1
|
Heng CKM, Darlyuk-Saadon I, Liao W, Mohanam MP, Gan PXL, Gilad N, Chan CCMY, Plaschkes I, Wong WSF, Engelberg D. A combination of alveolar type 2-specific p38α activation with a high-fat diet increases inflammatory markers in mouse lungs. J Biol Chem 2025; 301:108425. [PMID: 40118456 PMCID: PMC12018981 DOI: 10.1016/j.jbc.2025.108425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 03/23/2025] Open
Abstract
Chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease afflict millions of individuals globally and are significant sources of disease mortality. While the molecular mechanisms underlying such diseases are unclear, environmental and social factors, such as cigarette smoke and obesity, increase the risk of disease development. Yet, not all smokers or obese individuals will develop chronic respiratory diseases. The mitogen-activated protein kinase p38α is abnormally active in such maladies, but its contribution, if any, to disease etiology is unknown. To assess whether p38α activation per se in the lung could impose disease symptoms, we generated a transgenic mouse model allowing controllable expression of an intrinsically active variant, p38αD176A+F327S, specifically in lung alveolar type 2 pneumocytes. Sustained expression of p38αD176A+F327S did not appear to induce obvious pathological outcomes or to exacerbate inflammatory outcomes in mice challenged with common respiratory disease triggers. However, mice expressing p38αD176A+F327S in alveolar type 2 cells and fed with a high-fat diet exhibited increased numbers of airway eosinophils and lymphocytes, upregulated levels of proinflammatory cytokines and chemokines including interleukin-1β and eotaxin, as well as a reduction in levels of leptin and adiponectin within the lung. Neither high-fat diet nor p38αD176A+F327S alone induced such outcomes. Perhaps in obese individuals with associated respiratory diseases, elevated p38α activity which happens to occur is the factor that promotes their development.
Collapse
Affiliation(s)
- C K Matthew Heng
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore
| | - Ilona Darlyuk-Saadon
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore
| | - Wupeng Liao
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Manju P Mohanam
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore
| | - Phyllis X L Gan
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nechama Gilad
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore; Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Christabel C M Y Chan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics unit of the I-CORE, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - W S Fred Wong
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, Singapore.
| | - David Engelberg
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore; Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Rodrigues e-Lacerda R, Barra NG, Fang H, Anhê GF, Schertzer JD. NOD2 protects against allergic lung inflammation in obese female mice. iScience 2024; 27:111130. [PMID: 39507249 PMCID: PMC11539594 DOI: 10.1016/j.isci.2024.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/07/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Obesity is associated with compartmentalized changes in immune responses that can be protective or pathogenic. It has been proposed that obesity-related changes in the microbiota influence allergic lung inflammation. We hypothesized that sensors of the bacterial cell wall influenced allergenic lung inflammation during obesity. Ovalbumin (OVA)-induced lung inflammation was similar in female Nod1-/- and wild-type mice during high-fat-diet-induced obesity, but allergic lung inflammation was higher in obese, high-fat-diet-fed female Nod2-/- mice. Obese Nod2-/- mice had higher inflammatory cell infiltration in the bronchial alveolar lavage (BAL) and lungs, pulmonary fibrosis, mucus levels, hypertrophy and hyperplasia of goblet cells, M2 alveolar macrophage infiltration, interleukin-4 (IL-4), IL-5, IL-6, and lower CXCL1 and IL-22. Therefore, Nod2 protects against excessive lung inflammation and is a bacterial sensor that relays protective responses to allergenic lung inflammation in obese female mice.
Collapse
Affiliation(s)
- Rodrigo Rodrigues e-Lacerda
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- Department of Translational Medicine, University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas, SP CEP 13083-887, Brazil
| | - Nicole G. Barra
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Han Fang
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Gabriel Forato Anhê
- Department of Translational Medicine, University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas, SP CEP 13083-887, Brazil
| | - Jonathan D. Schertzer
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
3
|
Ekpruke CD, Alford R, Rousselle D, Babayev M, Sharma S, Parker E, Davis K, Hemmerich C, Rusch DB, Silveyra P. Sex-specific alterations in the gut and lung microbiome of allergen-induced mice. FRONTIERS IN ALLERGY 2024; 5:1451846. [PMID: 39210977 PMCID: PMC11358121 DOI: 10.3389/falgy.2024.1451846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Recent evidence has demonstrated that the microbiome is a driver of the underlying pathophysiological mechanisms of respiratory disease. Studies have indicated that bacterial metabolites produced in the gut and lung can impact lung inflammation and immune cell activity, affecting disease pathology. Despite asthma being a disease with marked sex differences, experimental work linking microbiomes and asthma has not considered the sex variable. Methods To test the hypothesis that the lung and gut microbial composition impacts allergic lung inflammation in a sex-specific manner, we evaluated lung and gut microbiome alterations in a mouse model of allergic inflammation and assessed their association with lung function and inflammation phenotypes. For this, we exposed male and female adult C57BL/6J mice intranasally to 25 µg of a house dust mite extract mix (HDM) daily, or phosphate-buffered saline (PBS) as control, for 5 weeks (n = 4-6/group). DNA from fecal pellets collected before and after the 5-week treatment, and from lung tissue collected at endpoint, was extracted using the ZymoBIOMICS®-96 MagBead DNA Kit and analyzed to determine the 16S microbiome via Targeted Metagenomic Sequencing. Results The HDM treatment induced a sex-specific allergic inflammation phenotype with significantly higher neutrophilia, lymphocytosis, inflammatory gene expression, and histopathological changes in females than males following exposure to HDM, but higher airway hyperresponsiveness (AHR) in males than females. In addition, sex-specific lung gene expression and associated pathways were identified HDM mix after challenge. These changes corresponded to sex-specific alterations in the gut microbiome, where the Firmicutes to Bacteroidetes ratio (F:B) was significantly reduced in fecal samples from only male mice after HDM challenge, and alpha diversity was increased in males, but decreased in females, after 5-weeks of HDM treatment. Discussion Overall, our findings indicate that intranasal allergen challenge triggers sex-specific changes in both gut and lung microbiomes, and induces sex-specific lung inflammation, AHR, and lung inflammatory gene expression pathways, suggesting a contribution of the lung-gut axis in allergic airway disease.
Collapse
Affiliation(s)
- Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Rachel Alford
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Dustin Rousselle
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Maksat Babayev
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Shikha Sharma
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Erik Parker
- Department of Epidemiology and Biostatistics, Biostatistics Consulting Center, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Kyle Davis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Christopher Hemmerich
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, United States
| | - Douglas B. Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, United States
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
4
|
Qin L, Yue J, Guo M, Zhang C, Fang X, Zhang S, Bai W, Liu X, Xie M. Estrogen Receptor-α Exacerbates EGF-Inducing Airway Remodeling and Mucus Production in Bronchial Epithelium of Asthmatics. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:614-635. [PMID: 37153982 PMCID: PMC10570787 DOI: 10.4168/aair.2023.15.5.614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/21/2022] [Accepted: 02/14/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Although estrogen receptors (ERs) signal pathways are involved in the pathogenesis and development of asthma, their expressions and effects remain controversial. This study aimed to investigate the expressions of ERα and ERβ as well as their mechanisms in airway remodeling and mucus production in asthma. METHODS The expressions of ERα and ERβ in the airway epithelial cells of bronchial biopsies and induced sputum cells were examined by immunohistochemistry. The associations of ERs expressions with airway inflammation and remodeling were evaluated in asthmatic patients. In vitro, the regulations of ERs expressions in human bronchial epithelial cell lines were examined using western blot analysis. The epidermal growth factor (EGF)-mediated ligand-independent activation of ERα and its effect on epithelial-mesenchymal transitions (EMTs) were investigated in asthmatic epithelial cells by western blot, immunofluorescent staining, and quantitative real-time polymerase chain reaction. RESULTS ERα and ERβ were expressed on both bronchial epithelial cells and induced sputum cells, and the expressions showed no sex difference. Compared to controls, male asthmatic patients had higher levels of ERα on the bronchial epithelium, and there were cell-specific expressions of ERα and ERβ in induced sputum. The expression of ERα in the airway epithelium was inversely correlated to forced expiratory volume in 1 second (FEV1) % and FEV1/forced vital capacity. Severe asthmatic patients had significantly greater levels of ERα in the airway epithelium than mild-moderate patients. ERα level was positively correlated with the thickness of the subepithelial basement membrane and airway epithelium. In vitro, co-stimulation of interleukin (IL)-4 and EGF increased the expression of ERα and promoted its nuclear translocation. EGF activated the phosphorylation of ERα via extracellular signal-regulated kinase and c-Jun N-terminal kinase pathways. ERα knockdown alleviated EGF-mediated EMTs and mucus production in airway epithelial cells of asthma. CONCLUSIONS ERα contributes to asthmatic airway remodeling and mucus production through the EGF-mediated ligand-independent pathway.
Collapse
Affiliation(s)
- Lu Qin
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junqing Yue
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Mingzhou Guo
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Cong Zhang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Xiaoyu Fang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Shengding Zhang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Wenxue Bai
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China.
| |
Collapse
|
5
|
Gill R, Rojas‐Ruiz A, Boucher M, Henry C, Bossé Y. More airway smooth muscle in males versus females in a mouse model of asthma: A blessing in disguise? Exp Physiol 2023; 108:1080-1091. [PMID: 37341687 PMCID: PMC10988431 DOI: 10.1113/ep091236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
NEW FINDINGS What is the central question of this study? The lung response to inhaled methacholine is reputed to be greater in male than in female mice. The underpinnings of this sex disparity are ill defined. What is the main finding and its importance? We demonstrated that male airways exhibit a greater content of airway smooth muscle than female airways. We also found that, although a more muscular airway tree in males might contribute to their greater responsiveness to inhaled methacholine than females, it might also curb the heterogeneity in small airway narrowing. ABSTRACT Mouse models are helpful in unveiling the mechanisms underlying sex disparities in asthma. In comparison to their female counterparts, male mice are hyperresponsive to inhaled methacholine, a cardinal feature of asthma that contributes to its symptoms. The physiological details and the structural underpinnings of this hyperresponsiveness in males are currently unknown. Herein, BALB/c mice were exposed intranasally to either saline or house dust mite once daily for 10 consecutive days to induce experimental asthma. Twenty-four hours after the last exposure, respiratory mechanics were measured at baseline and after a single dose of inhaled methacholine that was adjusted to trigger the same degree of bronchoconstriction in both sexes (it was twice as high in females). Bronchoalveolar lavages were then collected, and the lungs were processed for histology. House dust mite increased the number of inflammatory cells in bronchoalveolar lavages to the same extent in both sexes (asthma, P = 0.0005; sex, P = 0.96). The methacholine response was also markedly increased by asthma in both sexes (e.g., P = 0.0002 for asthma on the methacholine-induced bronchoconstriction). However, for a well-matched bronchoconstriction between sexes, the increase in hysteresivity, an indicator of airway narrowing heterogeneity, was attenuated in males for both control and asthmatic mice (sex, P = 0.002). The content of airway smooth muscle was not affected by asthma but was greater in males (asthma, P = 0.31; sex, P < 0.0001). These results provide further insights regarding an important sex disparity in mouse models of asthma. The increased amount of airway smooth muscle in males might contribute functionally to their greater methacholine response and, possibly, to their decreased propensity for airway narrowing heterogeneity.
Collapse
Affiliation(s)
- Rebecka Gill
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| | - Andrés Rojas‐Ruiz
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| | - Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| |
Collapse
|
6
|
Razi O, Teixeira AM, Tartibian B, Zamani N, Knechtle B. Respiratory issues in patients with multiple sclerosis as a risk factor during SARS-CoV-2 infection: a potential role for exercise. Mol Cell Biochem 2023; 478:1533-1559. [PMID: 36411399 PMCID: PMC9684932 DOI: 10.1007/s11010-022-04610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
Coronavirus disease-2019 (COVID-19) is associated with cytokine storm and is characterized by acute respiratory distress syndrome (ARDS) and pneumonia problems. The respiratory system is a place of inappropriate activation of the immune system in people with multiple sclerosis (MS), and this may cause damage to the lung and worsen both MS and infections.The concerns for patients with multiple sclerosis are because of an enhance risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The MS patients pose challenges in this pandemic situation, because of the regulatory defect of autoreactivity of the immune system and neurological and respiratory tract symptoms. In this review, we first indicate respiratory issues associated with both diseases. Then, the main mechanisms inducing lung damages and also impairing the respiratory muscles in individuals with both diseases is discussed. At the end, the leading role of physical exercise on mitigating respiratory issues inducing mechanisms is meticulously evaluated.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Ana Maria Teixeira
- Research Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, 9001 St. Gallen, Switzerland
| |
Collapse
|
7
|
Ekpruke CD, Silveyra P. Sex Differences in Airway Remodeling and Inflammation: Clinical and Biological Factors. FRONTIERS IN ALLERGY 2022; 3:875295. [PMID: 35769576 PMCID: PMC9234861 DOI: 10.3389/falgy.2022.875295] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is characterized by an increase in the contraction and inflammation of airway muscles, resulting in airflow obstruction. The prevalence of asthma is lower in females than in males until the start of puberty, and higher in adult women than men. This sex disparity and switch at the onset of puberty has been an object of debate among many researchers. Hence, in this review, we have summarized these observations to pinpoint areas needing more research work and to provide better sex-specific diagnosis and management of asthma. While some researchers have attributed it to the anatomical and physiological differences in the male and female respiratory systems, the influences of hormonal interplay after puberty have also been stressed. Other hormones such as leptin have been linked to the sex differences in asthma in both obese and non-obese patients. Recently, many scientists have also demonstrated the influence of the sex-specific genomic framework as a key player, and others have linked it to environmental, social lifestyle, and occupational exposures. The majority of studies concluded that adult men are less susceptible to developing asthma than women and that women display more severe forms of the disease. Therefore, the understanding of the roles played by sex- and gender-specific factors, and the biological mechanisms involved will help develop novel and more accurate diagnostic and therapeutic plans for sex-specific asthma management.
Collapse
Affiliation(s)
- Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, Indiana University Bloomington School of Public Health, Bloomington, IN, United States
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University Bloomington School of Public Health, Bloomington, IN, United States
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Patricia Silveyra
| |
Collapse
|
8
|
Boyle RJ, Shamji MH. Developments in the field of allergy in 2020 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2021; 51:1531-1537. [PMID: 34750898 DOI: 10.1111/cea.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
While 2020 will be remembered for the global coronavirus pandemic, there were also important advances in the field of allergy. In this review article, we summarize key findings reported in Clinical and Experimental Allergy during 2020. We hope this provides readers with an accessible snapshot of the work published in our journal during this time.
Collapse
Affiliation(s)
- Robert J Boyle
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Imperial Biomedical Research Centre, London, UK
| |
Collapse
|
9
|
Lopes ACR, Zavan B, Corrêa YJC, Vieira TM, Severs LJ, Oliveira LM, Soncini R. Impact of obesity and ovariectomy on respiratory function in female mice. Respir Physiol Neurobiol 2021; 294:103775. [PMID: 34416380 DOI: 10.1016/j.resp.2021.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Obesity and the corresponding variations in female sex hormones are associated with severe lung disease. We determined the potential effects of obesity and sex hormones in female mice by investigating changes in lung structure and respiratory function in an obesity model induced by postnatal overnutrition. Obese female mice exhibited pronounced weight gain, abdominal fat accumulation and collagen type I deposition in the airways. However, neither elastic tissue nor estrogen receptors-α/-β were affected in obese female mice after ovariectomy or sham-operated mice. Bronchoconstriction in response to methacholine challenge in obese sham-operated mice was higher than in the obese group after ovariectomy. Our results suggest that the coexistence of obesity and ovariectomy impacted on respiratory system and airway resistance (attenuates bronchoconstriction after methacholine), on collagen I deposition and on airway estrogen β-receptors of mice.
Collapse
Affiliation(s)
- Ana C R Lopes
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil
| | - Bruno Zavan
- Integrative Animal Biology Laboratory, Institute of Biomedical Science, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil
| | - Yuri J C Corrêa
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil
| | - Tânia M Vieira
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil
| | - Liza J Severs
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, JMB10, Seattle, WA, 98101, USA
| | - Luiz M Oliveira
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, JMB10, Seattle, WA, 98101, USA
| | - Roseli Soncini
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil.
| |
Collapse
|
10
|
Chiarella SE, Cardet JC, Prakash YS. Sex, Cells, and Asthma. Mayo Clin Proc 2021; 96:1955-1969. [PMID: 34218868 PMCID: PMC8262071 DOI: 10.1016/j.mayocp.2020.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
There are marked sex differences in asthma prevalence and severity. Sex hormones play a central role in these sex biases and directly interact with multiple key cells involved in the pathogenesis of asthma. Here we review the known effects of estrogen, progesterone, and testosterone on airway epithelial cells, airway smooth muscle cells, the mononuclear phagocyte system, innate lymphoid cells, eosinophils, mast cells, T cells, and B cells, all in the context of asthma. Furthermore, we explore unresolved clinical questions, such as the role of sex hormones in the link between asthma and obesity.
Collapse
Affiliation(s)
- Sergio E Chiarella
- Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Juan Carlos Cardet
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN.
| |
Collapse
|
11
|
Roberts G. Origins of allergic airway disease and dealing with environmental allergens. Clin Exp Allergy 2021; 50:131-132. [PMID: 31997522 DOI: 10.1111/cea.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| |
Collapse
|
12
|
Alemao CA, Budden KF, Gomez HM, Rehman SF, Marshall JE, Shukla SD, Donovan C, Forster SC, Yang IA, Keely S, Mann ER, El Omar EM, Belz GT, Hansbro PM. Impact of diet and the bacterial microbiome on the mucous barrier and immune disorders. Allergy 2021; 76:714-734. [PMID: 32762040 DOI: 10.1111/all.14548] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
The prevalence of chronic immune and metabolic disorders is increasing rapidly. In particular, inflammatory bowel diseases, obesity, diabetes, asthma and chronic obstructive pulmonary disease have become major healthcare and economic burdens worldwide. Recent advances in microbiome research have led to significant discoveries of associative links between alterations in the microbiome and health, as well as these chronic supposedly noncommunicable, immune/metabolic disorders. Importantly, the interplay between diet, microbiome and the mucous barrier in these diseases has gained significant attention. Diet modulates the mucous barrier via alterations in gut microbiota, resulting in either disease onset/exacerbation due to a "poor" diet or protection against disease with a "healthy" diet. In addition, many mucosa-associated disorders possess a specific gut microbiome fingerprint associated with the composition of the mucous barrier, which is further influenced by host-microbiome and inter-microbial interactions, dietary choices, microbe immigration and antimicrobials. Our review focuses on the interactions of diet (macronutrients and micronutrients), gut microbiota and mucous barriers (gastrointestinal and respiratory tract) and their importance in the onset and/or progression of major immune/metabolic disorders. We also highlight the key mechanisms that could be targeted therapeutically to prevent and/or treat these disorders.
Collapse
Affiliation(s)
- Charlotte A. Alemao
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Kurtis F. Budden
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Henry M. Gomez
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Saima F. Rehman
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Jacqueline E. Marshall
- Faculty of Science Centre for Inflammation Centenary Institute University of Technology Sydney Sydney NSW Australia
| | - Shakti D. Shukla
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Chantal Donovan
- Faculty of Science Centre for Inflammation Centenary Institute University of Technology Sydney Sydney NSW Australia
| | - Samuel C. Forster
- Department of Molecular and Translational Sciences Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases Monash University Clayton VIC Australia
| | - Ian A. Yang
- Thoracic Program The Prince Charles Hospital Metro North Hospital and Health Service Brisbane QLD Australia
- Faculty of Medicine UQ Thoracic Research Centre The University of Queensland Brisbane QLD Australia
| | - Simon Keely
- Hunter Medical Research Institute Priority Research Centre for Digestive Health and Neurogastroenterology University of Newcastle New Lambton Heights NSW Australia
| | - Elizabeth R. Mann
- Lydia Becker Institute of Immunology and Inflammation University of Manchester Manchester UK
- Faculty of Biology Medicine and Health Manchester Collaborative Centre for Inflammation Research Manchester Academic Health Science Centre University of Manchester Manchester UK
| | - Emad M. El Omar
- St George & Sutherland Clinical School Microbiome Research Centre University of New South Wales Sydney NSW Australia
| | - Gabrielle T. Belz
- Diamantina Institute University of Queensland Woolloongabba QLD Australia
- Department of Medical Biology Walter and Eliza Hall Institute of Medical Research University of Melbourne Parkville VIC Australia
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
- Faculty of Science Centre for Inflammation Centenary Institute University of Technology Sydney Sydney NSW Australia
| |
Collapse
|
13
|
Woo J, Koziol-White C, Panettieri R, Jude J. TGF-β: The missing link in obesity-associated airway diseases? CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100016. [PMID: 34909651 PMCID: PMC8663968 DOI: 10.1016/j.crphar.2021.100016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/19/2023] Open
Abstract
Obesity is emerging as a global public health epidemic. The co-morbidities associated with obesity significantly contribute to reduced quality of life, mortality, and global healthcare burden. Compared to other asthma comorbidities, obesity prominently engenders susceptibility to inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), contributes to greater disease severity and evokes insensitivity to current therapies. Unlike in other metabolic diseases associated with obesity, the mechanistic link between obesity and airway diseases is only poorly defined. Transforming growth factor-β (TGF-β) is a pleiotropic inflammatory cytokine belonging to a family of growth factors with pivotal roles in asthma. In this review, we summarize the role of TGF-β in major obesity-associated co-morbidities to shed light on mechanisms of the diseases. Literature evidence shows that TGF-β mechanistically links many co-morbidities with obesity through its profibrotic, remodeling, and proinflammatory functions. We posit that TGF-β plays a similar mechanistic role in obesity-associated inflammatory airway diseases such as asthma and COPD. Concerning the role of TGF-β on metabolic effects of obesity, we posit that TGF-β has a similar mechanistic role in obesity-associated inflammatory airway diseases in interplay with different comorbidities such as hypertension, metabolic diseases like type 2 diabetes, and cardiomyopathies. Future studies in TGF-β-dependent mechanisms in obesity-associated inflammatory airway diseases will advance our understanding of obesity-induced asthma and help find novel therapeutic targets for prevention and treatment.
Collapse
Affiliation(s)
- Joanna Woo
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
- Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Cynthia Koziol-White
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
- Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Reynold Panettieri
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
- Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
- Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Joseph Jude
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
- Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
- Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| |
Collapse
|
14
|
Roberts G, Almqvist C, Boyle R, Crane J, Hogan SP, Marsland B, Saglani S, Woodfolk JA. Developments allergy in 2019 through the eyes of clinical and experimental allergy, part I mechanisms. Clin Exp Allergy 2020; 50:1294-1301. [PMID: 33283368 DOI: 10.1111/cea.13777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the first of two linked articles, we describe the development in the mechanisms underlying allergy as described by Clinical & Experimental Allergy and other journals in 2019. Experimental models of allergic disease, basic mechanisms, clinical mechanisms and allergens are all covered.
Collapse
Affiliation(s)
- Graham Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| | - C Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - R Boyle
- Department of Paediatrics, Imperial College London, London, UK
| | - J Crane
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - S P Hogan
- Department of Pathology, Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - B Marsland
- Department of Immunology and Pathology, Monash University, Melbourne, Vic., Australia
| | - S Saglani
- National Heart & Lung Institute, Imperial College London, London, UK
| | - J A Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
15
|
Schaefer AL, Ceesay M, Leier JA, Tesch J, Wisenden BD, Pandey S. Factors Contributing to Sex Differences in Mice Inhaling Aspergillus fumigatus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8851. [PMID: 33260764 PMCID: PMC7729525 DOI: 10.3390/ijerph17238851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
Aspergillus fumigatus is a respiratory fungal pathogen and an allergen, commonly detected in flooded indoor environments and agricultural settings. Previous studies in Balb/c mice showed that repeated inhalation of live and dry A. fumigatus spores, without any adjuvant, elevated allergic immune response and airway remodeling. Sex-specific differences can influence host-pathogen interactions and allergic-asthma related outcomes. However, the effect of host sex on immune response, in the context of A. fumigatus exposure, remains unknown. In this study, we quantified the multivariate and univariate immune response of C57BL/6J mice to live, dry airborne A. fumigatus spores. Our results corroborate previous results in Balb/c mice that repeated inhalation of live A. fumigatus spores is sufficient to induce mucus production and inflammation by day 3 post last challenge, and antibody titers and collagen production by day 28 post-challenge. Principal Component Analysis (PCA) showed that females exhibited significantly higher levels of immune components than males did. Taken together, our data indicate that host-sex is an important factor in shaping the immune response against A. fumigatus, and must be considered when modeling disease in animals, in designing diagnostics and therapeutics for A. fumigatus-associated diseases or while drafting evidence-based guidelines for safe mold levels.
Collapse
Affiliation(s)
| | | | | | | | | | - Sumali Pandey
- Biosciences Department, Minnesota State University Moorhead, Moorhead, 56563 MN, USA; (A.L.S.); (M.C.); (J.A.L.); (J.T.); (B.D.W.)
| |
Collapse
|
16
|
Dolence JJ, Kita H. Allergic sensitization to peanuts is enhanced in mice fed a high-fat diet. AIMS ALLERGY AND IMMUNOLOGY 2020; 4:88-99. [PMID: 38304556 PMCID: PMC10831907 DOI: 10.3934/allergy.2020008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
The incidence of peanut (PN) allergy is on the rise. As peanut allergy rates have continued to climb over the past few decades, obesity rates have increased to record highs, suggesting a link between obesity and the development of peanut allergy. While progress has been made, much remains to be learned about the mechanisms driving the development of allergic immune responses to peanut. Remaining unclear is whether consuming a Western diet, a diet characterized by overeating foods rich in saturated fat, salt, and refined sugars, supports the development of PN allergy. To address this, we fed mice a high fat diet to induce obesity. Once diet-induced obesity was established, mice were exposed to PN flour via the airways using our 4-week inhalation model. Mice were subsequently challenged with PN extract to induce anaphylaxis. Mice fed a high-fat diet developed significantly higher titers of PN-specific IgE, as well as stronger anaphylactic responses, when compared to their low-fat diet fed counterparts. These results suggest that obesity linked to eating a high-fat diet promotes the development of allergic immune responses to PN in mice. Such knowledge is critical to advance our growing understanding of the immunology of PN allergy.
Collapse
Affiliation(s)
- Joseph J. Dolence
- Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849
| | - Hirohito Kita
- Department of Medicine and Immunology, Mayo Clinic Scottsdale, Scottsdale, AZ 85259
| |
Collapse
|
17
|
De Martinis M, Sirufo MM, Suppa M, Di Silvestre D, Ginaldi L. Sex and Gender Aspects for Patient Stratification in Allergy Prevention and Treatment. Int J Mol Sci 2020; 21:E1535. [PMID: 32102344 PMCID: PMC7073150 DOI: 10.3390/ijms21041535] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Allergies are rapidly worsening in recent decades, representing the most common immunological diseases. The mechanism of disorders such as asthma, rhinocongiuntivitis, urticaria, atopic dermatitis, food and drug allergies, and anaphylaxis still remain unclear and consequently treatments is mostly still symptomatic and aspecific while developments of new therapies are limited. A growing amount of data in the literature shows us how the prevalence of allergic diseases is different in both sexes and its changes over the course of life. Genes, hormones, environmental and immunological factors affect sex disparities associated with the development and control of allergic diseases, while they more rarely are considered and reported regarding their differences related to social, psychological, cultural, economic, and employment aspects. This review describes the available knowledge on the role of sex and gender in allergies in an attempt to improve the indispensable gender perspective whose potential is still underestimated while it represents a significant turning point in research and the clinic. It will offer insights to stimulate exploration of the many aspects still unknown in this relationship that could ameliorate the preventive, diagnostic, and therapeutic strategies in allergic diseases.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (D.D.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (D.D.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Mariano Suppa
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Daniela Di Silvestre
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (D.D.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (D.D.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| |
Collapse
|