1
|
Ravindranath MH, El Hilali F, Amato-Menker CJ, El Hilali H, Selvan SR, Filippone EJ. Role of HLA-I Structural Variants and the Polyreactive Antibodies They Generate in Immune Homeostasis. Antibodies (Basel) 2022; 11:antib11030058. [PMID: 36134954 PMCID: PMC9495617 DOI: 10.3390/antib11030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Cell-surface HLA-I molecules consisting of β2-microglobulin (β2m) associated heavy chains (HCs), referred to as Face-1, primarily present peptides to CD8+ T-cells. HCs consist of three α-domains, with selected amino acid sequences shared by all alleles of all six isoforms. The cell-surface HLA undergoes changes upon activation by pathological conditions with the expression of β2m-free HCs (Face-2) resulting in exposure of β2m-masked sequences shared by almost all alleles and the generation of HLA-polyreactive antibodies (Abs) against them. Face-2 may homodimerize or heterodimerize with the same (Face-3) or different alleles (Face-4) preventing exposure of shared epitopes. Non-allo immunized males naturally carry HLA-polyreactive Abs. The therapeutic intravenous immunoglobulin (IVIg) purified from plasma of thousands of donors contains HLA-polyreactive Abs, admixed with non-HLA Abs. Purified HLA-polyreactive monoclonal Abs (TFL-006/007) generated in mice after immunizing with Face-2 are documented to be immunoregulatory by suppressing or activating different human lymphocytes, much better than IVIg. Our objectives are (a) to elucidate the complexity of the HLA-I structural variants, and their Abs that bind to both shared and uncommon epitopes on different variants, and (b) to examine the roles of those Abs against HLA-variants in maintaining immune homeostasis. These may enable the development of personalized therapeutic strategies for various pathological conditions.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Emeritus Research Scientist, Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
- Correspondence:
| | - Fatiha El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibn Zohr University, Agadir 80000, Morocco
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Hajar El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibn Zohr University, Agadir 80000, Morocco
| | - Senthamil R. Selvan
- Division of Immunology and Hematology Devices, OHT 7: Office of In Vitro Diagnostics, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA
| |
Collapse
|
2
|
Ramifications of the HLA-I Allelic Reactivity of Anti-HLA-E*01:01 and Anti-HLA-E*01:03 Heavy Chain Monoclonal Antibodies in Comparison with Anti-HLA-I IgG Reactivity in Non-Alloimmunized Males, Melanoma-Vaccine Recipients, and End-Stage Renal Disease Patients. Antibodies (Basel) 2022; 11:antib11010018. [PMID: 35323192 PMCID: PMC8944535 DOI: 10.3390/antib11010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 01/19/2023] Open
Abstract
Serum anti-HLA-I IgG are present in non-alloimmunized males, cancer patients, and transplant recipients. Anti-HLA-I antibodies are also present in intravenous immunoglobulin (IVIg), prepared from the plasma of thousands of healthy donors. However, the HLA-Ia reactivity of IVIg diminishes markedly after passing through HLA-E HC-affinity columns, suggesting that the HLA-I reactivity is due to antibodies formed against HLA-E. Hence, we examined whether anti-HLA-E antibodies can react to HLA-I alleles. Monoclonal IgG antibodies (mAbs) against HCs of two HLA-E alleles were generated in Balb/C mice. The antibodies were analyzed using multiplex bead assays on a Luminex platform for HLA-I reactivity. Beads coated with an array of HLA heterodimers admixed with HCs (LABScreen) were used to examine the binding of IgG to different HLA-Ia (31-HLA-A, 50-HLA-B, and 16-HLA-C) and Ib (2-HLA-E, one each of HLA-F and HLA-G) alleles. A striking diversity in the HLA-Ia and/or HLA-Ib reactivity of mAbs was observed. The number of the mAbs reactive to (1) only HLA-E (n = 25); (2) all HLA-Ib isomers (n = 8); (3) HLA-E and HLA-B (n = 5); (4) HLA-E, HLA-B, and HLA-C (n = 30); (5) HLA-E, HLA-A*1101, HLA-B, and HLA-C (n = 83); (6) HLA-E, HLA-A, HLA-B, and HLA-C (n = 54); and (7) HLA-Ib and HLA-Ia (n = 8), in addition to four other minor groups. Monospecificity and polyreactivity were corroborated by HLA-E monospecific and HLA-I shared sequences. The diverse HLA-I reactivity of the mAbs are compared with the pattern of HLA-I reactivity of serum-IgG in non-alloimmunized males, cancer patients, and ESKD patients. The findings unravel the diagnostic potential of the HLA-E monospecific-mAbs and immunomodulatory potentials of IVIg highly mimicking HLA-I polyreactive-mAbs.
Collapse
|
3
|
Ravindranath MH, Ravindranath NM, Selvan SR, Filippone EJ, Amato-Menker CJ, El Hilali F. Four Faces of Cell-Surface HLA Class-I: Their Antigenic and Immunogenic Divergence Generating Novel Targets for Vaccines. Vaccines (Basel) 2022; 10:vaccines10020339. [PMID: 35214796 PMCID: PMC8878457 DOI: 10.3390/vaccines10020339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Leukocyte cell-surface HLA-I molecules, involved in antigen presentation of peptides to CD8+ T-cells, consist of a heavy chain (HC) non-covalently linked to β2-microglobulin (β2m) (Face-1). The HC amino acid composition varies across all six isoforms of HLA-I, while that of β2m remains the same. Each HLA-allele differs in one or more amino acid sequences on the HC α1 and α2 helices, while several sequences among the three helices are conserved. HCs without β2m (Face-2) are also observed on human cells activated by malignancy, viral transformation, and cytokine or chemokine-mediated inflammation. In the absence of β2m, the monomeric Face-2 exposes immunogenic cryptic sequences on these cells as confirmed by HLA-I monoclonal antibodies (LA45, L31, TFL-006, and TFL-007). Furthermore, such exposure enables dimerization between two Face-2 molecules by SH-linkage, salt linkage, H-bonding, and van der Waal forces. In HLA-B27, the linkage between two heavy chains with cysteines at position of 67 of the amino acid residues was documented. Similarly, several alleles of HLA-A, B, C, E, F and G express cysteine at 67, 101, and 164, and additionally, HLA-G expresses cysteine at position 42. Thus, the monomeric HC (Face-2) can dimerize with another HC of its own allele, as homodimers (Face-3), or with a different HC-allele, as heterodimers (Face-4). The presence of Face-4 is well documented in HLA-F. The post-translational HLA-variants devoid of β2m may expose several cryptic linear and non-linear conformationally altered sequences to generate novel epitopes. The objective of this review, while unequivocally confirming the post-translational variants of HLA-I, is to highlight the scientific and clinical importance of the four faces of HLA and to prompt further research to elucidate their functions and their interaction with non-HLA molecules during inflammation, infection, malignancy and transplantation. Indeed, these HLA faces may constitute novel targets for passive and active specific immunotherapy and vaccines.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Emeritus Research Scientist at Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
- Correspondence:
| | - Narendranath M. Ravindranath
- Norris Dental Science Center, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA;
| | | | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA;
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Fatiha El Hilali
- The Faculty of Medicine and Pharmacy of Laayoune, Ibn Zohr University, Agadir 70000, Morocco;
| |
Collapse
|
4
|
Ravindranath MH, El Hilali F, Filippone EJ. The Impact of Inflammation on the Immune Responses to Transplantation: Tolerance or Rejection? Front Immunol 2021; 12:667834. [PMID: 34880853 PMCID: PMC8647190 DOI: 10.3389/fimmu.2021.667834] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
Transplantation (Tx) remains the optimal therapy for end-stage disease (ESD) of various solid organs. Although alloimmune events remain the leading cause of long-term allograft loss, many patients develop innate and adaptive immune responses leading to graft tolerance. The focus of this review is to provide an overview of selected aspects of the effects of inflammation on this delicate balance following solid organ transplantation. Initially, we discuss the inflammatory mediators detectable in an ESD patient. Then, the specific inflammatory mediators found post-Tx are elucidated. We examine the reciprocal relationship between donor-derived passenger leukocytes (PLs) and those of the recipient, with additional emphasis on extracellular vesicles, specifically exosomes, and we examine their role in determining the balance between tolerance and rejection. The concept of recipient antigen-presenting cell "cross-dressing" by donor exosomes is detailed. Immunological consequences of the changes undergone by cell surface antigens, including HLA molecules in donor and host immune cells activated by proinflammatory cytokines, are examined. Inflammation-mediated donor endothelial cell (EC) activation is discussed along with the effect of donor-recipient EC chimerism. Finally, as an example of a specific inflammatory mediator, a detailed analysis is provided on the dynamic role of Interleukin-6 (IL-6) and its receptor post-Tx, especially given the potential for therapeutic interdiction of this axis with monoclonal antibodies. We aim to provide a holistic as well as a reductionist perspective of the inflammation-impacted immune events that precede and follow Tx. The objective is to differentiate tolerogenic inflammation from that enhancing rejection, for potential therapeutic modifications. (Words 247).
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA, United States
- Terasaki Foundation Laboratory, Santa Monica, CA, United States
| | | | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
5
|
Arosa FA, Esgalhado AJ, Reste-Ferreira D, Cardoso EM. Open MHC Class I Conformers: A Look through the Looking Glass. Int J Mol Sci 2021; 22:ijms22189738. [PMID: 34575902 PMCID: PMC8470049 DOI: 10.3390/ijms22189738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Studies carried out during the last few decades have consistently shown that cell surface MHC class I (MHC-I) molecules are endowed with functions unrelated with antigen presentation. These include cis–trans-interactions with inhibitory and activating KIR and LILR, and cis-interactions with receptors for hormones, growth factors, cytokines, and neurotransmitters. The mounting body of evidence indicates that these non-immunological MHC-I functions impact clinical and biomedical settings, including autoimmune responses, tumor escape, transplantation, and neuronal development. Notably, most of these functions appear to rely on the presence in hematopoietic and non-hematopoietic cells of heavy chains not associated with β2m and the peptide at the plasma membrane; these are known as open MHC-I conformers. Nowadays, open conformers are viewed as functional cis-trans structures capable of establishing physical associations with themselves, with other surface receptors, and being shed into the extracellular milieu. We review past and recent developments, strengthening the view that open conformers are multifunctional structures capable of fine-tuning cell signaling, growth, differentiation, and cell communication.
Collapse
Affiliation(s)
- Fernando A Arosa
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - André J Esgalhado
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Débora Reste-Ferreira
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elsa M Cardoso
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
- Health School, Guarda Polytechnic Institute, 6300-749 Guarda, Portugal
| |
Collapse
|
6
|
Ravindranath MH, Hilali FE, Filippone EJ. Therapeutic Potential of HLA-I Polyreactive mAbs Mimicking the HLA-I Polyreactivity and Immunoregulatory Functions of IVIg. Vaccines (Basel) 2021; 9:680. [PMID: 34205517 PMCID: PMC8235337 DOI: 10.3390/vaccines9060680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 12/12/2022] Open
Abstract
HLA class-I (HLA-I) polyreactive monoclonal antibodies (mAbs) reacting to all HLA-I alleles were developed by immunizing mice with HLA-E monomeric, α-heavy chain (αHC) open conformers (OCs). Two mAbs (TFL-006 and TFL-007) were bound to the αHC's coated on a solid matrix. The binding was inhibited by the peptide 117AYDGKDY123, present in all alleles of the six HLA-I isoforms but masked by β2-microglobulin (β2-m) in intact HLA-I trimers (closed conformers, CCs). IVIg preparations administered to lower anti-HLA Abs in pre-and post-transplant patients have also shown HLA-I polyreactivity. We hypothesized that the mAbs that mimic IVIg HLA-I polyreactivity might also possess the immunomodulatory capabilities of IVIg. We tested the relative binding affinities of the mAbs and IVIg for both OCs and CCs and compared their effects on (a) the phytohemagglutinin (PHA)-activation T-cells; (b) the production of anti-HLA-II antibody (Ab) by B-memory cells and anti-HLA-I Ab by immortalized B-cells; and (c) the upregulation of CD4+, CD25+, and Fox P3+ T-regs. The mAbs bound only to OC, whereas IVIg bound to both CC and OC. The mAbs suppressed blastogenesis and proliferation of PHA-activated T-cells and anti-HLA Ab production by B-cells and expanded T-regs better than IVIg. We conclude that a humanized version of the TFL-mAbs could be an ideal, therapeutic IVIg-mimetic.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Emeritus Research Scientist at Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
| | | | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson Univsity, Philadelphia, PA 19145, USA;
| |
Collapse
|
7
|
Ravindranath MH, Filippone EJ, Devarajan A, Asgharzadeh S. Enhancing Natural Killer and CD8 + T Cell-Mediated Anticancer Cytotoxicity and Proliferation of CD8 + T Cells with HLA-E Monospecific Monoclonal Antibodies. Monoclon Antib Immunodiagn Immunother 2019; 38:38-59. [PMID: 31009335 PMCID: PMC6634170 DOI: 10.1089/mab.2018.0043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/13/2019] [Indexed: 12/16/2022] Open
Abstract
Cytotoxic NK/CD8+ T cells interact with MHC-I ligands on tumor cells through either activating or inhibiting receptors. One of the inhibitory receptors is CD94/NKG2A. The NK/CD8+ T cell cytotoxic capability is lost when tumor-associated human leukocyte antigen, HLA-E, binds the CD94/NKG2A receptor, resulting in tumor progression and reduced survival. Failure of cancer patients to respond to natural killer (NK) cell therapies could be due to HLA-E overexpression in tumor tissues. Preventing the inhibitory receptor-ligand interaction by either receptor- or ligand-specific monoclonal antibodies (mAbs) is an innovative passive immunotherapeutic strategy for cancer. Since receptors and ligands can be monomeric or homo- or heterodimeric proteins, the efficacy of mAbs may rely on their ability to distinguish monospecific (private) functional epitopes from nonfunctional common (public) epitopes. We developed monospecific anti-HLA-E mAbs (e.g., TFL-033) that recognize only HLA-E-specific epitopes, but not epitopes shared with other HLA class-I loci as occurs with currently available polyreactive anti-HLA-E mAbs. Interestingly the amino acid sequences in the α1 and α2 helices of HLA-E, critical for the recognition of the mAb TFL-033, are strikingly the same sequences recognized by the CD94/NKG2A inhibitory receptors on NK/CD8+ cells. Such monospecific mAbs can block the CD94/NKG2A interaction with HLA-E to restore NK cell and CD8+ anticancer cell cytotoxicity. Furthermore, the HLA-E monospecific mAbs significantly promoted the proliferation of the CD4-/CD8+ T cells. These monospecific mAbs are also invaluable for the specific demonstration of HLA-E on tumor biopsies, potentially indicating those tumors most likely to respond to such therapy. Thus, they can be used to enhance passive immunotherapy once phased preclinical studies and clinical trials are completed. On principle, we postulate that NK cell passive immunotherapy should capitalize on both of these features of monospecific HLA-E mAbs, that is, the specific determination HLA-E expression on a particular tumor and the enhancement of NK cell/CD8+ cytotoxicity if HLA-E positive.
Collapse
Affiliation(s)
| | - Edward J Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Asokan Devarajan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Shahab Asgharzadeh
- Department of Pediatrics and Pathology, Children's Hospital, Keck School of Medicine, USC, Los Angeles, California
| |
Collapse
|
8
|
Ravindranath MH. HLA Class Ia and Ib Polyreactive Anti-HLA-E IgG2a Monoclonal Antibodies (TFL-006 and TFL-007) Suppress Anti-HLA IgG Production by CD19+ B Cells and Proliferation of CD4+ T Cells While Upregulating Tregs. J Immunol Res 2017; 2017:3475926. [PMID: 28634589 PMCID: PMC5467321 DOI: 10.1155/2017/3475926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/18/2017] [Accepted: 03/23/2017] [Indexed: 12/20/2022] Open
Abstract
The anti-HLA-E IgG2a mAbs, TFL-006 and TFL-007, reacted with all HLA-I antigens, similar to the therapeutic preparations of IVIg. Indeed, IVIg lost its HLA reactivity, when its HLA-E reactivity was adsorbed out. US-FDA approved IVIg to reduce antibodies in autoimmune diseases. But the mechanism underlying IVIg-mediated antibody reduction could not be ascertained due to the presence of other polyclonal antibodies. In spite of it, the cost prohibitive high or low IVIg is administered to patients waiting for donor organ and for allograft recipients for lowering antiallograft antibodies. A mAb that could mimic IVIg in lowering Abs, with defined mechanism of action, would be highly beneficial for patients. Demonstrably, the anti-HLA-E mAbs mimicked several functions of IVIg relevant to suppressing the antiallograft Abs. The mAbs suppressed activated T cells and anti-HLA antibody production by activated B cells, which were dose-wise superior to IVIg. The anti-HLA-E mAb expanded CD4+, CD25+, and Foxp3+ Tregs, which are known to suppress T and B cells involved in antibody production. These defined functions of the anti-HLA-E IgG2a mAbs at a level superior to IVIg encourage developing their humanized version to lower antibodies in allograft recipients, to promote graft survival, and to control autoimmune diseases.
Collapse
|
9
|
Conformational Variants of the Individual HLA-I Antigens on Luminex Single Antigen Beads Used in Monitoring HLA Antibodies: Problems and Solutions. Transplantation 2017; 101:764-777. [PMID: 27495776 DOI: 10.1097/tp.0000000000001420] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Single antigen beads (SAB) are used for monitoring HLA antibodies in pretransplant and posttransplant patients despite the discrepancy between virtual and actual crossmatch results and transplant outcomes. This discrepancy can be attributed to the presence of conformational variants of HLA-I on SAB, assessment of which would increase the concordance between SAB and flow cytometry crossmatch (FCXM) results, thus enabling improved organ accessibility for the waiting list patients and a better prediction of antibody-mediated rejection. METHODS The conformational variants were examined on HLA-I beads, iBeads, acid-/alkali-treated beads, and T cells using HLA-I monoclonal antibodies (W6/32, TFL-006, and heavy chain (HC)-10). RESULTS The affinity of the monoclonal antibodies against HLA-I beads confirmed the presence and heterogeneous density of peptide-associated β2-microglobulin-associated HLA HC (pepA-β2aHC), peptide-free-β2aHC (pepF-β2aHC), and β2-free HC (β2fHC) on every single antigen-coated bead. In contrast, iBeads harbor a high density of pepA-β2aHC, low density of pepF-β2aHC, and are lacking β2fHC. The FCXM analyses confirmed the prevalence of pepA-β2aHC, but not pepF-β2aHC or β2fHC on resting T cells. CONCLUSIONS The strength of a donor-specific antibody should be assessed with a bead-specific mean fluorescence intensity cutoff based on TFL-006 reactivity against HLA-I beads, and HC-10 against iBeads, where the β2fHC or pepF-β2aHC normalized donor-specific antibody level would reveal the true anti-pepA-β2aHC reactivity associated with positive FCXM.
Collapse
|
10
|
Ravindranath MH, Terasaki PI, Pham T, Jucaud V. The Monospecificity of Novel Anti-HLA-E Monoclonal Antibodies Enables Reliable Immunodiagnosis, Immunomodulation of HLA-E, and Upregulation of CD8+ T Lymphocytes. Monoclon Antib Immunodiagn Immunother 2015; 34:135-53. [PMID: 26090591 DOI: 10.1089/mab.2014.0096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In human cancers, over-expression of HLA-E is marked by gene expression. However, immunolocalization of HLA-E on tumor cells is impeded by the HLA-Ia reactivity of commercial anti-HLA-E monoclonal antibodies (MAbs). So there was a clear need to develop monospecific anti-HLA-E MAbs for reliable immunodiagnosis of HLA-E, particularly considering the prognostic relevance of HLA-E in human cancer. HLA-E overexpression is correlated with disease progression and poor survival of patients, both of which are attributed to the suppression of anti-tumor activity of cytotoxic T cells mediated by HLA-E. The suppression mechanism involves the binding of HLA-E-specific amino acids located on the α1 and α2 helices of HLA-E to the inhibitory receptors (CD94/NKG2a) on CD8+ T lymphocytes. An anti-HLA-E MAb that recognizes these HLA-E-specific sequences can not only be a monospecific MAb with potential for specific immunolocalization of HLA-E but can also block the sequences from interacting with the CD94/NKG2a receptors. We therefore developed several clones that secrete such HLA-E-specific MAbs; then we assessed the ability of the MAbs to bind to the amino acid sequences interacting with the CD94/NKG2a receptors by inhibiting them from binding to HLA-E with peptides that inhibit receptor binding. Elucidation of the immunomodulatory capabilities of these monospecific MAbs showed that they can induce proliferation of CD8+ T cells with or without co-stimulation. These novel MAbs can serve a dual role in combating cancer by blocking interaction of HLA-E with CD94/NKG2a and by promoting proliferation of both non-activated and activated CD8+ cytotoxic αβ T cells.
Collapse
Affiliation(s)
| | | | - Tho Pham
- Terasaki Foundation Laboratory , Los Angeles, California
| | - Vadim Jucaud
- Terasaki Foundation Laboratory , Los Angeles, California
| |
Collapse
|
11
|
Ravindranath MH, Terasaki PI, Maehara CY, Jucaud V, Kawakita S, Pham T, Yamashita W. Immunoglobulin (Ig)G purified from human sera mirrors intravenous Ig human leucocyte antigen (HLA) reactivity and recognizes one's own HLA types, but may be masked by Fab complementarity-determining region peptide in the native sera. Clin Exp Immunol 2015; 179:309-28. [PMID: 25196542 DOI: 10.1111/cei.12450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2014] [Indexed: 01/19/2023] Open
Abstract
Intravenous immunoglobulin (IVIg) reacted with a wide array of human leucocyte antigen (HLA) alleles, in contrast to normal sera, due possibly to the purification of IgG from the pooled plasma. The reactivity of IgG purified from normal sera was compared with that of native sera to determine whether any serum factors mask the HLA reactivity of anti-HLA IgG and whether IgG purified from sera can recognize the HLA types of the corresponding donors. The purified IgG, unlike native sera, mirrored IVIg reactivity to a wide array of HLA-I/-II alleles, indicating that anti-HLA IgG may be masked in normal sera - either by peptides derived from soluble HLA or by those from antibodies. A < 3 kDa peptide from the complementarity-determining region (CDR) of the Fab region of IgG (but not the HLA peptides) masked HLA recognition by the purified IgG. Most importantly, some of the anti-HLA IgG purified from normal sera - and serum IgG from a few donors - indeed recognized the HLA types of the corresponding donors, confirming the presence of auto-HLA antibodies. Comparison of HLA types with the profile of HLA antibodies showed auto-HLA IgG to the donors' HLA antigens in this order of frequency: DPA (80%), DQA (71%), DRB345 (67%), DQB (57%), Cw (50%), DBP (43%), DRB1 (21%), A (14%) and B (7%). The auto-HLA antibodies, when unmasked in vivo, may perform immunoregulatory functions similar to those of therapeutic preparations of IVIg.
Collapse
|