challenged orally with a high dose of rMet e 1 to elicit an allergic response. These sensitized mice were then treated with a low (0.01 mg), medium (0.05 mg), or high dosage (0.1 mg) of rMet e 1 intraperitoneally before receiving a second oral challenge. The allergic responses and immunological changes in the gut were compared between animals receiving different dosages. RESULTS We found that all sensitized mice that received rMet e 1 immunotherapy were desensitized, regardless of the dosage, and protected at the second oral challenge. Nevertheless, the mice in the high-dosage group experienced severe systemic reactions during the treatment phase. In contrast, regulatory T (Treg) cell-associated genes were upregulated only in the low- and medium-dosage groups, and Foxp3+ cells were more abundant in the gut lymphoid tissues than in the high-dosage group. CONCLUSIONS Our results demonstrate that low-dosage immunotherapy favors the induction of local Foxp3+ Treg cells and the upregulation of regulatory cytokines. The safety advantages and long-term efficacy of low-dosage immunotherapy should be taken into consideration when developing immunotherapy dose schedules.
Collapse
Affiliation(s)
- Nicki Yat Hin Leung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | | | | | | | | | | |
Collapse
|
45
|
Lozano-Ojalvo D, López-Fandiño R. Immunomodulating peptides for food allergy prevention and treatment. Crit Rev Food Sci Nutr 2017; 58:1629-1649. [PMID: 28102702 DOI: 10.1080/10408398.2016.1275519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Among the most promising strategies currently assayed against IgE-mediated allergic diseases stands the possibility of using immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. This review focuses on the beneficial effects of food derived immunomodulating peptides on food allergy, which can be directly exerted in the intestinal tract or once being absorbed through the intestinal epithelial barrier to interact with immune cells. Food peptides influence intestinal homeostasis by maintaining and reinforcing barrier function or affecting intestinal cell-signalling to nearby immune cells and mucus secretion. In addition, they can stimulate cells of the innate and adaptive immune system while supressing inflammatory responses. Peptides represent an attractive alternative to whole allergens to enhance the safety and efficacy of immunotherapy treatments. The conclusions drawn from curative and preventive experiments in murine models are promising, although there is a need for more pre-clinical studies to further explore the immunomodulating strategy and its mechanisms and for a deeper knowledge of the peptide sequence and structural requirements that determine the immunoregulatory function.
Collapse
Affiliation(s)
- Daniel Lozano-Ojalvo
- a Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM) , Madrid , Spain
| | - Rosina López-Fandiño
- a Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM) , Madrid , Spain
| |
Collapse
|
46
|
Chen M, Land M. The current state of food allergy therapeutics. Hum Vaccin Immunother 2017; 13:2434-2442. [PMID: 28846472 PMCID: PMC5647972 DOI: 10.1080/21645515.2017.1359363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 02/06/2023] Open
Abstract
The prevalence of IgE mediated food allergy is an increasing public health concern. The current standard of treatment is strict avoidance of the offending food(s). There are no FDA approved treatments for food allergy. This review will provide an overview of strategies currently under investigation for the treatment of food allergy. The main focus of research has been directed at various forms of immunotherapy, including oral, sublingual and epicutaneous delivery routes. While oral immunotherapy (OIT) has shown the greatest promise for efficacy in terms of amount of protein that can be ingested, it has also demonstrated less tolerability and a less favorable safety profile as compared to sublingual immunotherapy (SLIT) and epicutaneous immunotherapy (EPIT), which offers the least protection but has the best safety and tolerability profile. Investigation is also underway for modified antigens that may be used for immunotherapy and for adjuncts that may help facilitate immunotherapy, including biologics such as anti-IgE therapy, and also probiotics. There are also a number of preclinical concepts that are being evaluated to manipulate the antigens and/or the immune system that may one day be translatable to patients.
Collapse
Affiliation(s)
- Meng Chen
- Department of Medicine, Division of Allergy/Immunology, University of California, San Diego, CA, USA
| | | |
Collapse
|
47
|
|
48
|
Lozano-Ojalvo D, Pérez-Rodríguez L, Pablos-Tanarro A, Molina E, López-Fandiño R. Hydrolysed ovalbumin offers more effective preventive and therapeutic protection against egg allergy than the intact protein. Clin Exp Allergy 2017; 47:1342-1354. [DOI: 10.1111/cea.12989] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022]
Affiliation(s)
- D. Lozano-Ojalvo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM); Madrid Spain
| | - L. Pérez-Rodríguez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM); Madrid Spain
| | - A. Pablos-Tanarro
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM); Madrid Spain
| | - E. Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM); Madrid Spain
| | - R. López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM); Madrid Spain
| |
Collapse
|
49
|
Smole U, Schabussova I, Pickl WF, Wiedermann U. Murine models for mucosal tolerance in allergy. Semin Immunol 2017; 30:12-27. [PMID: 28807539 DOI: 10.1016/j.smim.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
Abstract
Immunity is established by a fine balance to discriminate between self and non-self. In addition, mucosal surfaces have the unique ability to establish and maintain a state of tolerance also against non-self constituents such as those represented by the large numbers of commensals populating mucosal surfaces and food-derived or air-borne antigens. Recent years have seen a dramatic expansion in our understanding of the basic mechanisms and the involved cellular and molecular players orchestrating mucosal tolerance. As a direct outgrowth, promising prophylactic and therapeutic models for mucosal tolerance induction against usually innocuous antigens (derived from food and aeroallergen sources) have been developed. A major theme in the past years was the introduction of improved formulations and novel adjuvants into such allergy vaccines. This review article describes basic mechanisms of mucosal tolerance induction and contrasts the peculiarities but also the interdependence of the gut and respiratory tract associated lymphoid tissues in that context. Particular emphasis is put on delineating the current prophylactic and therapeutic strategies to study and improve mucosal tolerance induction in allergy.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
50
|
Tordesillas L, Berin MC, Sampson HA. Immunology of Food Allergy. Immunity 2017; 47:32-50. [DOI: 10.1016/j.immuni.2017.07.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/29/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
|