1
|
Abu-Raya B, Esser MJ, Nakabembe E, Reiné J, Amaral K, Diks AM, Imede E, Way SS, Harandi AM, Gorringe A, Le Doare K, Halperin SA, Berkowska MA, Sadarangani M. Antibody and B-cell Immune Responses Against Bordetella Pertussis Following Infection and Immunization. J Mol Biol 2023; 435:168344. [PMID: 37926426 DOI: 10.1016/j.jmb.2023.168344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Neither immunization nor recovery from natural infection provides life-long protection against Bordetella pertussis. Replacement of a whole-cell pertussis (wP) vaccine with an acellular pertussis (aP) vaccine, mutations in B. pertussis strains, and better diagnostic techniques, contribute to resurgence of number of cases especially in young infants. Development of new immunization strategies relies on a comprehensive understanding of immune system responses to infection and immunization and how triggering these immune components would ensure protective immunity. In this review, we assess how B cells, and their secretory products, antibodies, respond to B. pertussis infection, current and novel vaccines and highlight similarities and differences in these responses. We first focus on antibody-mediated immunity. We discuss antibody (sub)classes, elaborate on antibody avidity, ability to neutralize pertussis toxin, and summarize different effector functions, i.e. ability to activate complement, promote phagocytosis and activate NK cells. We then discuss challenges and opportunities in studying B-cell immunity. We highlight shared and unique aspects of B-cell and plasma cell responses to infection and immunization, and discuss how responses to novel immunization strategies better resemble those triggered by a natural infection (i.e., by triggering responses in mucosa and production of IgA). With this comprehensive review, we aim to shed some new light on the role of B cells and antibodies in the pertussis immunity to guide new vaccine development.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| | - Mirjam J Esser
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Eve Nakabembe
- Centre for Neonatal and Paediatric Infectious Diseases Research, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK; Department of Obstetrics and Gynaecology, Makerere University College of Health Sciences, Upper Mulago Hill Road, Kampala, P.O. Box 7072, Uganda
| | - Jesús Reiné
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Kyle Amaral
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Annieck M Diks
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden ZA 2333, the Netherlands
| | - Esther Imede
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Sing Sing Way
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Ali M Harandi
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Andrew Gorringe
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Kirsty Le Doare
- Centre for Neonatal and Paediatric Infectious Diseases Research, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK; Makerere University-Johns Hopkins University Research Collaboration, MU-JHU, Upper Mulago Hill, Kampala, P.O. Box 23491, Uganda
| | - Scott A Halperin
- Canadian Center for Vaccinology, Departments of Pediatrics and Microbiology and Immunology, Dalhousie University, Izaak Walton Killam Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | - Magdalena A Berkowska
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Dewan KK, Caulfield A, Su Y, Sedney CJ, Callender M, Masters J, Blas-Machado U, Harvill ET. Adaptive immune protection of the middle ears differs from that of the respiratory tract. Front Cell Infect Microbiol 2023; 13:1288057. [PMID: 38125908 PMCID: PMC10731285 DOI: 10.3389/fcimb.2023.1288057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/01/2023] [Indexed: 12/23/2023] Open
Abstract
The efficacy of the adaptive immune system in the middle ear (ME) is well established, but the mechanisms are not as well defined as those of gastrointestinal or respiratory tracts. While cellular elements of the adaptive response have been detected in the MEs following infections (or intranasal immunizations), their specific contributions to protecting the organ against reinfections are unknown. How immune protection mechanisms of the MEs compares with those in the adjacent and attached upper and lower respiratory airways remains unclear. To address these knowledge gaps, we used an established mouse respiratory infection model that we recently showed also involves ME infections. Bordetella bronchiseptica delivered to the external nares of mice in tiny numbers very efficiently infects the respiratory tract and ascends the Eustachian tube to colonize and infect the MEs, where it causes severe but acute inflammation resembling human acute otitis media (AOM). Since this AOM naturally resolves, we here examine the immunological mechanisms that clear infection and protect against subsequent infection, to guide efforts to induce protective immunity in the ME. Our results show that once the MEs are cleared of a primary B. bronchiseptica infection, the convalescent organ is strongly protected from reinfection by the pathogen despite its persistence in the upper respiratory tract, suggesting important immunological differences in these adjacent and connected organs. CD4+ and CD8+ T cells trafficked to the MEs following infection and were necessary to robustly protect against secondary challenge. Intranasal vaccination with heat killed B. bronchiseptica conferred robust protection against infection to the MEs, even though the nasopharynx itself was only partially protected. These data establish the MEs as discrete effector sites of adaptive immunity and shows that effective protection in the MEs and the respiratory tract is significantly different. This model system allows the dissection of immunological mechanisms that can prevent bacteria in the nasopharynx from ascending the ET to colonize the ME.
Collapse
Affiliation(s)
- Kalyan K. Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Amanda Caulfield
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Yang Su
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Colleen J. Sedney
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Maiya Callender
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jillian Masters
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Uriel Blas-Machado
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Pichichero ME. Variability of vaccine responsiveness in early life. Cell Immunol 2023; 393-394:104777. [PMID: 37866234 DOI: 10.1016/j.cellimm.2023.104777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/18/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Vaccinations in early life elicit variable antibody and cellular immune responses, sometimes leaving fully vaccinated children unprotected against life-threatening infectious diseases. Specific immune cell populations and immune networks may have a critical period of development and calibration in a window of opportunity occurring during the first 100 days of early life. Among the early life determinants of vaccine responses, this review will focus on modifiable factors involving development of the infant microbiota and metabolome: antibiotic exposure, breast versus formula feeding, and Caesarian section versus vaginal delivery of newborns. How microbiota may serve as natural adjuvants for vaccine responses and how microbiota-derived metabolites influence vaccine responses are also reviewed. Early life poor vaccine responsiveness can be linked to increased infection susceptibility because both phenotypes share similar immunity dysregulation profiles. An early life pre-vaccination endotype, when interventions have the highest potential for success, should be sought that predicts vaccine response trajectories.
Collapse
Affiliation(s)
- Michael E Pichichero
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, 1425 Portland Ave, Rochester, NY 14621, USA.
| |
Collapse
|
4
|
Dewan KK, Sedney C, Caulfield AD, Su Y, Ma L, Blas-Machado U, Harvill ET. Probing Immune-Mediated Clearance of Acute Middle Ear Infection in Mice. Front Cell Infect Microbiol 2022; 11:815627. [PMID: 35141173 PMCID: PMC8818953 DOI: 10.3389/fcimb.2021.815627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Acute otitis media (AOM) is commonly caused by bacterial pathobionts of the nasopharynx that ascend the Eustachian tube to cause disease in the middle ears. To model and study the various complexities of AOM, common human otopathogens are injected directly into the middle ear bullae of rodents or are delivered with viral co-infections which contribute to the access to the middle ears in complex and partially understood ways. Here, we present the novel observation that Bordetella bronchiseptica, a well-characterized respiratory commensal/pathogen of mice, also efficiently ascends their Eustachian tubes to colonize their middle ears, providing a flexible mouse model to study naturally occurring AOM. Mice lacking T and/or B cells failed to resolve infections, highlighting the cooperative role of both in clearing middle ear infection. Adoptively transferred antibodies provided complete protection to the lungs but only partially protected the middle ears, highlighting the differences between respiratory and otoimmunology. We present this as a novel experimental system that can capitalize on the strengths of the mouse model to dissect the molecular mechanisms involved in the generation and function of immunity within the middle ear.
Collapse
Affiliation(s)
- Kalyan K. Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- *Correspondence: Kalyan K. Dewan,
| | - Colleen Sedney
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Amanda D. Caulfield
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Yang Su
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Longhuan Ma
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Uriel Blas-Machado
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
5
|
Affiliation(s)
- G. Kay
- American Fondouk Fez Morocco
| | | | - M. Mazan
- Department of Clinical Sciences Cummings School of Veterinary Medicine Tufts University Grafton Massachusetts USA
| |
Collapse
|
6
|
Morris MC, Chapman TJ, Pichichero ME, Broderick G. Immune Network Modeling Predicts Specific Nasopharyngeal and Peripheral Immune Dysregulation in Otitis-Prone Children. Front Immunol 2020; 11:1168. [PMID: 32595639 PMCID: PMC7301607 DOI: 10.3389/fimmu.2020.01168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/12/2020] [Indexed: 11/18/2022] Open
Abstract
Acute otitis media (AOM) pathogenesis involves nasopharyngeal colonization by potential otopathogens and a viral co-infection. Stringently-defined otitis prone (sOP) children show characteristic patterns of immune dysfunction. We hypothesized that otitis proneness is largely a result of altered signaling between immune components that are otherwise competent, resulting in increased susceptibility to infection by bacterial otopathogens. To test this, we constructed a regulatory immune network model linking immune cells and signaling elements known to be involved in AOM and/or dysregulated in sOP children. The alignment of immune response mechanisms with data from in vivo and in vitro experimental observations produced 82 putative immune network models, each describing variants of immune regulatory networks consistent with available observations. Analysis of these models suggested that new measurements of serum levels of IL-4 and CXCL8 could refine competing models and resulted in the elimination of 38 of the models. Further analysis of the remaining 44 models suggested specific deviations in the predicted regulation of nasopharyngeal and peripheral immunity during response to AOM. Specifically, immune responses active in sOP children during AOM were characterized by early and constitutive activation of pro-inflammatory signaling in the nasopharynx and a Th2- and Treg-dominated profile in the periphery. We conclude that sOP children have altered regulation of key immune mediators during both health and pathogenesis. This altered regulation may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Matthew C. Morris
- Center for Clinical Systems Biology, Research Institute, Rochester General Hospital, Rochester, NY, United States
| | - Timothy J. Chapman
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, NY, United States
| | - Michael E. Pichichero
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, NY, United States
| | - Gordon Broderick
- Center for Clinical Systems Biology, Research Institute, Rochester General Hospital, Rochester, NY, United States
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
7
|
Pichichero ME. Immunologic dysfunction contributes to the otitis prone condition. J Infect 2020; 80:614-622. [PMID: 32205139 DOI: 10.1016/j.jinf.2020.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/11/2022]
Abstract
Acute Otitis Media (AOM) is a multifactorial disease occurring mostly in young children who are immunologically naïve to AOM pathogens. This review focuses on work from Rochester NY, USA over the past 12 years among young children who had AOM infections microbiologically-confirmed by tympanocentesis, so called "stringently-defined". Among stringently-defined otitis prone children deficiencies in fundamental immune defense mechanisms have been identified that contribute to the propensity of young children to experience recurrent AOM. Dysfunction in innate immune responses that cause an immunopathological impact in the nasopharynx have been discovered including inadequate proinflammatory cytokine response and poor epithelial cell repair. Adaptive immunity defects in B cell function and immunologic memory resulting in low levels of antibody to otopathogen-specific antigens allows repeated infections. CD4+ and CD8+ T cell function and memory defects significantly contribute. The immune profile of an otitis prone child resembles that of a neonate through the first year of life. Immunologic deficits in otitis prone children cause them to be unusually vulnerable to viral upper respiratory infections and respond inadequately to routine pediatric vaccines.
Collapse
Affiliation(s)
- Michael E Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY.
| |
Collapse
|
8
|
Santos-Cortez RLP, Bhutta MF, Earl JP, Hafrén L, Jennings M, Mell JC, Pichichero ME, Ryan AF, Tateossian H, Ehrlich GD. Panel 3: Genomics, precision medicine and targeted therapies. Int J Pediatr Otorhinolaryngol 2020; 130 Suppl 1:109835. [PMID: 32007292 PMCID: PMC7155947 DOI: 10.1016/j.ijporl.2019.109835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To review the most recent advances in human and bacterial genomics as applied to pathogenesis and clinical management of otitis media. DATA SOURCES PubMed articles published since the last meeting in June 2015 up to June 2019. REVIEW METHODS A panel of experts in human and bacterial genomics of otitis media was formed. Each panel member reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a merged draft was created. The panel met at the 20th International Symposium on Recent Advances in Otitis Media in June 2019, discussed the review and refined the content. A final draft was made, circulated, and approved by the panel members. CONCLUSION Trans-disciplinary approaches applying pan-omic technologies to identify human susceptibility to otitis media and to understand microbial population dynamics, patho-adaptation and virulence mechanisms are crucial to the development of novel, personalized therapeutics and prevention strategies for otitis media. IMPLICATIONS FOR PRACTICE In the future otitis media prevention strategies may be augmented by mucosal immunization, combination vaccines targeting multiple pathogens, and modulation of the middle ear microbiome. Both treatment and vaccination may be tailored to an individual's otitis media phenotype as defined by molecular profiles obtained by using rapidly developing techniques in microbial and host genomics.
Collapse
Affiliation(s)
- Regie Lyn P. Santos-Cortez
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19 Ave., Aurora, CO 80045, USA
| | - Mahmood F. Bhutta
- Department of ENT, Royal Sussex County Hospital, Eastern Road, Brighton BN2 5BE, UK
| | - Joshua P. Earl
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| | - Lena Hafrén
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Tukholmankatu 8A, 00290 Helsinki, Finland
| | - Michael Jennings
- Institute for Glycomics, Gold Coast campus, Griffith University, QLD 4222, Australia
| | - Joshua C. Mell
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| | - Michael E. Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, 1425 Portland Ave., Rochester, NY 14621, USA
| | - Allen F. Ryan
- Department of Surgery/Otolaryngology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Hilda Tateossian
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxford, Didcot OX11 0RD, UK
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| |
Collapse
|
9
|
Burdin N, Handy LK, Plotkin SA. What Is Wrong with Pertussis Vaccine Immunity? The Problem of Waning Effectiveness of Pertussis Vaccines. Cold Spring Harb Perspect Biol 2017; 9:a029454. [PMID: 28289064 PMCID: PMC5710106 DOI: 10.1101/cshperspect.a029454] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pertussis is resurgent in some countries, particularly those in which children receive acellular pertussis (aP) vaccines in early infancy and boosters later in life. Immunologic studies show that, whereas whole-cell pertussis (wP) vaccines orient the immune system toward Th1/Th17 responses, acellular pertussis vaccines orient toward Th1/Th2 responses. Although aP vaccines do provide protection during the first years of life, the change in T-cell priming results in waning effectiveness of aP as early as 2-3 years post-boosters. Although other factors, such as increased virulence of pertussis strains, better diagnosis, and better surveillance may play a role, the increase in pertussis appears to be the result of waning immunity. In addition, studies in baboon models, requiring confirmation in humans, show that aP is less able to prevent nasopharyngeal colonization of Bordetella pertussis than wP or natural infection.
Collapse
Affiliation(s)
- Nicolas Burdin
- EU Research and Non Clinical Safety, R&D, Sanofi Pasteur, Campus Mérieux, 69280 Marcy l'Etoile, France
| | - Lori Kestenbaum Handy
- Assistant Professor of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Division of Infectious Diseases, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803
| | - Stanley A Plotkin
- Emeritus Professor of Pediatrics, University of Pennsylvania, Vaxconsult, Doylestown, Pennsylvania 18902
| |
Collapse
|
10
|
Morris MC, Pichichero ME. Streptococcus pneumoniae burden and nasopharyngeal inflammation during acute otitis media. Innate Immun 2017; 23:667-677. [DOI: 10.1177/1753425917737825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae (Spn) is a common respiratory pathogen and a frequent cause of acute otitis media (AOM) in children. The first step in bacterial pathogenesis of AOM is the establishment of asymptomatic colonization in the nasopharynx. We studied Spn bacterial burden in conjunction with neutrophil recruitment and inflammatory gene transcription and cytokine secretion in samples of nasal wash collected from normal and otitis-prone children during health, viral upper respiratory infection without middle ear involvement (URI) and AOM. We found no significant associations between otitis-prone status and any of the measured parameters. However, Spn bacterial burden was significantly correlated with neutrophil recruitment, transcription of IL-8, TNF-α and SOD2, and secretion of TNF-α. We also found that transcription of IL-8 and TNF-α mRNA by neutrophils was significantly correlated with the secretion of these cytokines into the nasopharynx. We conclude that Spn bacterial burden in the NP is a major determinant of neutrophil recruitment to the NP and activity during URI and AOM, and that neutrophils are contributors to the secretion of IL-8 and TNF-α in the NP when the Spn burden is high.
Collapse
Affiliation(s)
- Matthew C Morris
- Rochester General Hospital Research Institute, Rochester, NY, USA
| | | |
Collapse
|
11
|
Ren D, Almudevar AL, Murphy TF, Lafontaine ER, Campagnari AA, Luke-Marshall N, Pichichero ME. Serum antibody response to Moraxella catarrhalis proteins in stringently defined otitis prone children. Vaccine 2017; 37:4637-4645. [PMID: 28755833 DOI: 10.1016/j.vaccine.2017.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/22/2017] [Accepted: 07/10/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Moraxella catarrhalis (Mcat) is a frequent pathogen of acute otitis media (AOM) in young children. Here we prospectively assessed naturally-induced serum antibodies to four Mcat vaccine candidate proteins in stringently defined otitis prone (sOP) and non-otitis prone (NOP) children age 6-36months old following nasopharyngeal (NP) colonization, at onset of AOM and convalescence from AOM. METHODS Serum IgG and IgM antibody against recombinant Mcat proteins, oligopeptide permease A (OppA), outer membrane protein (OMP) CD, hemagglutinin (Hag), and PilA clade 2 (PilA2), were quantitated by ELISA. RESULTS During NP colonization by Mcat all four antigens were immunogenic in both sOP and NOP children. However, sOP children had lower antibody responses than NOP children across age 6-36months, similar to our findings for protein vaccine candidates of Streptococcus pneumoniae (Spn) and Nontypeable Haemophilus influenzae (NTHi). sOP children displayed a later and lower peak of antibody rise than NOP children for all four antigens during NP colonization of Mcat. The age-dependent increase of antibody ranked as OppA>Hag5-9>OMP CD>PilA2 in both sOP and NOP children. Lower serum antibody levels to the Mcat antigens were measured in sOP compared to NOP children at the onset of AOM. We did not find a consistent significant increase of antibody at the convalescence phase after an AOM event. CONCLUSIONS sOP children is a highly vulnerable population that mount lower serum antibody responses to Mcat candidate vaccine proteins compared to NOP children during asymptomatic NP carriage and at onset of AOM.
Collapse
Affiliation(s)
- Dabin Ren
- Rochester General Hospital Research Institute, Rochester, NY 14621, USA.
| | - Anthony L Almudevar
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Timothy F Murphy
- Clinical and Translational Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Eric R Lafontaine
- Department of Infectious Diseases, College of Veterinary Medicine University of Georgia, Athens, GA 30602, USA
| | - Anthony A Campagnari
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Nicole Luke-Marshall
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | | |
Collapse
|
12
|
Basha S, Pichichero ME. Decreased TNF family receptor expression on B-cells is associated with reduced humoral responses to Streptococcus pneumoniae infections in young children. Cell Immunol 2017; 320:11-19. [PMID: 28947093 DOI: 10.1016/j.cellimm.2017.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 12/30/2022]
Abstract
An underdeveloped or impaired immune response in young children is associated with increased susceptibility to Streptococcus pneumonia (Spn) infections. We determined serum antibody titers against 3 Spn vaccine candidate proteins and vaccine serotype polysaccharide antigens in a group of Spn infection prone 9-18months old and found lower IgG antibody titers to all tested antigens compared to age-matched non-infection-prone children. We also found the children had significantly reduced percentages of total memory B-cells, switched memory B-cells and plasma cells. We sought a mechanistic explanation for that result by examination of TNF family receptors (TNFRs) TACI, BCMA, and BAFFR receptor expression on B-cells and found significantly lower BAFFR and TACI expression; significantly lower proliferation of B-cells stimulated with exogenous BAFF; and diminished expression of co-stimulatory receptors B7-1 and B7-2 among infection prone vs. non-prone children. We conclude that lower expression of TNFRs, lower proliferation of B-cells in response to BAFF and lower expression of B7-1 and B7-2 by B-cells may contribute to reduced antibody responses to Spn and consequent infection proneness in young children.
Collapse
Affiliation(s)
- Saleem Basha
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY 14621, USA
| | - Michael E Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY 14621, USA.
| |
Collapse
|
13
|
Kaur R, Casey J, Pichichero M. Differences in innate immune response gene regulation in the middle ear of children who are otitis prone and in those not otitis prone. Am J Rhinol Allergy 2017; 30:218-223. [PMID: 28124644 DOI: 10.2500/ajra.2016.30.4393] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Acute otitis media (AOM) causes an inflammatory response in the middle ear. We assessed differences in innate immune responses involved in bacterial defense at onset of AOM in children who were stringently defined as otitis prone (sOP) and children not otitis prone (NOP). STUDY DESIGN Innate immune genes analysis from middle ear fluid (MEF) samples of children. METHODS Genes of toll-like receptors (TLR), nod-like and retinoic acid-inducible gene-I-like receptors, downstream effectors important for inflammation and apoptosis, including cytokines and chemokines, were studied from MEF samples by using a real-time polymerase chain reaction array. Protein levels of differentially regulated genes were measured by Luminex. RESULTS Gene expression in MEF among children who were sOP was significantly different in upregulation of interleukin 8, secretory leukocyte peptidase inhibitor, and chemokine (C-C motif) ligand 3, and in downregulation of interferon regulatory factor 7 and its related signaling molecules interferon alpha, Toll-like receptor adaptor molecule 2, chemokine (C-C motif) ligand 5, and mitogen-activated protein kinase 8 compared with children who were NOP. Differences in innate gene regulation were similar when AOM was caused by Streptococcus pneumoniae or nontypeable Haemophilus influenzae. CONCLUSION Innate-immune response genes are differentially regulated in children who were sOP compared with children with NOP.
Collapse
Affiliation(s)
- Ravinder Kaur
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York, USA
| | | | | |
Collapse
|
14
|
Abstract
This review summarizes a prospective, longitudinal 10-year study in Rochester, NY, with virtually every clinically diagnosed acute otitis media (AOM) confirmed by bacterial culture of middle ear fluid. Children experiencing 3 episodes within 6 months or 4 episodes in 12 months were considered stringently defined otitis prone (sOP). We found stringent diagnosis compared with clinical diagnosis reduced the frequency of children meeting the OP definition from 27% to 6% resulting in 14.8% and 2.4% receiving tympanostomy tubes, respectively. Significantly more often respiratory syncytial virus infection led to AOM in sOP than non-otitis-prone children that correlated with diminished total respiratory syncytial virus-specific serum IgG. sOP children produced low levels of antibody to Streptococcus pneumoniae and Haemophilus influenzae candidate vaccine protein antigens and to routine pediatric vaccines. sOP children generated significantly fewer memory B cells, functional and memory T cells to otopathogens following nasopharyngeal colonization and AOM than non-otitis-prone children and they had defects in antigen-presenting cells.
Collapse
Affiliation(s)
- Michael E. Pichichero
- Center for Infectious Disease and Immunobiology, Rochester General Hospital Research Institute, Rochester, NY, USA 14621
| |
Collapse
|
15
|
Zhang Y, Wang Y, Jiang Y, Pan W, Liu H, Yin J, Shen Y, Cao J. T follicular helper cells in patients with acute schistosomiasis. Parasit Vectors 2016; 9:321. [PMID: 27266984 PMCID: PMC4895967 DOI: 10.1186/s13071-016-1602-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/20/2016] [Indexed: 11/24/2022] Open
Abstract
Background The role of T follicular helper (Tfh) cells in schistosome infection is not fully defined. In a previous study, a higher frequency of circulating PD-1+CXCR5+CD4+ Tfh cells was observed in patients with chronic schistosomiasis relative to healthy controls (HCs) and it correlated positively with the level of soluble egg antigen (SEA) specific antibodies in serum. However, the function of Tfh cells in patients with acute schistosomiasis remains elusive; this was investigated in the present study. Methods The frequency of circulating Tfh cells and the expression of inducible T cell co-stimulator (ICOS), programmed cell death 1 (PD-1) and B cell subsets were analyzed in 12 patients with acute schistosomiasis and 10 HCs by flow cytometry. The expression of Bcl6, c-Maf and IL-21 mRNA were detected by quantitative real-time reverse transcriptase PCR (qRT-PCR). The concentration of serum IL-21 and IgG specific to Schistosoma japonicum antigen were then determined by enzyme linked immunosorbent assay (ELISA). Correlations between PD-1+CXCR5+CD4+ Tfh cells, memory B cells and IgG specific to S. japonicum were analyzed by Spearman’s rank correlation. Results The frequency of PD-1+CXCR5+CD4+ Tfh and memory B cells was increased in acute schistosomiasis patients relative to HCs. Moreover, the levels of IL-21 in serum and the expression of IL-21 mRNA were higher in acute schistosomiasis patients. However, there was no significant correlation between PD-1+CXCR5+CD4+ Tfh cells, memory B cells and IgG specific to S. japonicum antigen in patients with acute schistosomiasis. Conclusions PD-1+CXCR5+CD4+ Tfh cells in peripheral blood are involved in the immune response of patients with acute schistosomiasis. Understanding the immunological mechanism is helpful for the development of vaccination strategies to control schistosomiasis.
Collapse
Affiliation(s)
- Yumei Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, MOH, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.,Department of Pathogenic Biology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yanjuan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China. .,Key Laboratory of Parasite and Vector Biology, MOH, Shanghai, 200025, China. .,National Center for International Research on Tropical Diseases, Shanghai, 200025, China. .,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.
| | - Yanyan Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, MOH, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China
| | - Wei Pan
- Department of Pathogenic Biology and Immunity, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hua Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, MOH, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, MOH, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, MOH, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China. .,Key Laboratory of Parasite and Vector Biology, MOH, Shanghai, 200025, China. .,National Center for International Research on Tropical Diseases, Shanghai, 200025, China. .,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.
| |
Collapse
|
16
|
Distribution of Peripheral Memory T Follicular Helper Cells in Patients with Schistosomiasis Japonica. PLoS Negl Trop Dis 2015; 9:e0004015. [PMID: 26284362 PMCID: PMC4540279 DOI: 10.1371/journal.pntd.0004015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 07/29/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Schistosomiasis is a helminthic disease that affects more than 200 million people. An effective vaccine would be a major step towards eliminating the disease. Studies suggest that T follicular helper (Tfh) cells provide help to B cells to generate the long-term humoral immunity, which would be a crucial component of successful vaccines. Thus, understanding the biological characteristics of Tfh cells in patients with schistosomiasis, which has never been explored, is essential for vaccine design. METHODOLOGY/PRINCIPAL FINDINGS In this study, we investigated the biological characteristics of peripheral memory Tfh cells in schistosomiasis patients by flow cytometry. Our data showed that the frequencies of total and activated peripheral memory Tfh cells in patients were significantly increased during Schistosoma japonicum infection. Moreover, Tfh2 cells, which were reported to be a specific subpopulation to facilitate the generation of protective antibodies, were increased more greatly than other subpopulations of total peripheral memory Tfh cells in patients with schistosomiasis japonica. More importantly, our result showed significant correlations of the percentage of Tfh2 cells with both the frequency of plasma cells and the level of IgG antibody. In addition, our results showed that the percentage of T follicular regulatory (Tfr) cells was also increased in patients with schistosomiasis. CONCLUSIONS/SIGNIFICANCE Our report is the first characterization of peripheral memory Tfh cells in schistosomasis patients, which not only provides potential targets to improve immune response to vaccination, but also is important for the development of vaccination strategies to control schistosomiasis.
Collapse
|