1
|
Chen L, A Hoefel G, Pathinayake PS, Reid A, Pillar AL, Kelly C, Tan H, Ali A, Kim RY, Hansbro PM, Brody SL, Foster PS, Horvat JC, Riveros C, Awatade N, Wark PAB, Kaiko GE. Inflammation-induced loss of CFTR-expressing airway ionocytes in non-eosinophilic asthma. Respirology 2025; 30:25-40. [PMID: 39358991 DOI: 10.1111/resp.14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Severe asthma is a heterogeneous disease with subtype classification according to dominant airway infiltrates, including eosinophilic (Type 2 high), or non-eosinophilic asthma. Non-eosinophilic asthma is further divided into paucigranulocytic or neutrophilic asthma characterized by elevated neutrophils, and mixed Type 1 and Type 17 cytokines in the airways. Severe non-eosinophilic asthma has few effective treatments and many patients do not qualify for biologic therapies. The cystic fibrosis transmembrane conductance regulator (CFTR) is dysregulated in multiple respiratory diseases including cystic fibrosis and chronic obstructive pulmonary disease and has proven a valuable therapeutic target. We hypothesized that the CFTR may also play a role in non-eosinophilic asthma. METHODS Patient-derived human bronchial epithelial cells (hBECs) were isolated and differentiated at the air-liquid interface. Single cell RNA-sequencing (scRNAseq) was used to identify epithelial cell subtypes and transcriptional activity. Ion transport was investigated with Ussing chambers and immunofluorescent quantification of ionocyte abundance in human airway epithelial cells and murine models of asthma. RESULTS We identified that hBECs from patients with non-eosinophilic asthma had reduced CFTR function, and did not differentiate into CFTR-expressing ionocytes compared to those from eosinophilic asthma or healthy donors. Similarly, ionocytes were also diminished in the airways of a murine model of neutrophilic-dominant but not eosinophilic asthma. Treatment of hBECs from healthy donors with a neutrophilic asthma-like inflammatory cytokine mixture led to a reduction in ionocytes. CONCLUSION Inflammation-induced loss of CFTR-expressing ionocytes in airway cells from non-eosinophilic asthma may represent a key feature of disease pathogenesis and a novel drug target.
Collapse
Affiliation(s)
- Ling Chen
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Gabriela A Hoefel
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Prabuddha S Pathinayake
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Andrew Reid
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Amber L Pillar
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Coady Kelly
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - HuiYing Tan
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ayesha Ali
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Richard Y Kim
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Paul S Foster
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Jay C Horvat
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Carlos Riveros
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Nikhil Awatade
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter A B Wark
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton, New South Wales, Australia
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
| | - Gerard E Kaiko
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
2
|
Gao G, Hao YQ, Wang C, Gao P. Role and regulators of N 6-methyladenosine (m 6A) RNA methylation in inflammatory subtypes of asthma: a comprehensive review. Front Pharmacol 2024; 15:1360607. [PMID: 39108751 PMCID: PMC11300364 DOI: 10.3389/fphar.2024.1360607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/03/2024] [Indexed: 01/05/2025] Open
Abstract
Asthma is a common chronic inflammatory disease of the lungs and airway, yet its inflammatory subtypes and potential pathogenesis have not been completely elucidated and require further study. With advances in epigenetic development, methylation has emerged as a new direction for identifying and decoding the occurrence and subtype manifestations of asthma. N6-methyladenosine (m6A), an RNA methylation modification occurring in the N6-position of adenosine, is a prevalent epigenetic modification observed in eukaryotes. It exerts significant control over mRNA metabolism by regulating alternative splicing, stability, export, and translation. The dynamic process of m6A methylation plays a crucial role in the pathogenesis of asthma and is tightly regulated by three types of regulators: writers, readers, and erasers. This article provides a comprehensive review of the association between m6A regulators and the pathogenesis of inflammatory subtypes of asthma, such as involvement of inflammatory cells and related inflammatory response. Furthermore, the findings presented herein provide new insights and a solid foundation for further research on m6A mRNA methylation as biomarkers for the diagnosis and development of personalized treatment for different subtypes of asthma, particularly neutrophilic asthma and eosinophilic asthma.
Collapse
Affiliation(s)
- Ge Gao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Yu Qiu Hao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Chen Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Peng Gao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Liang J, Zhou C, Zhang C, Liang S, Zhou Z, Zhou Z, Wu C, Zhao H, Meng X, Zou F, Yu C, Cai S. Nicotinamide mononucleotide attenuates airway epithelial barrier dysfunction via inhibiting SIRT3 SUMOylation in asthma. Int Immunopharmacol 2024; 127:111328. [PMID: 38064810 DOI: 10.1016/j.intimp.2023.111328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential element in cellular metabolism that regulates fundamental biological processes. Growing evidence suggests that a decline in NAD+ is a common pathological factor in various diseases and aging. However, its role in airway epithelial barrier function in response to asthma remains underexplored. The current study aims to explore the efficacy of restoring cellular NAD+ concentration through supplementation with the NAD+ precursor, nicotinamide mononucleotide (NMN), in the treatment of allergic asthma and to investigate the role of SIRT3 in mediating the effects of NAD+ precursors. In this research, NMN alleviated airway inflammation and reduced mucus secretion in house dust mite (HDM)-induced asthmatic mice. It also mitigated airway epithelial barrier disruption in HDM-induced asthma in vitro and in vivo. But inhibition of SIRT3 expression abolished the effects of NMN. Mechanistically, HDM induced SIRT3 SUMOylation and proteasomal degradation. Mutation of these two SIRT3 SUMO modification sites enhanced the stability of SIRT3. Additionally, SIRT3 was targeted by SENP1 which acted to de-conjugate SUMO. And down-regulation of SENP1 expression in HDM-induced models was reversed by NMN. Collectively, these findings suggest that NMN attenuates airway epithelial barrier dysfunction via inhibiting SIRT3 SUMOylation in asthma. Blockage of SIRT3 SUMOylation emerges as for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Jiayuan Liang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chi Zhou
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changyun Zhang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shixiu Liang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zili Zhou
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zicong Zhou
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cuiwen Wu
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Haijin Zhao
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Changhui Yu
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Tan D, Lu M, Cai Y, Qi W, Wu F, Bao H, Qv M, He Q, Xu Y, Wang X, Shen T, Luo J, He Y, Wu J, Tang L, Barkat MQ, Xu C, Wu X. SUMOylation of Rho-associated protein kinase 2 induces goblet cell metaplasia in allergic airways. Nat Commun 2023; 14:3887. [PMID: 37393345 PMCID: PMC10314948 DOI: 10.1038/s41467-023-39600-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/21/2023] [Indexed: 07/03/2023] Open
Abstract
Allergic asthma is characterized by goblet cell metaplasia and subsequent mucus hypersecretion that contribute to the morbidity and mortality of this disease. Here, we explore the potential role and underlying mechanism of protein SUMOylation-mediated goblet cell metaplasia. The components of SUMOylaion machinery are specifically expressed in healthy human bronchial epithelia and robustly upregulated in bronchial epithelia of patients or mouse models with allergic asthma. Intratracheal suppression of SUMOylation by 2-D08 robustly attenuates not only allergen-induced airway inflammation, goblet cell metaplasia, and hyperreactivity, but IL-13-induced goblet cell metaplasia. Phosphoproteomics and biochemical analyses reveal SUMOylation on K1007 activates ROCK2, a master regulator of goblet cell metaplasia, by facilitating its binding to and activation by RhoA, and an E3 ligase PIAS1 is responsible for SUMOylation on K1007. As a result, knockdown of PIAS1 in bronchial epithelia inactivates ROCK2 to attenuate IL-13-induced goblet cell metaplasia, and bronchial epithelial knock-in of ROCK2(K1007R) consistently inactivates ROCK2 to alleviate not only allergen-induced airway inflammation, goblet cell metaplasia, and hyperreactivity, but IL-13-induced goblet cell metaplasia. Together, SUMOylation-mediated ROCK2 activation is an integral component of Rho/ROCK signaling in regulating the pathological conditions of asthma and thus SUMOylation is an additional target for the therapeutic intervention of this disease.
Collapse
Affiliation(s)
- Dan Tan
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meiping Lu
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China.
| | - Yuqing Cai
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Weibo Qi
- Department of Thoracic Surgery, the Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Fugen Wu
- Department of Paediatrics, the First People's Hospital of Wenling City, Wenling City, 317500, China
| | - Hangyang Bao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meiyu Qv
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiangzhi Wang
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiahao Luo
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yangxun He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Junsong Wu
- Department of Critical Care Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lanfang Tang
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Esposito I, Kontra I, Giacomassi C, Manou-Stathopoulou S, Brown J, Stratton R, Verykokou G, Buccafusca R, Stevens M, Nissim A, Lewis MJ, Pfeffer PE. Identification of autoantigens and their potential post-translational modification in EGPA and severe eosinophilic asthma. Front Immunol 2023; 14:1164941. [PMID: 37334358 PMCID: PMC10272393 DOI: 10.3389/fimmu.2023.1164941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Background The chronic airway inflammation in severe eosinophilic asthma (SEA) suggests potential autoimmune aetiology with unidentified autoantibodies analogous to myeloperoxidase (MPO) in ANCA-positive EGPA (eosinophilic granulomatosis with polyangiitis). Previous research has shown that oxidative post-translational modification (oxPTM) of proteins is an important mechanism by which autoantibody responses may escape immune tolerance. Autoantibodies to oxPTM autoantigens in SEA have not previously been studied. Methods Patients with EGPA and SEA were recruited as well as healthy control participants. Autoantigen agnostic approach: Participant serum was incubated with slides of unstimulated and PMA-stimulated neutrophils and eosinophils, and autoantibodies to granulocytes were identified by immunofluorescence with anti-human IgG FITC antibody. Target autoantigen approach: Candidate proteins were identified from previous literature and FANTOM5 gene set analysis for eosinophil expressed proteins. Serum IgG autoantibodies to these proteins, in native and oxPTM form, were detected by indirect ELISA. Results Immunofluorescence studies showed that serum from patients with known ANCA stained for IgG against neutrophils as expected. In addition, serum from 9 of 17 tested SEA patients stained for IgG to PMA-stimulated neutrophils undergoing NETosis. Immunofluorescent staining of eosinophil slides was evident with serum from all participants (healthy and with eosinophilic disease) with diffuse cytoplasmic staining except for one SEA individual in whom subtle nuclear staining was evident. FANTOM5 gene set analysis identified TREM1 (triggering receptor expressed on myeloid cells 1) and IL-1 receptor 2 (IL1R2) as eosinophil-specific targets to test for autoantibody responses in addition to MPO, eosinophil peroxidase (EPX), and Collagen-V identified from previous literature. Indirect ELISAs found high concentrations of serum autoantibodies to Collagen-V, MPO, and TREM1 in a higher proportion of SEA patients than healthy controls. High concentrations of serum autoantibodies to EPX were evident in serum from both healthy and SEA participants. The proportion of patients with positive autoantibody ELISAs was not increased when examining oxPTM compared to native proteins. Discussion Although none of the target proteins studied showed high sensitivity for SEA, the high proportion of patients positive for at least one serum autoantibody shows the potential of more research on autoantibody serology to improve diagnostic testing for severe asthma. Clinical trial registration ClinicalTrials.gov, identifier, NCT04671446.
Collapse
Affiliation(s)
- Ilaria Esposito
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Ioanna Kontra
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Chiara Giacomassi
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Department of Rheumatology, Royal Free NHS Foundation Trust, London, United Kingdom
| | | | - James Brown
- Department of Respiratory Medicine, Royal Free NHS Foundation Trust, London, United Kingdom
| | - Richard Stratton
- Department of Rheumatology, Royal Free NHS Foundation Trust, London, United Kingdom
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Galateia Verykokou
- Department of Respiratory Medicine, Barts Health NHS Trust, London, United Kingdom
| | - Roberto Buccafusca
- School of Physical and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Michael Stevens
- Department of Clinical Immunology, Barts Health NHS Trust, London, United Kingdom
- Department of Clinical Immunology, University Hospitals Sussex NHS Foundation Trust, Brighton, United Kingdom
| | - Ahuva Nissim
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Myles J. Lewis
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Paul E. Pfeffer
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Department of Respiratory Medicine, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
6
|
Gao Y, Chen L, Li J, Wen Z. A prognosis prediction chromatin regulator signature for patients with severe asthma. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:43. [PMID: 37245015 DOI: 10.1186/s13223-023-00796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/16/2023] [Indexed: 05/29/2023]
Abstract
Severe asthma imposes a physical and economic burden on both patients and society. As chromatin regulators (CRs) influence the progression of multiple diseases through epigenetic mechanisms, we aimed to study the role of CRs in patients with severe asthma. Transcriptome data (GSE143303) from 47 patients with severe asthma and 13 healthy participants was downloaded from the Gene Expression Omnibus database. Enrichment analysis was performed to investigate the functions of differentially expressed CRs between the groups. We identified 80 differentially expressed CRs; they were mainly enriched in histone modification, chromatin organization, and lysine degradation. A protein-protein interaction network was then constructed. The analyzed immune scores were different between sick and healthy individuals. Thus, CRs with a high correlation in the immune analysis, SMARCC1, SETD2, KMT2B, and CHD8, were used to construct a nomogram model. Finally, using online prediction tools, we determined that lanatoside C, cefepime, and methapyrilene may be potentially effective drugs in the treatment of severe asthma. The nomogram constructed using the four CRs, SMARCC1, SETD2, KMT2B, and CHD8, may be a useful tool for predicting the prognosis of patients with severe asthma. This study provided new insights into the role of CRs in severe asthma.
Collapse
Affiliation(s)
- Yaning Gao
- Beijing Jingmei Group General Hospital, Beijing, China.
| | - Liang Chen
- Beijing Jingmei Group General Hospital, Beijing, China
| | - Jian Li
- Beijing Jingmei Group General Hospital, Beijing, China
| | - Zhengjun Wen
- Beijing Jingmei Group General Hospital, Beijing, China
| |
Collapse
|
7
|
Queen K, Nguyen MN, Gilliland FD, Chun S, Raby BA, Millstein J. ACDC: a general approach for detecting phenotype or exposure associated co-expression. Front Med (Lausanne) 2023; 10:1118824. [PMID: 37275375 PMCID: PMC10235619 DOI: 10.3389/fmed.2023.1118824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Background Existing module-based differential co-expression methods identify differences in gene-gene relationships across phenotype or exposure structures by testing for consistent changes in transcription abundance. Current methods only allow for assessment of co-expression variation across a singular, binary or categorical exposure or phenotype, limiting the information that can be obtained from these analyses. Methods Here, we propose a novel approach for detection of differential co-expression that simultaneously accommodates multiple phenotypes or exposures with binary, ordinal, or continuous data types. Results We report an application to two cohorts of asthmatic patients with varying levels of asthma control to identify associations between gene co-expression and asthma control test scores. Results suggest that both expression levels and covariances of ADORA3, ALOX15, and IDO1 are associated with asthma control. Conclusion ACDC is a flexible extension to existing methodology that can detect differential co-expression across varying external variables.
Collapse
Affiliation(s)
- Katelyn Queen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - My-Nhi Nguyen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Frank D. Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sung Chun
- Division of Pulmonary Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Benjamin A. Raby
- Division of Pulmonary Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Joshua Millstein
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
8
|
Kozlik-Siwiec P, Buregwa-Czuma S, Zawlik I, Dziedzina S, Myszka A, Zuk-Kuwik J, Siwiec-Kozlik A, Zarychta J, Okon K, Zareba L, Soja J, Jakiela B, Kepski M, Bazan JG, Bazan-Socha S. Co-Expression Analysis of Airway Epithelial Transcriptome in Asthma Patients with Eosinophilic vs. Non-Eosinophilic Airway Infiltration. Int J Mol Sci 2023; 24:3789. [PMID: 36835202 PMCID: PMC9959255 DOI: 10.3390/ijms24043789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Asthma heterogeneity complicates the search for targeted treatment against airway inflammation and remodeling. We sought to investigate relations between eosinophilic inflammation, a phenotypic feature frequent in severe asthma, bronchial epithelial transcriptome, and functional and structural measures of airway remodeling. We compared epithelial gene expression, spirometry, airway cross-sectional geometry (computed tomography), reticular basement membrane thickness (histology), and blood and bronchoalveolar lavage (BAL) cytokines of n = 40 moderate to severe eosinophilic (EA) and non-eosinophilic asthma (NEA) patients distinguished by BAL eosinophilia. EA patients showed a similar extent of airway remodeling as NEA but had an increased expression of genes involved in the immune response and inflammation (e.g., KIR3DS1), reactive oxygen species generation (GYS2, ATPIF1), cell activation and proliferation (ANK3), cargo transporting (RAB4B, CPLX2), and tissue remodeling (FBLN1, SOX14, GSN), and a lower expression of genes involved in epithelial integrity (e.g., GJB1) and histone acetylation (SIN3A). Genes co-expressed in EA were involved in antiviral responses (e.g., ATP1B1), cell migration (EPS8L1, STOML3), cell adhesion (RAPH1), epithelial-mesenchymal transition (ASB3), and airway hyperreactivity and remodeling (FBN3, RECK), and several were linked to asthma in genome- (e.g., MRPL14, ASB3) or epigenome-wide association studies (CLC, GPI, SSCRB4, STRN4). Signaling pathways inferred from the co-expression pattern were associated with airway remodeling (e.g., TGF-β/Smad2/3, E2F/Rb, and Wnt/β-catenin).
Collapse
Affiliation(s)
- Pawel Kozlik-Siwiec
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
- Haematology Clinical Department, University Hospital, 31-501 Krakow, Poland
| | - Sylwia Buregwa-Czuma
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Izabela Zawlik
- Centre for Innovative Research in Medical and Natural Sciences, Institute of Medical Sciences, Medical College, University of Rzeszow, Kopisto 2a, 35-959 Rzeszow, Poland
| | - Sylwia Dziedzina
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Aleksander Myszka
- Institute of Medical Sciences, Medical College, University of Rzeszow, Kopisto 2a, 35-959 Rzeszow, Poland
| | - Joanna Zuk-Kuwik
- Haematology Clinical Department, University Hospital, 31-501 Krakow, Poland
- Haematology Department, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | | | - Jacek Zarychta
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
- Pulmonary Hospital, 34-736 Zakopane, Poland
| | - Krzysztof Okon
- Department of Pathology, Jagiellonian University Medical College, 33-332 Krakow, Poland
| | - Lech Zareba
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Jerzy Soja
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Bogdan Jakiela
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Michał Kepski
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Jan G. Bazan
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Stanislawa Bazan-Socha
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
| |
Collapse
|
9
|
Agache I, Shamji MH, Kermani NZ, Vecchi G, Favaro A, Layhadi JA, Heider A, Akbas DS, Filipaviciute P, Wu LYD, Cojanu C, Laculiceanu A, Akdis CA, Adcock IM. Multidimensional endotyping using nasal proteomics predicts molecular phenotypes in the asthmatic airways. J Allergy Clin Immunol 2023; 151:128-137. [PMID: 36154846 DOI: 10.1016/j.jaci.2022.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Unsupervised clustering of biomarkers derived from noninvasive samples such as nasal fluid is less evaluated as a tool for describing asthma endotypes. OBJECTIVE We sought to evaluate whether protein expression in nasal fluid would identify distinct clusters of patients with asthma with specific lower airway molecular phenotypes. METHODS Unsupervised clustering of 168 nasal inflammatory and immune proteins and Shapley values was used to stratify 43 patients with severe asthma (endotype of noneosinophilic asthma) using a 2 "modeling blocks" machine learning approach. This algorithm was also applied to nasal brushings transcriptomics from U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes). Feature reduction and functional gene analysis were used to compare proteomic and transcriptomic clusters. Gene set variation analysis provided enrichment scores of the endotype of noneosinophilic asthma protein signature within U-BIOPRED sputum and blood. RESULTS The nasal protein machine learning model identified 2 severe asthma endotypes, which were replicated in U-BIOPRED nasal transcriptomics. Cluster 1 patients had significant airway obstruction, small airways disease, air trapping, decreased diffusing capacity, and increased oxidative stress, although only 4 of 18 were current smokers. Shapley identified 20 cluster-defining proteins. Forty-one proteins were significantly higher in cluster 1. Pathways associated with proteomic and transcriptomic clusters were linked to TH1, TH2, neutrophil, Janus kinase-signal transducer and activator of transcription, TLR, and infection activation. Gene set variation analysis of the nasal protein and gene signatures were enriched in subjects with sputum neutrophilic/mixed granulocytic asthma and in subjects with a molecular phenotype found in sputum neutrophil-high subjects. CONCLUSIONS Protein or gene analysis may indicate molecular phenotypes within the asthmatic lower airway and provide a simple, noninvasive test for non-type 2 immune response asthma that is currently unavailable.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania; Theramed Healthcare, Brasov, Romania.
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, United Kingdom; NIHR Biomedical Research Centre, London, United Kingdom.
| | - Nazanin Zounemat Kermani
- National Heart and Lung Institute, Imperial College London, United Kingdom; Data Science Institute, Imperial College London, United Kingdom
| | | | | | - Janice A Layhadi
- National Heart and Lung Institute, Imperial College London, United Kingdom; NIHR Biomedical Research Centre, London, United Kingdom
| | - Anja Heider
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Didem Sanver Akbas
- National Heart and Lung Institute, Imperial College London, United Kingdom; NIHR Biomedical Research Centre, London, United Kingdom
| | - Paulina Filipaviciute
- National Heart and Lung Institute, Imperial College London, United Kingdom; NIHR Biomedical Research Centre, London, United Kingdom
| | - Lily Y D Wu
- National Heart and Lung Institute, Imperial College London, United Kingdom; NIHR Biomedical Research Centre, London, United Kingdom
| | - Catalina Cojanu
- Faculty of Medicine, Transylvania University, Brasov, Romania; Theramed Healthcare, Brasov, Romania
| | - Alexandru Laculiceanu
- Faculty of Medicine, Transylvania University, Brasov, Romania; Theramed Healthcare, Brasov, Romania
| | - Cezmi A Akdis
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, United Kingdom; NIHR Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
10
|
Lee SY, Kim S, Kang MJ, Song KB, Choi EJ, Jung S, Yoon JS, Suh DI, Shin YH, Kim KW, Ahn K, Hong SJ. Phenotype of Atopic Dermatitis With Food Allergy Predicts Development of Childhood Asthma via Gut Wnt Signaling. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:674-686. [PMID: 36426397 PMCID: PMC9709687 DOI: 10.4168/aair.2022.14.6.674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/12/2022] [Accepted: 08/23/2022] [Indexed: 07/29/2023]
Abstract
PURPOSE Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by a wide spectrum of clinical phenotype. However, specific description of phenotypes of AD depending on the comorbidities in early childhood is lacking. This study aimed to investigate whether the AD phenotype in early childhood is related to childhood asthma and to elucidate the mechanisms involved. METHODS Data on the first 3 years of life were collected prospectively from 1,699 children in the COhort for Childhood Origin of Asthma and allergic diseases (COCOA). We applied an unsupervised latent class analysis to the following five factors: food sensitization, inhalant sensitization, food allergy (FA), AD, and recurrent wheezing. The risks of developing FA, AD, allergic rhinitis (AR), and asthma in children aged 5-7 years were evaluated. Colonocyte transcriptome and ingenuity pathway analysis were performed. RESULTS Four phenotypes were identified; no allergic diseases (78.4%), AD without sensitization (16.4%), FA with AD (2.9%), and AD with sensitization (7.8%). The FA with AD had the highest risk for FA, AR, and asthma and the highest cord blood immunoglobulin E (IgE) levels. In AD without sensitization and with sensitization, scoring of AD (SCORAD) in early childhood was higher than in FA with AD. Canonical pathway analysis with the colonocyte transcriptome revealed that the key pathway in FA with AD was 'Wnt/β-catenin Signaling.' The relative abundance of Wnt6 mRNA was positively correlated with food-specific IgE levels at 1 and 3 years. CONCLUSIONS When FA is present in various phenotypes of AD at early life, regardless of severity of eczema, it may be associated with gut Wnt signaling and later development of asthma.
Collapse
Affiliation(s)
- So-Yeon Lee
- Department of Pediatrics, Childhood Asthma and Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sangrok Kim
- Department of Information Management, Medical Record Information Team, Hanyang University Medical Center, Seoul, Korea
| | - Mi Jin Kang
- Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kun-Baek Song
- Department of Pediatrics, Soonchunhyang Cheonan Hospital, University of Soonchunhyang College of Medicine, Cheonan, Korea
| | - Eom Ji Choi
- Department of Pediatrics, Childhood Asthma and Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sungsu Jung
- Department of Pediatrics, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Ji-Sun Yoon
- Department of Pediatrics, Chung-Ang University Hospital, Gwangmyeong, Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Youn Ho Shin
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma and Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Santri IN, Irham LM, Djalilah GN, Perwitasari DA, Wardani Y, Phiri YVA, Adikusuma W. Identification of Hub Genes and Potential Biomarkers for Childhood Asthma by Utilizing an Established Bioinformatic Analysis Approach. Biomedicines 2022; 10:biomedicines10092311. [PMID: 36140412 PMCID: PMC9496621 DOI: 10.3390/biomedicines10092311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Childhood asthma represents a heterogeneous disease resulting from the interaction between genetic factors and environmental exposures. Currently, finding reliable biomarkers is necessary for the clinical management of childhood asthma. However, only a few biomarkers are being used in clinical practice in the pediatric population. In the long run, new biomarkers for asthma in children are required and would help direct therapy approaches. This study aims to identify potential childhood asthma biomarkers using a genetic-driven biomarkers approach. Herein, childhood asthma-associated Single Nucleotide Polymorphisms (SNPs) were utilized from the GWAS database to drive and facilitate the biomarker of childhood asthma. We uncovered 466 childhood asthma-associated loci by extending to proximal SNPs based on r2 > 0.8 in Asian populations and utilizing HaploReg version 4.1 to determine 393 childhood asthma risk genes. Next, the functional roles of these genes were subsequently investigated using Gene Ontology (GO) term enrichment analysis, a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and a protein−protein interaction (PPI) network. MCODE and CytoHubba are two Cytoscape plugins utilized to find biomarker genes from functional networks created using childhood asthma risk genes. Intriguingly, 10 hub genes (IL6, IL4, IL2, IL13, PTPRC, IL5, IL33, TBX21, IL2RA, and STAT6) were successfully identified and may have been identified to play a potential role in the pathogenesis of childhood asthma. Among 10 hub genes, we strongly suggest IL6 and IL4 as prospective childhood asthma biomarkers since both of these biomarkers achieved a high systemic score in Cytohubba’s MCC algorithm. In summary, this study offers a valuable genetic-driven biomarker approach to facilitate the potential biomarkers for asthma in children.
Collapse
Affiliation(s)
| | | | | | | | - Yuniar Wardani
- Faculty of Public Health, Universitas Ahmad Dahlan, Yogyakarta 55164, Indonesia
| | - Yohane Vincent Abero Phiri
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
- Institute for Health Research and Communication (IHRC), Lilongwe P.O. Box 1958, Malawi
| | - Wirawan Adikusuma
- Departement of Pharmacy, University of Muhammadiyah Mataram, Mataram 83127, Indonesia
- Correspondence: (W.A.)
| |
Collapse
|
12
|
Perez-Garcia J, Pino-Yanes M. Novel insights into the biological pathways involved in severe asthma. Respirology 2022; 27:680-681. [PMID: 35764405 DOI: 10.1111/resp.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Spain
| |
Collapse
|
13
|
Sánchez‐Ovando S, Pavlidis S, Kermani NZ, Baines KJ, Barker D, Gibson PG, Wood LG, Adcock IM, Chung KF, Simpson JL, Wark PA. Pathways linked to unresolved inflammation and airway remodelling characterize the transcriptome in two independent severe asthma cohorts. Respirology 2022; 27:730-738. [PMID: 35673765 PMCID: PMC9540453 DOI: 10.1111/resp.14302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Background and objective Severe asthma (SA) is a heterogeneous disease. Transcriptomic analysis contributes to the understanding of pathogenesis necessary for developing new therapies. We sought to identify and validate mechanistic pathways of SA across two independent cohorts. Methods Transcriptomic profiles from U‐BIOPRED and Australian NOVocastrian Asthma cohorts were examined and grouped into SA, mild/moderate asthma (MMA) and healthy controls (HCs). Differentially expressed genes (DEGs), canonical pathways and gene sets were identified as central to SA mechanisms if they were significant across both cohorts in either endobronchial biopsies or induced sputum. Results Thirty‐six DEGs and four pathways were shared across cohorts linking to tissue remodelling/repair in biopsies of SA patients, including SUMOylation, NRF2 pathway and oxidative stress pathways. MMA presented a similar profile to HCs. Induced sputum demonstrated IL18R1 as a shared DEG in SA compared with healthy subjects. We identified enrichment of gene sets related to corticosteroid treatment; immune‐related mechanisms; activation of CD4+ T cells, mast cells and IL18R1; and airway remodelling in SA. Conclusion Our results identified differentially expressed pathways that highlight the role of CD4+ T cells, mast cells and pathways linked to ongoing airway remodelling, such as IL18R1, SUMOylation and NRF2 pathways, as likely active mechanisms in the pathogenesis of SA. Transcriptome analysis from endobronchial biopsies and induced sputum from two independent cohorts of adults with severe asthma (SA) (U‐BIOPRED and Australian NOVocastrian Asthma cohort) demonstrated shared differentially expressed pathways previously linked to persistent unresolved inflammation and novel mechanisms of airway remodelling, which may represent potential novel mechanistic pathways involved in the pathogenesis of SA. See relatededitorial
Collapse
Affiliation(s)
- Stephany Sánchez‐Ovando
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | | | | | - Katherine Joanne Baines
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | - Daniel Barker
- Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | - Peter G. Gibson
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
- Respiratory and Sleep Medicine John Hunter Hospital NSW New Lambton Heights New South Wales Australia
| | - Lisa G. Wood
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | - Ian M. Adcock
- National Heart and Lung Institute Imperial College London London UK
| | - Kian Fan Chung
- National Heart and Lung Institute Imperial College London London UK
| | - Jodie Louise Simpson
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | - Peter A.B. Wark
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
- Respiratory and Sleep Medicine John Hunter Hospital NSW New Lambton Heights New South Wales Australia
| |
Collapse
|
14
|
Wang H, Zhang Z, Ma Y, Jia Y, Ma B, Gu J, Chen O, Yue S. Construction of Severe Eosinophilic Asthma Related Competing Endogenous RNA Network by Weighted Gene Co-Expression Network Analysis. Front Pharmacol 2022; 13:852536. [PMID: 35645813 PMCID: PMC9130708 DOI: 10.3389/fphar.2022.852536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Currently, disease control in patients with severe eosinophilic asthma is not optimistic. Competing endogenous RNA (ceRNA) networks have been found to play a key role in asthma in recent years. However, it is unclear whether ceRNA networks play an important part in severe eosinophilic asthma. Methods: Firstly, gene expression profiles related to severe eosinophilic asthma were downloaded from the Gene Expression Omnibus (GEO) database. Secondly, the key modules were identified by the weighted gene co-expression network analysis (WGCNA). Thirdly, genes in modules highly associated with severe eosinophilic asthma were selected for further construction of the ceRNA network. Fourthly, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on hub genes. Finally, the results of this study were validated on the GSE143303, GSE137268, and GSE147878 datasets. Results: 22 severe eosinophilic asthmatics and 13 healthy controls were extracted for WGCNA. We found that the genes in the black module (r = -0.75, p < 0.05) and yellow module (r = 0.65, p < 0.05) were highly associated with severe eosinophilic asthma. EP300 was discovered to serve the key connecting function in the ceRNA network. Surprisingly, lncRNAs seem to eliminate the role of EP300 in the black module and we discovered that CCT8 and miRNA-mRNA formed a circRNA-miRNA-mRNA network in the yellow module. We found that EP300 and FOXO3 in the black module were regulated by steroid hormones in the enrichment analysis, which were related to the medication used by the patient. Through validation of other datasets, we found that the hub genes in the yellow module were the key genes in the treatment of severe eosinophilic asthma. In particular, RPL17 and HNRNPK might specifically regulate severe eosinophilic asthma. Conclusion: RPL17 and HNRNPK might particularly regulate severe eosinophilic asthma. Our results could be useful to provide potential immunotherapy targets and prognostic markers for severe eosinophilic asthma.
Collapse
Affiliation(s)
- Haixia Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zeyi Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Ma
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, China
| | - Yuanmin Jia
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Ma
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ou Chen
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pediatrics, The Second Hospital of Shandong University, Jinan, China
| | - Shouwei Yue
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China.,Rehabilitation Center, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
15
|
Wu X, Li R, Xu Q, Liu F, Jiang Y, Zhang M, Tong M. Identification of key genes and pathways between mild-moderate and severe asthmatics via bioinformatics analysis. Sci Rep 2022; 12:2549. [PMID: 35169275 PMCID: PMC8847662 DOI: 10.1038/s41598-022-06675-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/01/2022] [Indexed: 01/09/2023] Open
Abstract
Severe asthma is the main reason for death and disability caused by asthma. However, effective biomarkers for severe asthma have not been identified. Here, we aimed to identify potential biomarkers in severe asthma. We identified 202 differentially expressed genes (DEGs) between severe asthma and mild-moderate asthma after integrating the results from GSE69683 and GSE27011 datasets. The enrichment analysis indicated that 202 DEGs were associated with metabolism- and immune-related processes. 10 hub genes were identified by Cytoscape and five of these genes’ AUC (area under the curve) values were greater than 0.6 in GSE69683. The AUC value reached to 0.701 when combined SEC61A1 and ALDH18A1 expression. The expression of the five hub genes was verified in an external dataset. The network analysis revealed that transcription factor (TF) WT1, ZEB1, RERE, FOSL1, and miR-20a may be involved in the development of asthma. In addition, we found cyclosporine and acetaminophen could interact with these hub genes and may be negatively associated with most of the five hub genes according to previous reports. Overall, key genes were identified between mild-moderate and severe asthmatics, which contributed to the understanding of the development of asthma.
Collapse
Affiliation(s)
- Xiaolu Wu
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Ran Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qu Xu
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Feng Liu
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yue Jiang
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Min Zhang
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China.
| | - Meiling Tong
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China.
| |
Collapse
|
16
|
Chen G, Chen D, Feng Y, Wu W, Gao J, Chang C, Chen S, Zhen G. Identification of Key Signaling Pathways and Genes in Eosinophilic Asthma and Neutrophilic Asthma by Weighted Gene Co-Expression Network Analysis. Front Mol Biosci 2022; 9:805570. [PMID: 35187081 PMCID: PMC8847715 DOI: 10.3389/fmolb.2022.805570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Asthma is a heterogeneous disease with different subtypes including eosinophilic asthma (EA) and neutrophilic asthma (NA). However, the mechanisms underlying the difference between the two subtypes are not fully understood.Methods: Microarray datasets (GSE45111 and GSE137268) were acquired from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in induced sputum between EA (n = 24) and NA (n = 15) were identified by “Limma” package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and Gene set enrichment analysis (GSEA) were used to explore potential signaling pathways. Weighted gene co-expression network analysis (WGCNA) were performed to identify the key genes that were strongly associated with EA and NA.Results: A total of 282 DEGs were identified in induced sputum of NA patients compared with EA patients. In GO and KEGG pathway analyses, DEGs were enriched in positive regulation of cytokine production, and cytokine-cytokine receptor interaction. The results of GSEA showed that ribosome, Parkinson’s disease, and oxidative phosphorylation were positively correlated with EA while toll-like receptor signaling pathway, primary immunodeficiency, and NOD-like receptor signaling pathway were positively correlated with NA. Using WGCNA analysis, we identified a set of genes significantly associated NA including IRFG, IRF1, STAT1, IFIH1, IFIT3, GBP1, GBP5, IFIT2, CXCL9, and CXCL11.Conclusion: We identified potential signaling pathways and key genes involved in the pathogenesis of the asthma subsets, especially in neutrophilic asthma.
Collapse
Affiliation(s)
- Gongqi Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Dian Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Yuchen Feng
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Wenliang Wu
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Jiali Gao
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Chenli Chang
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Shengchong Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Guohua Zhen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
- *Correspondence: Guohua Zhen,
| |
Collapse
|