1
|
Ando Y, Sato S, Ebisawa M, Sugiura S, Ito K, Nagao M, Fujisawa T, Yoshihara S, Peach study Group. Peach component-specific IgE measurement helps to differentiate between local and systemic reactions in peach-allergic Japanese patients. Allergol Int 2025; 74:233-239. [PMID: 39741024 DOI: 10.1016/j.alit.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Component-resolved diagnostics are used to diagnose food allergies. Currently, reports on sensitization profiles using peach-allergen components in a multicenter setting are lacking. In this study, sensitization profiling of peach allergy was performed to evaluate the clinical utility of each component specific-immunoglobulin E antibody (sIgE ab) test. METHODS Sixty-seven patients with peach allergy were enrolled at four Japanese centers and classified into a local reaction group (LR) with only oral or pharyngeal mucosal symptoms in 36 patients and a systemic reaction group (SR) without LR in 31 patients. Serum sIgE ab tests to peach crude, Pru p 1, Pru p 3, Pru p 4, Pru p 7, and tree pollen were conducted. RESULTS In the receiver operating characteristic curve analysis, Pru p 1 had the highest area under the curve (AUC) for diagnosing LR, followed by Pru p 4, which outperformed peach crude allergen. Pru p 7 had the highest AUC for diagnosing SR, with the other peach allergen components and peach crude allergen showing lower values. CONCLUSIONS Sensitization to Pru p 1 was associated with LRs, while sensitization to Pru p 7 was associated with SRs; approximately one-third of patients in the SR group tested negative for the titer of peach crude sIgE ab, many of whom tested positive for the titer of Pru p 7 sIgE ab. We conclude that measuring Pru p 1, Pru p 4, and Pru p 7 sIgE ab titers is useful to differentiate LRs and SRs in peach-allergic Japanese patients.
Collapse
Affiliation(s)
- Yusuke Ando
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | - Sakura Sato
- Department of Allergy, Clinical Research Center for Allergy and Rheumatology, NHO, Sagamihara National Hospital, Kanagawa, Japan
| | - Motohiro Ebisawa
- Department of Allergy, Clinical Research Center for Allergy and Rheumatology, NHO, Sagamihara National Hospital, Kanagawa, Japan
| | - Shiro Sugiura
- Aichi Children's Health and Medical Center, Aichi, Japan
| | - Komei Ito
- Aichi Children's Health and Medical Center, Aichi, Japan
| | | | | | - Shigemi Yoshihara
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan.
| | | |
Collapse
Collaborators
Shinya Yoshihara, Manabu Miyamoto, Fumitaka Takayanagi, Masaya Kato, Yuji Fujita, Motoko Nakayama,
Collapse
|
2
|
Giusti D, Guemari A, Perotin JM, Fontaine JF, Tonye Libyh M, Gatouillat G, Tabary T, Pham BN, Vitte J. Molecular allergology: a clinical laboratory tool for precision diagnosis, stratification and follow-up of allergic patients. Clin Chem Lab Med 2024; 62:2339-2355. [PMID: 38815141 DOI: 10.1515/cclm-2024-0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
Identification of the molecular culprits of allergic reactions leveraged molecular allergology applications in clinical laboratory medicine. Molecular allergology shifted the focus from complex, heterogeneous allergenic extracts, e.g. pollen, food, or insect venom, towards genetically and immunologically defined proteins available for in vitro diagnosis. Molecular allergology is a precision medicine approach for the diagnosis, stratification, therapeutic management, follow-up and prognostic evaluation of patients within a large range of allergic diseases. Exclusively available for in vitro diagnosis, molecular allergology is nonredundant with any of the current clinical tools for allergy investigation. As an example of a major application, discrimination of genuine sensitization from allergen cross-reactivity at the molecular level allows the proper targeting of the culprit allergen and thus dramatically improves patient management. This review aims at introducing clinical laboratory specialists to molecular allergology, from the biochemical and genetic bases, through immunological concepts, to daily use in the diagnosis and management of allergic diseases.
Collapse
Affiliation(s)
- Delphine Giusti
- Immunology Laboratory, Biology and Pathology Department, University Hospital of Reims, Reims, France
- University of Reims Champagne Ardenne, EA7509 IRMAIC, Reims, France
| | - Amir Guemari
- Univ Montpellier, Desbrest Institute of Epidemiology and Public Health (IDESP), INSERM, Montpellier, France
| | - Jeanne-Marie Perotin
- Department of Respiratory Diseases, University Hospital of Reims, Reims, France
- University of Reims Champagne Ardenne, INSERM UMR 1250, Reims, France
| | | | - Marcelle Tonye Libyh
- Immunology Laboratory, Biology and Pathology Department, University Hospital of Reims, Reims, France
| | - Gregory Gatouillat
- Immunology Laboratory, Biology and Pathology Department, University Hospital of Reims, Reims, France
| | - Thierry Tabary
- Immunology Laboratory, Biology and Pathology Department, University Hospital of Reims, Reims, France
| | - Bach-Nga Pham
- Immunology Laboratory, Biology and Pathology Department, University Hospital of Reims, Reims, France
- University of Reims Champagne Ardenne, EA7509 IRMAIC, Reims, France
| | - Joana Vitte
- Immunology Laboratory, Biology and Pathology Department, University Hospital of Reims, Reims, France
- University of Reims Champagne Ardenne, INSERM UMR 1250, Reims, France
| |
Collapse
|
3
|
Biagioni B, Scala E, Cecchi L. What molecular allergy teaches us about genetics and epidemiology of allergies. Curr Opin Allergy Clin Immunol 2024; 24:280-290. [PMID: 38640142 DOI: 10.1097/aci.0000000000000990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
PURPOSE OF REVIEW To delineate pertinent information regarding the application of molecular allergology within the realm of both genetic and epidemiological facets of allergic diseases. RECENT FINDINGS The emergence of molecular allergy has facilitated the comprehension of the biochemical characteristics of allergens originating from diverse sources. It has allowed for the exploration of sensitization trajectories and provided novel insights into the influence of genetics and environmental exposure on the initiation and development of allergic diseases. This review delves into the primary discoveries related to the genetics and epidemiology of allergies, facilitated by the application of molecular allergy. It also scrutinizes the impact of environmental exposure across varied geoclimatic, socioeconomic, and lifestyle contexts. Additionally, the review introduces specific models of molecular allergy within the realms of plants and animals. SUMMARY The utilization of molecular allergy in clinical practice holds crucially acknowledged diagnostic and therapeutic implications. From a research standpoint, there is a growing need for the widespread adoption of molecular diagnostic tools to achieve a more profound understanding of the epidemiology and natural progression of allergic diseases.
Collapse
Affiliation(s)
- Benedetta Biagioni
- Allergy and Clinical Immunology Unit, San Giovanni di Dio Hospital, Florence
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit, IDI-IRCCS, Rome
| | - Lorenzo Cecchi
- SOSD Allergology and Clinical Immunology, USL Toscana Centro, Prato, Italy
| |
Collapse
|
4
|
Sharma E, Vitte J. A systematic review of allergen cross-reactivity: Translating basic concepts into clinical relevance. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100230. [PMID: 38524786 PMCID: PMC10959674 DOI: 10.1016/j.jacig.2024.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/29/2023] [Accepted: 01/03/2024] [Indexed: 03/26/2024]
Abstract
Access to the molecular culprits of allergic reactions allows for the leveraging of molecular allergology as a new precision medicine approach-one built on interdisciplinary, basic, and clinical knowledge. Molecular allergology relies on the use of allergen molecules as in vitro tools for the diagnosis and management of allergic patients. It complements the conventional approach based on skin and in vitro allergen extract testing. Major applications of molecular allergology comprise accurate identification of the offending allergen thanks to discrimination between genuine sensitization and allergen cross-reactivity, evaluation of potential severity, patient-tailored choice of the adequate allergen immunotherapy, and prediction of its expected efficacy and safety. Allergen cross-reactivity, defined as the recognition of 2 or more allergen molecules by antibodies or T cells of the same specificity, frequently interferes with allergen extract testing. At the mechanistic level, allergen cross-reactivity depends on the allergen, the host's immune response, and the context of their interaction. The multiplicity of allergen molecules and families adds further difficulty. Understanding allergen cross-reactivity at the immunologic level and translating it into a daily tool for the management of allergic patients is further complicated by the ever-increasing number of characterized allergenic molecules, the lack of dedicated resources, and the need for a personalized, patient-centered approach. Conversely, knowledge sharing paves the way for improved clinical use, innovative diagnostic tools, and further interdisciplinary research. Here, we aimed to provide a comprehensive and unbiased state-of-the art systematic review on allergen cross-reactivity. To optimize learning, we enhanced the review with basic, translational, and clinical definitions, clinical vignettes, and an overview of online allergen databases.
Collapse
Affiliation(s)
| | - Joana Vitte
- Aix-Marseille University, MEPHI, IHU Méditerranée Infection, Marseille, France
- Desbrest Institute of Epidemiology and Public Health (IDESP), University of Montpellier, INSERM, Montpellier, France
- University of Reims Champagne-Ardenne, INSERM UMR-S 1250 P3CELL and University Hospital of Reims, Immunology Laboratory, Reims, France
| |
Collapse
|
5
|
Hamada Y, Maruyama N, Saito A, Iwata M, Nakamura Y, Kamide Y, Sekiya K, Lidholm J, Fukutomi Y. Increased allergic episodes induced by Japanese apricot following the Cupressaceae pollen season in adult patients mono-sensitized to Pru p 7. Allergol Int 2024; 73:168-170. [PMID: 37718153 DOI: 10.1016/j.alit.2023.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/13/2023] [Accepted: 08/20/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Yuto Hamada
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Nobuyuki Maruyama
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Akemi Saito
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Maki Iwata
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Yuto Nakamura
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Yosuke Kamide
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Kiyoshi Sekiya
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | | | - Yuma Fukutomi
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan.
| |
Collapse
|
6
|
Krikeerati T, Rodsaward P, Nawiboonwong J, Pinyopornpanish K, Phusawang S, Sompornrattanaphan M. Revisiting Fruit Allergy: Prevalence across the Globe, Diagnosis, and Current Management. Foods 2023; 12:4083. [PMID: 38002141 PMCID: PMC10670478 DOI: 10.3390/foods12224083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Fruit allergies manifest with a diverse array of clinical presentations, ranging from localized contact allergies and oral allergy syndrome to the potential for severe systemic reactions including anaphylaxis. The scope of population-level prevalence studies remains limited, largely derived from single-center or hospital-based investigations. In this comprehensive review, we conducted a systematic literature search spanning the years 2009 to 2023, with full acknowledgment of potential analytical biases, to provide a global overview of fruit allergy prevalence. The primary mechanistic underpinning of fruit allergies stems from cross-reactivity between aeroallergens and food allergens, a consequence of structurally similar epitopes-a phenomenon recognized as pollen food allergy syndrome (PFAS). In the era of molecular allergology, numerous studies have dissected allergen components with substantial clinical relevance. Within this review, we explore important allergenic molecules found in plant-based foods, scrutinize pertinent cross-reactivity patterns, and offer insights into management recommendations. Additionally, we compare guideline recommendations to enhance clinical understanding and inform decision making.
Collapse
Affiliation(s)
- Thanachit Krikeerati
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Allergy and Immunology, Mahidol University, Bangkok 10700, Thailand
| | - Pongsawat Rodsaward
- Division of Immunology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jutamard Nawiboonwong
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Kanokkarn Pinyopornpanish
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, Chiangmai University, Chiangmai 50200, Thailand;
| | - Songwut Phusawang
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Mongkhon Sompornrattanaphan
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Allergy and Immunology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
7
|
Vílchez-Sánchez F, Rodríguez-Pérez R, Gómez-Traseira C, Dominguez-Ortega J, Hernández-Rivas L, García IL, Quirce S, Pedrosa M. Sensitisation to peach allergen Pru p 7 is associated with severe clinical symptoms in a Spanish population. Pediatr Allergy Immunol 2023; 34:e14030. [PMID: 37747756 DOI: 10.1111/pai.14030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Pru p 7 has been reported as a major allergen in peach allergy, associated with severe clinical symptoms and related to IgE sensitisation to cypress pollen. The main objective of this study was to prospectively evaluate the frequency of sensitisation to Pru p 7 and its clinical relevance amongst pediatric patients with peach allergy in Madrid (Spain). METHODS Patients with a history of IgE-mediated symptoms (oral allergy syndrome, urticaria/angioedema, rhinoconjunctivitis/asthma, gastrointestinal symptoms, or anaphylaxis) occurring within 2 h after peach intake or contact were prospectively recruited from February 2020 to September 2021. Skin tests, sIgE by ImmunoCAP® (Pru p 1, Pru p 3, Pru p 4, Pru p 7, and Cupressus arizonica) and oral food challenge (OFC) were performed. The study was approved by the local Ethics Committee (PI-4513). RESULTS Ninety-two patients were included (53.3% male); median age, 10 (IQR 6.0-14.75) years. Seventy-four (80.4%) patients had a reaction after ingestion of fresh peach (25.0% from peel, 23.9% from pulp, and 44.6% from both). Fifteen (16.3%) patients were sensitised to Pru p 7. Upper airway symptoms, anaphylaxis, and grade 2 reactions were statistically more frequent in patients sensitised to Pru p 7. Seven (7.9%) patients presented with exercise as a cofactor, four of whom were sensitised to Pru p 7 (p = .001). Patients sensitised to Pru p 7 were significantly more likely to have a positive OFC result than patients who were not (p = .008). Four patients who reacted to peach at OFC were sensitised to Pru p 7. Specific IgE against Cupressus arizonica pollen was positive in 25 (62.5%) patients. CONCLUSIONS Pru p 7 sensitisation was observed in 16.3% of our population and was related to severe reactions, upper airway symptoms, anaphylaxis, and the presence of an eliciting cofactor.
Collapse
Affiliation(s)
- Francisca Vílchez-Sánchez
- Department of Allergy, Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Rosa Rodríguez-Pérez
- Department of Allergy, Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Carmen Gómez-Traseira
- Department of Allergy, Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Javier Dominguez-Ortega
- Department of Allergy, Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | | | | | - Santiago Quirce
- Department of Allergy, Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - María Pedrosa
- Department of Allergy, Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| |
Collapse
|
8
|
Kallen EJJ, Revers A, Fernández-Rivas M, Asero R, Ballmer-Weber B, Barreales L, Belohlavkova S, de Blay F, Clausen M, Dubakiene R, Ebisawa M, Fernández-Perez C, Fritsche P, Fukutomi Y, Gislason D, Hoffmann-Sommergruber K, Jedrzejczak-Czechowicz M, Knulst AC, Kowalski ML, Kralimarkova T, Lidholm J, Metzler C, Mills ENC, Papadopoulos NG, Popov TA, Purohit A, Reig I, Seneviratne SL, Sinaniotis A, Takei M, Versteeg SA, Vassilopoulou AE, Vieths S, Welsing PMJ, Zwinderman AH, Le TM, Van Ree R. A European-Japanese study on peach allergy: IgE to Pru p 7 associates with severity. Allergy 2023; 78:2497-2509. [PMID: 37334557 DOI: 10.1111/all.15783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Pru p 3 and Pru p 7 have been implicated as risk factors for severe peach allergy. This study aimed to establish sensitization patterns to five peach components across Europe and in Japan, to explore their relation to pollen and foods and to predict symptom severity. METHODS In twelve European (EuroPrevall project) and one Japanese outpatient clinic, a standardized clinical evaluation was conducted in 1231 patients who reported symptoms to peach and/or were sensitized to peach. Specific IgE against Pru p 1, 2, 3, 4 and 7 and against Cup s 7 was measured in 474 of them. Univariable and multivariable Lasso regression was applied to identify combinations of parameters predicting severity. RESULTS Sensitization to Pru p 3 dominated in Southern Europe but was also quite common in Northern and Central Europe. Sensitization to Pru p 7 was low and variable in the European centers but very dominant in Japan. Severity could be predicted by a model combining age of onset of peach allergy, probable mugwort, Parietaria pollen and latex allergy, and sensitization to Japanese cedar pollen, Pru p 4 and Pru p 7 which resulted in an AUC of 0.73 (95% CI 0.73-0.74). Pru p 3 tended to be a risk factor in South Europe only. CONCLUSIONS Pru p 7 was confirmed as a significant risk factor for severe peach allergy in Europe and Japan. Combining outcomes from clinical and demographic background with serology resulted in a model that could better predict severity than CRD alone.
Collapse
Affiliation(s)
- E J J Kallen
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - A Revers
- Epidemiology and Data Science (EDS), Amsterdam University Medical Center location University of Amsterdam, Amsterdam, The Netherlands
| | - M Fernández-Rivas
- Department of Allergy, Hospital Clinico San Carlos, Universidad Complutense, IdISSC, ARADyAL, Madrid, Spain
| | - R Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - B Ballmer-Weber
- Allergy Unit, Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
- Clinic for Dermatology and Allergology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - L Barreales
- Department of Allergy, Hospital Clinico San Carlos, Universidad Complutense, IdISSC, ARADyAL, Madrid, Spain
| | - S Belohlavkova
- Medical Faculty Pilsen, Charles University Prague, Prague, Czech Republic
| | - F de Blay
- Allergy Division, Chest Disease Department, Strasbourg University Hospital, Strasbourg, France
| | - M Clausen
- Landspitali University Hospital, University of Iceland, Faculty of Medicine, Reykjavik, Iceland
| | - R Dubakiene
- Clinic of Chest diseases, Allergology and Immunology Institute of Clinic al Medicine Medical Faculty Vilnius University, Vilnius, Lithuania
| | - M Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - C Fernández-Perez
- Servicio de Medicina Preventiva, Area De Santiago de Compostela y Barbanza, Instituto de Investigación Sanitaria de Santiago (IDIS) A Coruña, Santiago, Spain
| | - P Fritsche
- Allergy Unit, Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - Y Fukutomi
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - D Gislason
- Landspitali University Hospital, University of Iceland, Faculty of Medicine, Reykjavik, Iceland
| | - K Hoffmann-Sommergruber
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - M Jedrzejczak-Czechowicz
- Department of Immunology and Allergy, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - A C Knulst
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - M L Kowalski
- Department of Immunology and Allergy, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - T Kralimarkova
- Clinic of Occupational Diseases, University Hospital Sv. Ivan Rilski, Sofia, Bulgaria
| | - J Lidholm
- Thermo Fisher Scientific, Uppsala, Sweden
| | - C Metzler
- Allergy Unit, Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - E N C Mills
- Division of Infection, Immunity and Respiratory Medicine, Manchester Institute of Biotechnology & Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - N G Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, University of Athens, Athens, Greece
| | - T A Popov
- Clinic of Occupational Diseases, University Hospital Sv. Ivan Rilski, Sofia, Bulgaria
| | - A Purohit
- Allergy Division, Chest Disease Department, Strasbourg University Hospital, Strasbourg, France
| | - I Reig
- Allergist and Pediatrician, Nápoles y Sicilia Health Center, Valencia, Spain
| | - S L Seneviratne
- Institute of Immunity and Transplantation, University College London, London, UK
| | - A Sinaniotis
- Allergy Department, 2nd Pediatric Clinic, University of Athens, Athens, Greece
| | - M Takei
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - S A Versteeg
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A E Vassilopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - S Vieths
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - P M J Welsing
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - A H Zwinderman
- Epidemiology and Data Science (EDS), Amsterdam University Medical Center location University of Amsterdam, Amsterdam, The Netherlands
| | - T M Le
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - R Van Ree
- Departments of Experimental Immunology and of Otorhinolaryngology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, et alDramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Show More Authors] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
10
|
Structural Basis for the IgE-Binding Cross-Reacting Epitopic Peptides of Cup s 3, a PR-5 Thaumatin-like Protein Allergen from Common Cypress (Cupressus sempervirens) Pollen. ALLERGIES 2023. [DOI: 10.3390/allergies3010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The present work was aimed at identifying the IgE-binding epitopic regions on the surface of the Cup s 3 allergen from the common cypress Cupressus sempervirens, that are possibly involved in the IgE-binding cross-reactivity reported between Cupressaceae species. Three main IgE-binding epitopic regions were mapped on the molecular surface of Cup s 3, the PR-5 thaumatin-like allergen of common cypress Cupressus sempervirens. They correspond to exposed areas containing either electropositive (R, K) or electronegative (D, E) residues. A coalescence occurs between epitopes #1 and #2, that creates an extended IgE-binding regions on the surface of the allergen. Epitope #3 contains a putative N-glycosylation site which is actually glycosylated and could therefore comprise a glycotope. However, most of the allergenic potency of Cup s 3 depends on non-glycosylated epitopic peptides. The corresponding regions of thaumatin-like allergens from other closely related Cupressaceae (Cryptomeria, Juniperus, Thuja) exhibit a very similar conformation that should account for the IgE-binding cross-reactivity observed among the Cupressaceae allergens.
Collapse
|
11
|
Ohashi-Doi K, Utsumi D, Mitobe Y, Fujinami K. Japanese Cedar Pollen Allergens in Japan. Curr Protein Pept Sci 2022; 23:837-850. [PMID: 36200245 DOI: 10.2174/1389203723666220930155719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 01/20/2023]
Abstract
Pollen from members of the Cupressaceae tree family is one of the most important causes of allergic disease in the world. Cryptomeria japonica (Japanese cedar) and Chamaecyparis obtusa (Japanese cypress) are Japan's most common tree species. The pollen dispersal season is mainly from February to May. The major allergens of Japanese cedar and Japanese cypress exhibit high amino acid sequence similarity due to the phylogenetic relationship between the two species. An epidemiological study has shown that the prevalence of Japanese cedar pollinosis is approximately 40%. Younger children (5 to 9 years old) showed a high prevalence of Japanese cedar pollinosis as 30% in 2019, indicating that season pollinosis is getting worse. Pharmacotherapy is the most common treatment for pollinosis induced by Japanese cedar and Japanese cypress. Patients' satisfaction with pharmacotherapy is low due to insufficient experienced effect and daytime somnolence. Unlike pharmacotherapy, allergy immunotherapy (AIT) addresses the basic immunological mechanisms of allergic disease and activates protective allergen-reactive pathways of the immune system. AIT is now recognized as the only treatment option with the potential to provide long-term post-treatment benefits and alter the natural course of the allergic disease, including Japanese cedar pollinosis.
Collapse
Affiliation(s)
- Katsuyo Ohashi-Doi
- Medical Affairs, Torii Pharmaceutical Co., Ltd., 4-1, Nihonbashi-Honcho 3-chome, Chuo-ku, Tokyo, 103-8439, Japan
| | - Daichi Utsumi
- Medical Affairs, Torii Pharmaceutical Co., Ltd., 4-1, Nihonbashi-Honcho 3-chome, Chuo-ku, Tokyo, 103-8439, Japan
| | - Yuko Mitobe
- Medical Affairs, Torii Pharmaceutical Co., Ltd., 4-1, Nihonbashi-Honcho 3-chome, Chuo-ku, Tokyo, 103-8439, Japan
| | - Koji Fujinami
- Medical Affairs, Torii Pharmaceutical Co., Ltd., 4-1, Nihonbashi-Honcho 3-chome, Chuo-ku, Tokyo, 103-8439, Japan
| |
Collapse
|
12
|
Iizuka T, Barre A, Rougé P, Charpin D, Scala E, Baudin B, Aizawa T, Sénéchal H, Poncet P. Gibberellin-regulated proteins: Emergent allergens. FRONTIERS IN ALLERGY 2022; 3:877553. [PMID: 36157274 PMCID: PMC9500206 DOI: 10.3389/falgy.2022.877553] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
About 10 years ago, a protein family was shown for the first time to contain allergenic members, gibberellin-regulated protein (GRP). The first reported member was from peach, Pru p 7. One can hypothesize that it was not detected before because its physicochemical characteristics overlap with those of lipid transfer protein (LTP), a well-known allergen, or because the exposure to GRP increased due to an increase in the gibberellin phythormone level in plant food, either exogenous or endogenous. Like LTPs, GRPs are small cationic proteins with disulfide bridges, are resistant to heat and proteolytic cleavage, and are involved in the defense of the plant. Besides peach, GRP allergens have been described in Japanese apricot (Pru m 7), sweet cherry (Pru av 7), orange (Cit s 7), pomegranate (Pun g 7), bell pepper (Cap a 7), strawberry (Fra a GRP), and also in pollen with a restriction to Cupressaceae tree family (Cup s 7, Cry j 7, and Jun a 7). IgE cross-reactivities were described between GRPs, and the reported peach/cypress and citrus/cypress syndromes may therefore be explained because of these GRP cross-reactivities. GRPs are clinically relevant, and severe adverse reactions may sometimes occur in association with cofactors. More than 60% and up to 95% sequence identities are calculated between various allergenic GRPs, and three-dimensional models show a cleft in the molecule and predict at least three epitopic regions. The structure of the protein and its properties and the matrix effect in the original allergenic source should be unraveled to understand why, despite the ubiquity of the protein family in plants, only a few members are able to sensitize patients.
Collapse
Affiliation(s)
- T. Iizuka
- Protein Science Laboratory, Hokkaido University, Sapporo, Japan
| | - A. Barre
- UMR 152 Pharma-Dev, Toulouse 3 University, Toulouse, France
| | - P. Rougé
- UMR 152 Pharma-Dev, Toulouse 3 University, Toulouse, France
| | | | - E. Scala
- “Clinical and Laboratory Molecular Allergy” Unit, Istituto Dermopatico Dell’Immacolata—IRCCS, Rome, Italy
| | - B. Baudin
- Biochemistry Department, Armand Trousseau Children Hospital, APHP, Paris, France
| | - T. Aizawa
- Protein Science Laboratory, Hokkaido University, Sapporo, Japan
| | - H. Sénéchal
- “Allergy / Environment” Research Team, Armand Trousseau Children Hospital, APHP, Paris, France
| | - P. Poncet
- “Allergy / Environment” Research Team, Armand Trousseau Children Hospital, APHP, Paris, France
- Immunology Department, Institut Pasteur, Paris, France
- Correspondence: P. Poncet
| |
Collapse
|
13
|
Kawai N, Hirakawa Y, Matsumoto S, Itai A, Matsunaga K, Narita H, Momma K. Expression analysis of gibberellin-regulated protein in peach by reverse transcription quantitative PCR. Biosci Biotechnol Biochem 2022; 86:1459-1461. [PMID: 35867877 DOI: 10.1093/bbb/zbac123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022]
Abstract
Gibberellin-regulated protein (GRP) is a fruit severe allergen. The amounts of GRP expression normalized against actin in peach were determined by RT-qPCR. The results were consistent with those determined by ELISA. The GRP expression was more evident in flesh than peel and increased rapidly in maturing period. This approach is applicable to estimate the amount of GRP in other plants.
Collapse
Affiliation(s)
- Natsuki Kawai
- Faculty of Home Economics, Kyoto Women's University, Kyoto, Japan.,Kyoto College of Nutritional and Medical Science, Kyoto, Japan
| | - Yuki Hirakawa
- Faculty of Home Economics, Kyoto Women's University, Kyoto, Japan
| | - Shinya Matsumoto
- Faculty of Home Economics, Kyoto Women's University, Kyoto, Japan
| | - Akihiro Itai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan.,Department of Integrative Medical Science for Allergic Disease, Fujita Health University School of Medicine, Aichi, Japan
| | - Kayoko Matsunaga
- Department of Integrative Medical Science for Allergic Disease, Fujita Health University School of Medicine, Aichi, Japan
| | - Hiroshi Narita
- Faculty of Home Economics, Kyoto Women's University, Kyoto, Japan.,Kyoto College of Nutritional and Medical Science, Kyoto, Japan
| | - Keiko Momma
- Faculty of Home Economics, Kyoto Women's University, Kyoto, Japan
| |
Collapse
|
14
|
Okazaki F, Momma K, Hirakawa Y, Kawai N, Yamaguchi-Murakami Y, Adachi R, Mori Y, Kondo Y, Narita H. Determination of Severe Peach Allergens, Gibberellin-Regulated Protein, and Lipid Transfer Protein, Using Monoclonal Antibodies. J Nutr Sci Vitaminol (Tokyo) 2022; 68:221-227. [PMID: 35768253 DOI: 10.3177/jnsv.68.221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this study, monoclonal antibodies against two major fruit allergens-gibberellin-regulated protein (GRP) and lipid transfer protein (LTP)-were established. Sandwich enzyme-linked immunosorbent assays (ELISAs) for the quantification of peach GRP and LTP were constructed using these antibodies. Both ELISAs reacted with the respective antigens when heated at 100ºC for 20 min, but not when reduced with sodium sulfite, indicating that GRP and LTP are heat-stable, while disulfide bonds play an important role in their native steric structures. GRP and LTP in peaches and peach-containing foods were quantified by these ELISAs. In both cases, there were few differences among peach cultivars normally available on the market; however, concentrations were higher when the peach was ripe. GRP was localized in the pulp of the peach, while LTP was present in the peel. They could be quantified in peach-containing beverages, as well as in dried and canned peaches. GRP in Japanese apricots could also be determined using this ELISA, as its amino acid sequence is the same as that of peach GRP. Then, high concentrations of GRP were detected in umeboshi, a traditional Japanese pickled apricot. Peach leaves were found to have a high LTP content, accordingly, LTP was also observed in lotions containing peach leaf extract. The ability to quantitatively detect GRP and LTP in this study will, therefore, contribute to the improvement of component-resolved diagnoses and quality of life in patients allergic to peaches.
Collapse
Affiliation(s)
- Fumiko Okazaki
- Department of Food Science and Human Nutrition, Faculty of Agriculture, Ryukoku University
| | - Keiko Momma
- Department of Food and Nutrition, Kyoto Women's University
| | - Yuki Hirakawa
- Department of Food and Nutrition, Kyoto Women's University
| | | | | | - Reiko Adachi
- Division of Biochemistry, National Institute of Health Sciences
| | - Yuji Mori
- Department of Pediatrics, Fujita Health University Bantane Hospital
| | - Yasuto Kondo
- Department of Pediatrics, Fujita Health University Bantane Hospital
| | - Hiroshi Narita
- Department of Food and Nutrition, Kyoto Women's University.,Kyoto College of Nutritional and Medical Sciences
| |
Collapse
|
15
|
Takei M, Nin C, Iizuka T, Pawlikowski M, Selva MA, Chantran Y, Nakajima Y, Zheng J, Aizawa T, Ebisawa M, Sénéchal H, Poncet P. Capsicum Allergy: Involvement of Cap a 7, a New Clinically Relevant Gibberellin-Regulated Protein Cross-Reactive With Cry j 7, the Gibberellin-Regulated Protein From Japanese Cedar Pollen. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:328-338. [PMID: 35557497 PMCID: PMC9110916 DOI: 10.4168/aair.2022.14.3.328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 11/20/2022]
Abstract
The Capsicum genus belongs to the Solanaceae family. Bell or chili peppers are consumed worldwide, but allergy to Capsicum is rare. It is involved in the celery-birch-mugwort-spice syndrome and cross-reactivities were reported with latex. Several allergens have been described, but only 2 are referenced in the World Health Organization/International Union of Immunological Societies allergen data bank, a thaumatin-like protein and a profilin. A patient allergic to bell/chili pepper, peach, orange and Japanese cedar pollen was clinically and biologically analyzed including direct and competitive immunoblots and basophil activation tests (BATs) with allergenic source extracts and recombinant gibberellin-regulated proteins (GRPs). The patient was shown to be sensitized to Cap a 7, the GRP of Capsicum annuum newly described herein. Cross-reactivities were demonstrated between various GRPs from bell/chili pepper, peach, orange and Japanese cedar pollen either in native form in the different extracts or as recombinant allergens. A similar immunoglobulin E reactivity was found also in Capsicum chinense and against snakin-1, the GRP from potato. The patient showed a positive BAT with recombinant Cry j 7, Pru p 7 and Cap a 7, but not with recombinant snakin-1. Despite the ubiquitous nature of GRPs in plants and the immunochemical cross-reactivity observed between different GRPs, clinically relevant sensitization to this protein family seems restricted to some allergenic sources, often associated with Cupressaceae pollen allergy, and to some patients, therefore reflecting very specific and peculiar mechanisms of conditional sensitization.
Collapse
Affiliation(s)
- Mari Takei
- Department of Allergy, Clinical Research Center of Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Charles Nin
- Allergy & Environment Research Team, Armand Trousseau Children Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France
| | - Tomona Iizuka
- Science Protein Laboratory, Hokkaido University, Sapporo, Japan
| | - Marine Pawlikowski
- Allergy & Environment Research Team, Armand Trousseau Children Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France
| | - Marie-Ange Selva
- Immunology Department, Armand Trousseau Children Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France
| | - Yannick Chantran
- Immunology Department, Armand Trousseau Children Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France
| | - Yurie Nakajima
- Science Protein Laboratory, Hokkaido University, Sapporo, Japan
| | - Jingkang Zheng
- Science Protein Laboratory, Hokkaido University, Sapporo, Japan
| | - Tomoyasu Aizawa
- Science Protein Laboratory, Hokkaido University, Sapporo, Japan
| | - Motohiro Ebisawa
- Department of Allergy, Clinical Research Center of Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Hélène Sénéchal
- Allergy & Environment Research Team, Armand Trousseau Children Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France
| | - Pascal Poncet
- Allergy & Environment Research Team, Armand Trousseau Children Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France
- Immunology Department, Institut Pasteur, Paris, France.
| |
Collapse
|
16
|
Kleine-Tebbe J, Brans R, Jappe U. Allergene - Auslöser der verschiedenen Allergievarianten. ALLERGO JOURNAL 2022; 31:16-31. [PMID: 35340910 PMCID: PMC8934605 DOI: 10.1007/s15007-022-4980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jörg Kleine-Tebbe
- Dermatologie, Umweltmedizin, Allergie- und Asthmazentrum Westend, Spandauer Damm 130, Haus 9, 14050 Berlin, Germany
| | | | - Uta Jappe
- Oberärztin, Klinische und Molekulare Allergologie - Forschungszentrum Borstel, Parkallee 35, 23845 Borstel, Germany
| |
Collapse
|
17
|
He XR, Yang Y, Kang S, Chen YX, Zheng PY, Chen GX, Chen XM, Cao MJ, Jin T, Liu GM. Crystal Structure Analysis and IgE Epitope Mapping of Allergic Predominant Region in Scylla paramamosain Filamin C, Scy p 9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1282-1292. [PMID: 35040643 DOI: 10.1021/acs.jafc.1c07922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Filamin C (FLN c) is a novel allergen in shellfish. In this study, FLN c from Scylla paramamosain was divided into three regions for recombinant expression based on the number of domains and amino acids. Using dot blot and basophil activation tests, the allergic predominant region of FLN c was determined to be 336-531 amino acid positions (named FLN c-M). It was confirmed that by X-ray diffraction, the crystal structure of FLN c-M with immunoglobulin-like folding at a resolution of 1.7 Å was obtained. The monomer was a barrel structure composed of 16 β-strands and 2 α-helices. Three conformational epitopes were predicted, six linear epitopes were verified by serological test, and they were positioned on the crystal structure of FLN c-M. For the first time, the crystal structure of the allergic predominant region of FLN c was determined, and it provided an accurate template for the localization of IgE epitopes.
Collapse
Affiliation(s)
- Xin-Rong He
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Yang Yang
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361000, China
| | - Shuai Kang
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Ye-Xin Chen
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Pei-Yi Zheng
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui 230000, China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, China
| | - Xiao-Mei Chen
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Min-Jie Cao
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui 230000, China
| | - Guang-Ming Liu
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| |
Collapse
|
18
|
Boyle RJ, Shamji MH. Developments in the field of allergy in 2020 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2021; 51:1531-1537. [PMID: 34750898 DOI: 10.1111/cea.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
While 2020 will be remembered for the global coronavirus pandemic, there were also important advances in the field of allergy. In this review article, we summarize key findings reported in Clinical and Experimental Allergy during 2020. We hope this provides readers with an accessible snapshot of the work published in our journal during this time.
Collapse
Affiliation(s)
- Robert J Boyle
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Imperial Biomedical Research Centre, London, UK
| |
Collapse
|
19
|
Sudharson S, Kalic T, Hafner C, Breiteneder H. Newly defined allergens in the WHO/IUIS Allergen Nomenclature Database during 01/2019-03/2021. Allergy 2021; 76:3359-3373. [PMID: 34310736 PMCID: PMC9290965 DOI: 10.1111/all.15021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023]
Abstract
The WHO/IUIS Allergen Nomenclature Database (http://allergen.org) provides up‐to‐date expert‐reviewed data on newly discovered allergens and their unambiguous nomenclature to allergen researchers worldwide. This review discusses the 106 allergens that were accepted by the Allergen Nomenclature Sub‐Committee between 01/2019 and 03/2021. Information about protein family membership, patient cohorts, and assays used for allergen characterization is summarized. A first allergenic fungal triosephosphate isomerase, Asp t 36, was discovered in Aspergillus terreus. Plant allergens contained 1 contact, 38 respiratory, and 16 food allergens. Can s 4 from Indian hemp was identified as the first allergenic oxygen‐evolving enhancer protein 2 and Cic a 1 from chickpeas as the first allergenic group 4 late embryogenesis abundant protein. Among the animal allergens were 19 respiratory, 28 food, and 3 venom allergens. Important discoveries include Rap v 2, an allergenic paramyosin in molluscs, and Sal s 4 and Pan h 4, allergenic fish tropomyosins. Paramyosins and tropomyosins were previously known mainly as arthropod allergens. Collagens from barramundi, Lat c 6, and salmon, Sal s 6, were the first members from the collagen superfamily added to the database. In summary, the addition of 106 new allergens to the previously listed 930 allergens reflects the continuous linear growth of the allergen database. In addition, 17 newly described allergen sources were included.
Collapse
Affiliation(s)
- Srinidhi Sudharson
- Department of Dermatology University Hospital St. Poelten Karl Landsteiner University of Health Sciences St. Poelten Austria
- Division of Medical Biotechnology Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Tanja Kalic
- Department of Dermatology University Hospital St. Poelten Karl Landsteiner University of Health Sciences St. Poelten Austria
- Division of Medical Biotechnology Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Christine Hafner
- Department of Dermatology University Hospital St. Poelten Karl Landsteiner University of Health Sciences St. Poelten Austria
| | - Heimo Breiteneder
- Division of Medical Biotechnology Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| |
Collapse
|
20
|
Mountain cedar allergy: A review of current available literature. Ann Allergy Asthma Immunol 2021; 128:645-651. [PMID: 34582944 DOI: 10.1016/j.anai.2021.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To review the literature related to mountain cedar in terms of allergic disease and societal impact. DATA SOURCES English-language articles obtained through PubMed searches with relevance to mountain cedar allergies. STUDY SELECTIONS Articles with the following search terms were included: mountain cedar, Juniperus ashei, juniper, allergy, pollen, cedar fever, Jun a 1, and San Antonio. RESULTS A total of 61 relevant articles were selected regarding mountain cedar and its distribution, phylogenetics, allergens, potency, cross-reactivity, pollen counting and monitoring, symptoms, diagnosis, treatment, and future research. CONCLUSION Mountain cedar remains a major cause of allergic rhinoconjunctivitis in the south central United States during the winter months. Key treatment strategies involve a combination of allergen avoidance, pharmacologic therapy, and subcutaneous immunotherapy. Allergists can help affected patients in their management of "cedar fever."
Collapse
|
21
|
Iizuka T, Takei M, Saito Y, Rumi F, Zheng J, Lu X, Chafey P, Broussard C, Guilloux‐Assalet L, Charpin D, Ebisawa M, Sénéchal H, Aizawa T, Poncet P. Gibberellin-regulated protein sensitization in Japanese cedar (Cryptomeria japonica) pollen allergic Japanese cohorts. Allergy 2021; 76:2297-2302. [PMID: 33725383 DOI: 10.1111/all.14816] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Tomona Iizuka
- Protein Science Laboratory Hokkaido University Sapporo Japan
| | - Mari Takei
- Department of Allergy National Hospital Organization Sagamihara National Hospital Kanagawa Japan
| | - Yukiko Saito
- Protein Science Laboratory Hokkaido University Sapporo Japan
| | - Farhana Rumi
- Protein Science Laboratory Hokkaido University Sapporo Japan
| | - Jingkang Zheng
- Protein Science Laboratory Hokkaido University Sapporo Japan
| | - Xiaoshuang Lu
- Protein Science Laboratory Hokkaido University Sapporo Japan
| | - Philippe Chafey
- 3P5 Proteomics Platform Université de Paris Institut Cochin INSERM U1016 CNRS UMR8104 Paris France
| | - Cédric Broussard
- 3P5 Proteomics Platform Université de Paris Institut Cochin INSERM U1016 CNRS UMR8104 Paris France
| | | | | | - Motohiro Ebisawa
- Department of Allergy National Hospital Organization Sagamihara National Hospital Kanagawa Japan
| | - Hélène Sénéchal
- Allergy & Environment Armand Trousseau Children Hospital Paris France
| | - Tomoyasu Aizawa
- Protein Science Laboratory Hokkaido University Sapporo Japan
| | - Pascal Poncet
- Allergy & Environment Armand Trousseau Children Hospital Paris France
- Immunology Department Institut Pasteur Paris France
| |
Collapse
|
22
|
Japanese cedar and cypress pollinosis updated: New allergens, cross-reactivity, and treatment. Allergol Int 2021; 70:281-290. [PMID: 33962864 DOI: 10.1016/j.alit.2021.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 12/19/2022] Open
Abstract
Pollen from many tree species in the Cupressaceae family is a well-known cause of seasonal allergic diseases worldwide. Japanese cedar pollinosis and Japanese cypress pollinosis, which are caused by pollen from Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa), respectively, are the most prevalent seasonal allergic diseases in Japan. Recently, the novel major Japanese cypress allergen Cha o 3 and the homologous Japanese cedar allergen Cry j cellulase were identified, and it was shown, for the first time, that cellulase in plants is allergenic. Although the allergenic components of pollen from both species exhibit high amino acid sequence identity, their pollinosis responded differently to allergen-specific immunotherapy (ASIT) using a standardized extract of Japanese cedar pollen. Pharmacotherapy and ASIT for Japanese cedar and cypress pollinosis have advanced considerably in recent years. In particular, Japanese cedar ASIT has entered a new phase, primarily in response to the generation of updated efficacy data and the development of new formulations. In this review, we focus on both Japanese cypress and cedar pollinosis, and discuss the latest findings, newly identified causative allergens, and new treatments. To manage pollinosis symptoms during spring effectively, ASIT for both Japanese cedar and Japanese cypress pollen is considered necessary.
Collapse
|
23
|
Maruyama N. Components of plant-derived food allergens: Structure, diagnostics, and immunotherapy. Allergol Int 2021; 70:291-302. [PMID: 34092500 DOI: 10.1016/j.alit.2021.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
A large number of plant-derived food allergen components have been identified to date. Although these allergens are diverse, they often share common structural features such as numerous disulfide bonds or oligomeric structures. Furthermore, some plant-derived food allergen components cross-react with pollen allergens. Since the relationship between allergen components and clinical symptoms has been well characterized, measurements of specific IgE to these components have become useful for the accurate clinical diagnosis and selection of optimal treatment methods for various allergy-related conditions including allergy caused by plant-derived foods. Herein, I have described the types and structures of different plant allergen components and outlined the diagnosis as well as treatment strategies, including those reported recently, for such substances. Furthermore, I have also highlighted the contribution of allergen components to this field.
Collapse
Affiliation(s)
- Nobuyuki Maruyama
- Food Quality Design and Development Laboratory, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|