1
|
Kurasawa S, Kato S, Ozeki T, Akiyama S, Ishimoto T, Mizuno M, Tsuboi N, Kato N, Kosugi T, Maruyama S. Rationale and design of the Japanese Biomarkers in Nephrotic Syndrome (J-MARINE) study. Clin Exp Nephrol 2024; 28:431-439. [PMID: 38267800 DOI: 10.1007/s10157-023-02449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024]
Abstract
INTRODUCTION Disease subtyping and monitoring are essential for the management of nephrotic syndrome (NS). Although various biomarkers for NS have been reported, their clinical efficacy has not been comprehensively validated in adult Japanese patients. METHODS The Japanese Biomarkers in Nephrotic Syndrome (J-MARINE) study is a nationwide, multicenter, and prospective cohort study in Japan, enrolling adult (≥18 years) patients with minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), membranous nephropathy (MN), membranoproliferative glomerulonephritis (MPGN), C3 glomerulopathy (C3G), and lupus nephritis (LN). Baseline clinical information and plasma and urine samples will be collected at the time of immunosuppressive therapy initiation or biopsy. Follow-up data and plasma and urine samples will be collected longitudinally based on the designated protocols. Candidate biomarkers will be measured: CD80, cytotoxic T-lymphocyte antigen 4, and soluble urokinase plasminogen activator receptor for MCD and FSGS; anti-phospholipase A2 receptor and thrombospondin type-1 domain-containing protein 7A antibodies for MN; fragment Ba, C3a, factor I, and properdin for MPGN/C3G; and CD11b, CD16b, and CD163 for LN. Outcomes include complete and partial remission, relapse of proteinuria, a 30% reduction in estimated glomerular filtration rate (eGFR), eGFR decline, and initiation of renal replacement therapy. The diagnostic accuracy and predictive ability for clinical outcomes will be assessed for each biomarker. RESULTS From April 2019 to April 2023, 365 patients were enrolled: 145, 21, 138, 10, and 51 cases of MCD, FSGS, MN, MPGN/C3G, and LN, respectively. CONCLUSION This study will provide valuable insights into biomarkers for NS and serve as a biorepository for future studies.
Collapse
MESH Headings
- Humans
- Biomarkers/blood
- Biomarkers/urine
- Nephrotic Syndrome/urine
- Nephrotic Syndrome/blood
- Nephrotic Syndrome/diagnosis
- Prospective Studies
- Japan
- Glomerulosclerosis, Focal Segmental/urine
- Glomerulosclerosis, Focal Segmental/blood
- Glomerulosclerosis, Focal Segmental/diagnosis
- Receptors, Urokinase Plasminogen Activator/blood
- Glomerulonephritis, Membranous/urine
- Glomerulonephritis, Membranous/blood
- Glomerulonephritis, Membranous/diagnosis
- Adult
- Nephrosis, Lipoid/urine
- Nephrosis, Lipoid/blood
- Nephrosis, Lipoid/diagnosis
- Research Design
- Receptors, Phospholipase A2/immunology
- Thrombospondins/blood
- Glomerulonephritis, Membranoproliferative/blood
- Glomerulonephritis, Membranoproliferative/urine
- Glomerulonephritis, Membranoproliferative/diagnosis
- Male
- Female
- Lupus Nephritis/blood
- Lupus Nephritis/urine
- Lupus Nephritis/diagnosis
- East Asian People
- B7-1 Antigen
Collapse
Affiliation(s)
- Shimon Kurasawa
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Sawako Kato
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takaya Ozeki
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shin'ichi Akiyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takuji Ishimoto
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Japan
| | - Masashi Mizuno
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Department of Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naotake Tsuboi
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Noritoshi Kato
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomoki Kosugi
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
2
|
Van Damme KFA, Hoste L, Declercq J, De Leeuw E, Maes B, Martens L, Colman R, Browaeys R, Bosteels C, Verwaerde S, Vermeulen N, Lameire S, Debeuf N, Deckers J, Stordeur P, Depuydt P, Van Braeckel E, Vandekerckhove L, Guilliams M, Schetters STT, Haerynck F, Tavernier SJ, Lambrecht BN. A complement atlas identifies interleukin-6-dependent alternative pathway dysregulation as a key druggable feature of COVID-19. Sci Transl Med 2023; 15:eadi0252. [PMID: 37611083 DOI: 10.1126/scitranslmed.adi0252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023]
Abstract
Improvements in COVID-19 treatments, especially for the critically ill, require deeper understanding of the mechanisms driving disease pathology. The complement system is not only a crucial component of innate host defense but can also contribute to tissue injury. Although all complement pathways have been implicated in COVID-19 pathogenesis, the upstream drivers and downstream effects on tissue injury remain poorly defined. We demonstrate that complement activation is primarily mediated by the alternative pathway, and we provide a comprehensive atlas of the complement alterations around the time of respiratory deterioration. Proteomic and single-cell sequencing mapping across cell types and tissues reveals a division of labor between lung epithelial, stromal, and myeloid cells in complement production, in addition to liver-derived factors. We identify IL-6 and STAT1/3 signaling as an upstream driver of complement responses, linking complement dysregulation to approved COVID-19 therapies. Furthermore, an exploratory proteomic study indicates that inhibition of complement C5 decreases epithelial damage and markers of disease severity. Collectively, these results support complement dysregulation as a key druggable feature of COVID-19.
Collapse
Affiliation(s)
- Karel F A Van Damme
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Levi Hoste
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
| | - Jozefien Declercq
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Elisabeth De Leeuw
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Bastiaan Maes
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Liesbet Martens
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
| | - Roos Colman
- Biostatistics Unit, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Robin Browaeys
- Bioinformatics Expertise Unit, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Cédric Bosteels
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Respiratory Infection and Defense Lab, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Stijn Verwaerde
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Nicky Vermeulen
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
| | - Sahine Lameire
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Nincy Debeuf
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Julie Deckers
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Patrick Stordeur
- Belgian National Reference Center for the Complement System, Laboratory of Immunology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Pieter Depuydt
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Intensive Care Unit, Ghent University Hospital, Ghent, Belgium
| | - Eva Van Braeckel
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Respiratory Infection and Defense Lab, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Linos Vandekerckhove
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium
| | - Martin Guilliams
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
| | - Sjoerd T T Schetters
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
| | - Simon J Tavernier
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
3
|
Michels MAHM, Volokhina EB, van de Kar NCAJ, van den Heuvel LPJ. Challenges in diagnostic testing of nephritic factors. Front Immunol 2022; 13:1036136. [PMID: 36451820 PMCID: PMC9702996 DOI: 10.3389/fimmu.2022.1036136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/12/2022] [Indexed: 09/27/2023] Open
Abstract
Nephritic factors (NeFs) are autoantibodies promoting the activity of the central enzymes of the complement cascade, an important first line of defense of our innate immune system. NeFs stabilize the complement convertase complexes and prevent their natural and regulator-mediated decay. They are mostly associated with rare complement-mediated kidney disorders, in particular with C3 glomerulopathy and related diseases. Although these autoantibodies were already described more than 50 years ago, measuring NeFs for diagnostic purposes remains difficult, and this also complicates our understanding of their clinical associations. In this review, we address the multifactorial challenges of NeF diagnostics. We describe the diseases NeFs are associated with, the heterogenic mechanisms of action of different NeF types, the different methods available in laboratories used for their detection, and efforts for standardization. Finally, we discuss the importance of proper NeF diagnostics for understanding the clinical impact of these autoantibodies in disease pathophysiology and for considering future complement-directed therapy.
Collapse
Affiliation(s)
- Marloes A. H. M. Michels
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elena B. Volokhina
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, Netherlands
- Innatoss Laboratories, Oss, Netherlands
| | - Nicole C. A. J. van de Kar
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lambertus P.W. J. van den Heuvel
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Pediatrics/Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Grgurevic L, Novak R, Salai G, Hrkac S, Mocibob M, Vojtusek IK, Laganovic M. Stage II of Chronic Kidney Disease-A Tipping Point in Disease Progression? Biomedicines 2022; 10:1522. [PMID: 35884827 PMCID: PMC9313233 DOI: 10.3390/biomedicines10071522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic kidney disease (CKD) is the progressive loss of renal function. Although advances have been made in understanding the progression of CKD, key molecular events in complex pathophysiological mechanisms that mark each stage of renal failure remain largely unknown. Changes in plasma protein profiles in different disease stages are important for identification of early diagnostic markers and potential therapeutic targets. The goal of this study was to determine the molecular profile of each CKD stage (from 1 to 5), aiming to specifically point out markedly expressed or downregulated proteins. We performed a cross-sectional shotgun-proteomic study of pooled plasma across CKD stages and compared them to healthy controls. After sample pooling and heparin-column purification we analysed proteomes from healthy to CKD stage 1 through 5 participants' plasma by liquid-chromatography/mass-spectrometry. We identified 453 proteins across all study groups. Our results indicate that key events, which may later affect the course of disease progression and the overall pathophysiological background, are most pronounced in CKD stage 2, with an emphasis on inflammation, lipoprotein metabolism, angiogenesis and tissue regeneration. We hypothesize that CKD stage 2 is the tipping point in disease progression and a suitable point in disease course for the development of therapeutic solutions.
Collapse
Affiliation(s)
- Lovorka Grgurevic
- Department of Anatomy, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Center for Translational and Clinical Research, Department of Proteomics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (R.N.); (G.S.); (S.H.)
| | - Rudjer Novak
- Center for Translational and Clinical Research, Department of Proteomics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (R.N.); (G.S.); (S.H.)
| | - Grgur Salai
- Center for Translational and Clinical Research, Department of Proteomics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (R.N.); (G.S.); (S.H.)
- Department of Pulmonology, University Hospital Dubrava, 10000 Zagreb, Croatia
| | - Stela Hrkac
- Center for Translational and Clinical Research, Department of Proteomics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (R.N.); (G.S.); (S.H.)
- Department of Emergency Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Marko Mocibob
- Department of Chemistry, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ivana Kovacevic Vojtusek
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia;
| | - Mario Laganovic
- Department of Nephrology, University Hospital Merkur, 10000 Zagreb, Croatia;
| |
Collapse
|
5
|
Vivarelli M, van de Kar N, Labbadia R, Diomedi-Camassei F, Thurman JM. A clinical approach to children with C3 glomerulopathy. Pediatr Nephrol 2022; 37:521-535. [PMID: 34002292 DOI: 10.1007/s00467-021-05088-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/28/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
C3 glomerulopathy is a relatively new clinical entity that represents a challenge both to diagnose and to treat. As new therapeutic agents that act as complement inhibitors become available, many with an oral formulation, a better understanding of this disease and of the underlying complement dysregulation driving it has become increasingly useful to optimize patient care. Moreover, recent advances in research have clarified the role of complement in other glomerular diseases in which its role was less established, namely in immune-complex membranoproliferative glomerulonephritis (IC-MPGN), ANCA-vasculitis, IgA nephropathy, and idiopathic membranous nephropathy. Complement inhibitors are being studied in adult and adolescent clinical trials for these indications. This review summarizes current knowledge and future perspectives on every aspect of the diagnosis and management of C3 glomerulopathy and elucidates current understanding of the role of complement in this condition and in other glomerular diseases in children. An overview of ongoing trials involving therapeutic agents targeting complement in glomerular diseases is also provided.
Collapse
Affiliation(s)
- Marina Vivarelli
- Division of Nephrology and Dialysis, Department of Pediatric Subspecialties, Bambino Gesù Pediatric Hospital IRCCS, Piazza S Onofrio 4, 00165, Rome, Italy.
| | - Nicole van de Kar
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Raffaella Labbadia
- Division of Nephrology and Dialysis, Department of Pediatric Subspecialties, Bambino Gesù Pediatric Hospital IRCCS, Piazza S Onofrio 4, 00165, Rome, Italy
| | | | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
6
|
Boussier J, Yatim N, Marchal A, Hadjadj J, Charbit B, El Sissy C, Carlier N, Pène F, Mouthon L, Tharaux PL, Bergeron A, Smadja DM, Rieux-Laucat F, Duffy D, Kernéis S, Frémeaux-Bacchi V, Terrier B. Severe COVID-19 is associated with hyperactivation of the alternative complement pathway. J Allergy Clin Immunol 2022; 149:550-556.e2. [PMID: 34800432 PMCID: PMC8595971 DOI: 10.1016/j.jaci.2021.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Severe coronavirus disease 2019 (COVID-19) is characterized by impaired type I interferon activity and a state of hyperinflammation leading to acute respiratory distress syndrome. The complement system has recently emerged as a key player in triggering and maintaining the inflammatory state, but the role of this molecular cascade in severe COVID-19 is still poorly characterized. OBJECTIVE We aimed at assessing the contribution of complement pathways at both the protein and transcriptomic levels. METHODS To this end, we systematically assessed the RNA levels of 28 complement genes in the circulating whole blood of patients with COVID-19 and healthy controls, including genes of the alternative pathway, for which data remain scarce. RESULTS We found differential expression of genes involved in the complement system, yet with various expression patterns: whereas patients displaying moderate disease had elevated expression of classical pathway genes, severe disease was associated with increased lectin and alternative pathway activation, which correlated with inflammation and coagulopathy markers. Additionally, properdin, a pivotal positive regulator of the alternative pathway, showed high RNA expression but was found at low protein concentrations in patients with a severe and critical disease, suggesting its deposition at the sites of complement activation. Notably, low properdin levels were significantly associated with the use of mechanical ventilation (area under the curve = 0.82; P = .002). CONCLUSION This study sheds light on the role of the alternative pathway in severe COVID-19 and provides additional rationale for the testing of drugs inhibiting the alternative pathway of the complement system.
Collapse
Affiliation(s)
- Jeremy Boussier
- Sorbonne Université, AP-HP Hôpital Saint-Antoine, Paris, France
| | - Nader Yatim
- Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP Hôpital Cochin, Paris, France; Translational Immunology Lab, Department of Immunology, Institut Pasteur, Paris, France
| | - Armance Marchal
- Laboratory of Immunology, AP-HP Hôpital Européen Georges Pompidou, Paris, France
| | - Jérôme Hadjadj
- Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP Hôpital Cochin, Paris, France; Université de Paris, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Institut national de la santé et de la recherche médicale (Inserm) U1163, Institut Imagine, Paris, France
| | - Bruno Charbit
- Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Paris, France
| | - Carine El Sissy
- Laboratory of Immunology, AP-HP Hôpital Européen Georges Pompidou, Paris, France
| | - Nicolas Carlier
- Department of Pulmonology, AP-HP Hôpital Cochin, Paris, France
| | - Frédéric Pène
- Université de Paris, Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France; Service de Médecine Intensive et Réanimation, AP-HP Hôpital Cochin, Paris, France
| | - Luc Mouthon
- Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP Hôpital Cochin, Paris, France; Service de Médecine Intensive et Réanimation, AP-HP Hôpital Cochin, Paris, France
| | | | - Anne Bergeron
- Université de Paris, UMR 1153 Centre of Research in Epidemiology and Statistics (CRESS), Epidemiology and Clinical Statistics for Tumor, Respiratory, and Resuscitation Assessments Team, Service de Pneumologie, Hôpital Saint Louis, Paris, France
| | - David M Smadja
- Université de Paris, Innovative Therapies in Hemostasis, Inserm, Paris, France; Hematology Department, AP-HP Hôpital Cochin, Paris, France; Biosurgical Research Lab (Carpentier Foundation), AP-HP Hôpital Européen Georges Pompidou, Paris, France
| | - Frédéric Rieux-Laucat
- Université de Paris, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Institut national de la santé et de la recherche médicale (Inserm) U1163, Institut Imagine, Paris, France
| | - Darragh Duffy
- Translational Immunology Lab, Department of Immunology, Institut Pasteur, Paris, France; Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Paris, France
| | - Solen Kernéis
- Équipe de Prévention du Risque Infectieux, AP-HP Hôpital Bichat, Paris, France; Université de Paris, Inserm, IAME, Paris, France
| | | | - Benjamin Terrier
- Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP Hôpital Cochin, Paris, France; Université de Paris, Paris Cardiovascular Center (PARCC), Inserm, Paris, France.
| |
Collapse
|
7
|
Elevated Expression Levels of Lung Complement Anaphylatoxin, Neutrophil Chemoattractant Chemokine IL-8, and RANTES in MERS-CoV-Infected Patients: Predictive Biomarkers for Disease Severity and Mortality. J Clin Immunol 2021; 41:1607-1620. [PMID: 34232441 PMCID: PMC8260346 DOI: 10.1007/s10875-021-01061-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
The complement system, a network of highly-regulated proteins, represents a vital part of the innate immune response. Over-activation of the complement system plays an important role in inflammation, tissue damage, and infectious disease severity. The prevalence of MERS-CoV in Saudi Arabia remains significant and cases are still being reported. The role of complement in Middle East Respiratory Syndrome coronavirus (MERS-CoV) pathogenesis and complement-modulating treatment strategies has received limited attention, and studies involving MERS-CoV-infected patients have not been reported. This study offers the first insight into the pulmonary expression profile including seven complement proteins, complement regulatory factors, IL-8, and RANTES in MERS-CoV infected patients without underlying chronic medical conditions. Our results significantly indicate high expression levels of complement anaphylatoxins (C3a and C5a), IL-8, and RANTES in the lungs of MERS-CoV-infected patients. The upregulation of lung complement anaphylatoxins, C5a, and C3a was positively correlated with IL-8, RANTES, and the fatality rate. Our results also showed upregulation of the positive regulatory complement factor P, suggesting positive regulation of the complement during MERS-CoV infection. High levels of lung C5a, C3a, factor P, IL-8, and RANTES may contribute to the immunopathology, disease severity, ARDS development, and a higher fatality rate in MERS-CoV-infected patients. These findings highlight the potential prognostic utility of C5a, C3a, IL-8, and RANTES as biomarkers for MERS-CoV disease severity and mortality. To further explore the prediction of functional partners (proteins) of highly expressed proteins (C5a, C3a, factor P, IL-8, and RANTES), the computational protein–protein interaction (PPI) network was constructed, and six proteins (hub nodes) were identified.
Collapse
|
8
|
Klaus T, Deshmukh S. pH-responsive antibodies for therapeutic applications. J Biomed Sci 2021; 28:11. [PMID: 33482842 PMCID: PMC7821552 DOI: 10.1186/s12929-021-00709-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/15/2021] [Indexed: 11/29/2022] Open
Abstract
Therapeutic antibodies are instrumental in improving the treatment outcome for certain disease conditions. However, to enhance their efficacy and specificity, many efforts are continuously made. One of the approaches that are increasingly explored in this field are pH-responsive antibodies capable of binding target antigens in a pH-dependent manner. We reviewed suitability and examples of these antibodies that are functionally modulated by the tumor microenvironment. Provided in this review is an update about antigens targeted by pH-responsive, sweeping, and recycling antibodies. Applicability of the pH-responsive antibodies in the engineering of chimeric antigen receptor T-cells (CAR-T) and in improving drug delivery to the brain by the enhanced crossing of the blood-brain barrier is also discussed. The pH-responsive antibodies possess strong treatment potential. They emerge as next-generation programmable engineered biologic drugs that are active only within the targeted biological space. Thus, they are valuable in targeting acidified tumor microenvironment because of improved spatial persistence and reduced on-target off-tumor toxicities. We predict that the programmable pH-dependent antibodies become powerful tools in therapies of cancer.
Collapse
Affiliation(s)
- Tomasz Klaus
- Research and Development Department, Pure Biologics, Inc., Dunska 11, 54427, Wrocław, Poland
| | - Sameer Deshmukh
- Research and Development Department, Pure Biologics, Inc., Dunska 11, 54427, Wrocław, Poland.
| |
Collapse
|
9
|
Complement activity is regulated in C3 glomerulopathy by IgG-factor H fusion proteins with and without properdin targeting domains. Kidney Int 2020; 99:396-404. [PMID: 33129896 PMCID: PMC7863913 DOI: 10.1016/j.kint.2020.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 11/29/2022]
Abstract
C3 glomerulopathy is characterized by accumulation of complement C3 within glomeruli. Causes include, but are not limited to, abnormalities in factor H, the major negative regulator of the complement alternative pathway. Factor H-deficient (Cfh-/-) mice develop C3 glomerulopathy together with a reduction in plasma C3 levels. Using this model, we assessed the efficacy of two fusion proteins containing the factor H alternative pathway regulatory domains (FH1-5) linked to either a non-targeting mouse immunoglobulin (IgG-FH1-5) or to an anti-mouse properdin antibody (Anti-P-FH1-5). Both proteins increased plasma C3 and reduced glomerular C3 deposition to an equivalent extent, suggesting that properdin-targeting was not required for FH1-5 to alter C3 activation in either plasma or glomeruli. Following IgG-FH1-5 administration, plasma C3 levels temporally correlated with changes in factor B levels whereas plasma C5 levels correlated with changes in plasma properdin levels. Notably, the increases in plasma C5 and properdin levels persisted for longer than the increases in C3 and factor B. In Cfh-/- mice IgG-FH1-5 reduced kidney injury during accelerated serum nephrotoxic nephritis. Thus, our data demonstrate that IgG-FH1-5 restored circulating alternative pathway activity and reduced glomerular C3 deposition in Cfh-/- mice and that plasma properdin levels are a sensitive marker of C5 convertase activity in factor H deficiency. The immunoglobulin conjugated FH1-5 protein, through its comparatively long plasma half-life, may be a potential therapy for C3 glomerulopathy.
Collapse
|
10
|
Fakhouri F, Le Quintrec M, Frémeaux-Bacchi V. Practical management of C3 glomerulopathy and Ig-mediated MPGN: facts and uncertainties. Kidney Int 2020; 98:1135-1148. [PMID: 32622830 DOI: 10.1016/j.kint.2020.05.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/06/2020] [Accepted: 05/27/2020] [Indexed: 01/11/2023]
Abstract
In recent years, a substantial body of experimental and clinical work has been devoted to C3 glomerulopathy and Ig-mediated membranoproliferative glomerulonephritis. Despite the rapid accumulation of data, several uncertainties about these 2 rare forms of nephropathies persist. They concern their pathophysiology, classification, clinical course, relevance of biomarkers and of pathology findings, and assessment of the efficacy of the available therapies. The present review discusses the impact of these uncertainties on the clinical management of patients.
Collapse
Affiliation(s)
- Fadi Fakhouri
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Moglie Le Quintrec
- Department of nephrology, Université de Montpellier, CHU de Montpellier, Montpellier, France
| | - Véronique Frémeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d'Immunologie and Paris University, Paris, France
| |
Collapse
|
11
|
van Essen MF, Ruben JM, de Vries APJ, van Kooten C. Role of properdin in complement-mediated kidney diseases. Nephrol Dial Transplant 2020; 34:742-750. [PMID: 30053164 DOI: 10.1093/ndt/gfy233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
As part of the innate immune system, the complement system is an important mechanism in our first line of defence, but it can also contribute to the onset of various diseases. In renal diseases, the dysregulation of the complement system is often caused by mutations in-and autoantibodies directed against-members of the complement system, and contributes to disease onset and severity. As the only known positive regulator of the complement system, the role of properdin in complement-mediated diseases is largely unknown. In this review, we provide an overview of the detection of properdin in kidney biopsies and urine, serum or plasma samples from patients with complement-mediated renal diseases, such as immune complex-mediated glomerulonephritis and C3 glomerulopathy. Advances towards a better understanding of the role of properdin in (local) complement activation will provide insight into its potential role and offer opportunities to improve diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Mieke F van Essen
- Division of Nephrology and Transplant Medicine, Department Of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jurjen M Ruben
- Division of Nephrology and Transplant Medicine, Department Of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Aiko P J de Vries
- Division of Nephrology and Transplant Medicine, Department Of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Cees van Kooten
- Division of Nephrology and Transplant Medicine, Department Of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
12
|
Corvillo F, Ceccarini G, Nozal P, Magno S, Pelosini C, Garrido S, López-Lera A, Moraru M, Vilches C, Fornaciari S, Gabbriellini S, Santini F, Araújo-Vilar D, López-Trascasa M. Immunological features of patients affected by Barraquer-Simons syndrome. Orphanet J Rare Dis 2020; 15:9. [PMID: 31924231 PMCID: PMC6954565 DOI: 10.1186/s13023-019-1292-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/29/2019] [Indexed: 01/16/2023] Open
Abstract
Background C3 hypocomplementemia and the presence of C3 nephritic factor (C3NeF), an autoantibody causing complement system over-activation, are common features among most patients affected by Barraquer-Simons syndrome (BSS), an acquired form of partial lipodystrophy. Moreover, BSS is frequently associated with autoimmune diseases. However, the relationship between complement system dysregulation and BSS remains to be fully elucidated. The aim of this study was to provide a comprehensive immunological analysis of the complement system status, autoantibody signatures and HLA profile in BSS. Thirteen subjects with BSS were recruited for the study. The circulating levels of complement components, C3, C4, Factor B (FB) and Properdin (P), as well as an extended autoantibody profile including autoantibodies targeting complement components and regulators were assessed in serum. Additionally, HLA genotyping was carried out using DNA extracted from peripheral blood mononuclear cells. Results C3, C4 and FB levels were significantly reduced in patients with BSS as compared with healthy subjects. C3NeF was the most frequently found autoantibody (69.2% of cases), followed by anti-C3 (38.5%), and anti-P and anti-FB (30.8% each). Clinical data showed high prevalence of autoimmune diseases (38.5%), the majority of patients (61.5%) being positive for at least one of the autoantibodies tested. The HLA allele DRB1*11 was present in 54% of BSS patients, and the majority of them (31%) were positive for *11:03 (vs 1.3% allelic frequency in the general population). Conclusions Our results confirmed the association between BSS, autoimmunity and C3 hypocomplementemia. Moreover, the finding of autoantibodies targeting complement system proteins points to complement dysregulation as a central pathological event in the development of BSS.
Collapse
Affiliation(s)
- Fernando Corvillo
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Paseo de la Castellana, 261, 28046, Madrid, Spain. .,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain.
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Centre at the Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Pilar Nozal
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Paseo de la Castellana, 261, 28046, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain.,Unit of Immunology, La Paz University Hospital, Madrid, Spain
| | - Silvia Magno
- Obesity and Lipodystrophy Centre at the Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Caterina Pelosini
- Obesity and Lipodystrophy Centre at the Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Sofía Garrido
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Paseo de la Castellana, 261, 28046, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain.,Unit of Immunology, La Paz University Hospital, Madrid, Spain
| | - Alberto López-Lera
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Paseo de la Castellana, 261, 28046, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain
| | - Manuela Moraru
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain
| | - Carlos Vilches
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain
| | | | | | - Ferruccio Santini
- Obesity and Lipodystrophy Centre at the Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - David Araújo-Vilar
- Thyroid and Metabolic Diseases Unit (U.E.T.eM.), Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS-IDIS), School of Medicine, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Margarita López-Trascasa
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Paseo de la Castellana, 261, 28046, Madrid, Spain.,Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Corvillo F, Okrój M, Nozal P, Melgosa M, Sánchez-Corral P, López-Trascasa M. Nephritic Factors: An Overview of Classification, Diagnostic Tools and Clinical Associations. Front Immunol 2019; 10:886. [PMID: 31068950 PMCID: PMC6491685 DOI: 10.3389/fimmu.2019.00886] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022] Open
Abstract
Nephritic factors comprise a heterogeneous group of autoantibodies against neoepitopes generated in the C3 and C5 convertases of the complement system, causing its dysregulation. Classification of these autoantibodies can be clustered according to their stabilization of different convertases either from the classical or alternative pathway. The first nephritic factor described with the capacity to stabilize C3 convertase of the alternative pathway was C3 nephritic factor (C3NeF). Another nephritic factor has been characterized by the ability to stabilize C5 convertase of the alternative pathway (C5NeF). In addition, there are autoantibodies against assembled C3/C5 convertase of the classical and lectin pathways (C4NeF). These autoantibodies have been mainly associated with kidney diseases, like C3 glomerulopathy and immune complex-associated-membranoproliferative glomerulonephritis. Other clinical situations where these autoantibodies have been observed include infections and autoimmune disorders such as systemic lupus erythematosus and acquired partial lipodystrophy. C3 hypocomplementemia is a common finding in all patients with nephritic factors. The methods to measure nephritic factors are not standardized, technically complex, and lack of an appropriate quality control. This review will be focused in the description of the mechanism of action of the three known nephritic factors (C3NeF, C4NeF, and C5NeF), and their association with human diseases. Moreover, we present an overview regarding the diagnostic tools for its detection, and the main therapeutic approach for the patients with nephritic factors.
Collapse
Affiliation(s)
- Fernando Corvillo
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain
| | - Marcin Okrój
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Pilar Nozal
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain.,Immunology Unit, La Paz University Hospital, Madrid, Spain
| | - Marta Melgosa
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Pediatric Nephrology Unit, La Paz University Hospital, Madrid, Spain
| | - Pilar Sánchez-Corral
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain
| | - Margarita López-Trascasa
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Michels MAHM, Volokhina EB, van de Kar NCAJ, van den Heuvel LPWJ. The role of properdin in complement-mediated renal diseases: a new player in complement-inhibiting therapy? Pediatr Nephrol 2019; 34:1349-1367. [PMID: 30141176 PMCID: PMC6579773 DOI: 10.1007/s00467-018-4042-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022]
Abstract
Properdin is known as the only positive regulator of the complement system. Properdin promotes the activity of this defense system by stabilizing its key enzymatic complexes: the complement alternative pathway (AP) convertases. Besides, some studies have indicated a role for properdin as an initiator of complement activity. Though the AP is a powerful activation route of the complement system, it is also involved in a wide variety of autoimmune and inflammatory diseases, many of which affect the kidneys. The role of properdin in regulating complement in health and disease has not received as much appraisal as the many negative AP regulators, such as factor H. Historically, properdin deficiency has been strongly associated with an increased risk for meningococcal disease. Yet only recently had studies begun to link properdin to other complement-related diseases, including renal diseases. In the light of the upcoming complement-inhibiting therapies, it is interesting whether properdin can be a therapeutic target to attenuate AP-mediated injury. A full understanding of the basic concepts of properdin biology is therefore needed. Here, we first provide an overview of the function of properdin in health and disease. Then, we explore its potential as a therapeutic target for the AP-associated renal diseases C3 glomerulopathy, atypical hemolytic uremic syndrome, and proteinuria-induced tubulointerstitial injury. Considering current knowledge, properdin-inhibiting therapy seems promising in certain cases. However, knowing the complexity of properdin's role in renal pathologies in vivo, further research is required to clarify the exact potential of properdin-targeted therapy in complement-mediated renal diseases.
Collapse
Affiliation(s)
- Marloes A. H. M. Michels
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6525 GA Nijmegen, The Netherlands
| | - Elena B. Volokhina
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6525 GA Nijmegen, The Netherlands ,Department of Laboratory Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6525 GA Nijmegen, The Netherlands
| | - Nicole C. A. J. van de Kar
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6525 GA Nijmegen, The Netherlands
| | - Lambertus P. W. J. van den Heuvel
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6525 GA Nijmegen, The Netherlands ,Department of Laboratory Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6525 GA Nijmegen, The Netherlands ,Department of Pediatrics/Pediatric Nephrology and Department of Development & Regeneration, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Donadelli R, Pulieri P, Piras R, Iatropoulos P, Valoti E, Benigni A, Remuzzi G, Noris M. Unraveling the Molecular Mechanisms Underlying Complement Dysregulation by Nephritic Factors in C3G and IC-MPGN. Front Immunol 2018; 9:2329. [PMID: 30487789 PMCID: PMC6248175 DOI: 10.3389/fimmu.2018.02329] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/19/2018] [Indexed: 01/08/2023] Open
Abstract
Membranoproliferative glomerulonephritis (MPGN) was recently classified as C3 glomerulopathies (C3G), and immune-complex (IC) mediated MPGN. Dysregulation of the complement alternative pathway, driven by acquired and/or genetic defects, plays a pathogenetic role in C3G. However, alternative pathway abnormalities were also found in IC-MPGN. The most common acquired drivers are the C3 nephritic factors (C3NeFs), heterogeneous autoantibodies that stabilize the C3 convertase, C3bBb. C3NeFs are traditionally detected by hemolytic assays based on sheep erythrocyte lysis, which however do not provide a direct molecular estimation of C3bBb formation and decay. We set up a microplate/western blot assay that specifically detects and quantifies C3bBb, and its precursor, the C3 proconvertase C3bB, to investigate the complex mechanistic effects of C3NeFs from patients with primary IC-MPGN (n = 13) and C3G (n = 13). In the absence of properdin, 9/26 patients had C3NeF IgGs stabilizing C3bBb against spontaneous and FH-accelerated decay. In the presence of properdin the IgGs of all but one patient had C3bBb-stabilizing activity. Properdin-independent C3NeFs were identified mostly in DDD patients, while properdin-dependent C3NeFs associated with either C3GN or IC-MPGN and with higher incidence of nephrotic syndrome. When we grouped patients based on our recent cluster analysis, patients in cluster 3, with highly electron-dense intramembranous deposits, low C3, and mostly normal sC5b-9 levels, had a higher prevalence of properdin-independent C3NeFs than patients in clusters 1 and 2. Conversely, about 70% of cluster 1 and 2 patients, with subendothelial, subepithelial, and mesangial deposits, low C3 levels and high sC5b-9 levels, had properdin-dependent C3NeFs. The flexibility of the assay allowed us to get deep insights into C3NeF mechanisms of action, showing that: (1) most C3NeFs bind strongly and irreversibly to C3 convertase; (2) C3NeFs and FH recognize different epitopes in C3 convertase; (3) C3NeFs bind rapidly to C3 convertase and antagonize the decay accelerating activity of FH on newly formed complexes; (4) C3NeFs do not affect formation and stability of the C3 proconvertase. Thus, our study provides a molecular approach to detecting and characterizing C3NeFs. The results highlight different mechanisms of complement dysregulation resulting in different complement profiles and patterns of glomerular injury, and this may have therapeutic implications.
Collapse
Affiliation(s)
- Roberta Donadelli
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Patrizia Pulieri
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Rossella Piras
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Paraskevas Iatropoulos
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Elisabetta Valoti
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy.,Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Marina Noris
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
16
|
Harris CL, Pouw RB, Kavanagh D, Sun R, Ricklin D. Developments in anti-complement therapy; from disease to clinical trial. Mol Immunol 2018; 102:89-119. [PMID: 30121124 DOI: 10.1016/j.molimm.2018.06.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
Abstract
The complement system is well known for its role in innate immunity and in maintenance of tissue homeostasis, providing a first line of defence against infection and playing a key role in flagging apoptotic cells and debris for disposal. Unfortunately complement also contributes to pathogenesis of a number of diseases; in some cases driving pathology, and in others amplifying or exacerbating the inflammatory and damaging impact of non-complement disease triggers. The role of complement in pathogenesis of an expanding number of diseases has driven industry and academia alike to develop an impressive arsenal of anti-complement drugs which target different proteins and functions of the complement cascade. Evidence from genetic and biochemical analyses, combined with improved identification of complement biomarkers and supportive data from sophisticated animal models of disease, has driven a drug development landscape in which the indications selected for clinical trial cluster in three 'target' tissues: the kidney, eye and vasculature. While the disease triggers may differ, complement activation and amplification is a common feature in many diseases which affect these three tissues. An abundance of drugs are in clinical development, some show favourable progression whereas others experience significant challenges. However, these hurdles in themselves drive an ever-evolving portfolio of 'next-generation' drugs with improved pharmacokinetic and pharmacodynamics properties. In this review we discuss the indications which are in the drug development 'spotlight' and review the relevant indication validation criteria. We present current progress in clinical trials, highlighting successes and difficulties, and look forward to approval of a wide selection of drugs for use in man which give clinicians choice in mechanistic target, modality and route of delivery.
Collapse
Affiliation(s)
- Claire L Harris
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.
| | - Richard B Pouw
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056, Basel, Switzerland
| | - David Kavanagh
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Ruyue Sun
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056, Basel, Switzerland.
| |
Collapse
|
17
|
Chen JY, Cortes C, Ferreira VP. Properdin: A multifaceted molecule involved in inflammation and diseases. Mol Immunol 2018; 102:58-72. [PMID: 29954621 DOI: 10.1016/j.molimm.2018.05.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 01/17/2023]
Abstract
Properdin, the widely known positive regulator of the alternative pathway (AP), has undergone significant investigation over the last decade to define its function in inflammation and disease, including its role in arthritis, asthma, and kidney and cardiovascular diseases. Properdin is a glycoprotein found in plasma that is mainly produced by leukocytes and can positively regulate AP activity by stabilizing C3 and C5 convertases and initiating the AP. Promotion of complement activity by properdin results in changes in the cellular microenvironment that contribute to innate and adaptive immune responses, including pro-inflammatory cytokine production, immune cell infiltration, antigen presenting cell maturation, and tissue damage. The use of properdin-deficient mouse models and neutralizing antibodies has contributed to the understanding of the mechanisms by which properdin contributes to promoting or preventing disease pathology. This review mainly focusses on the multifaceted roles of properdin in inflammation and diseases, and how understanding these roles is contributing to the development of new disease therapies.
Collapse
Affiliation(s)
- Jin Y Chen
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States.
| | - Claudio Cortes
- Department of Biomedical Sciences, University of Oakland University School of Medicine, Rochester, MI, United States.
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States.
| |
Collapse
|
18
|
Zeng J, Deng P, Li J, Feng W, Chen J, Zeng Y. Increased serum protein levels by Yuanshi Shengmai Chenggu Tablet in treatment of avascular osteonecrosis of the femoral head. Mol Med Rep 2017; 17:2121-2126. [PMID: 29207081 PMCID: PMC5783452 DOI: 10.3892/mmr.2017.8119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/13/2017] [Indexed: 11/06/2022] Open
Abstract
The traditional Chinese medicine (TCM) Yuanshi Shengmai Chenggu Tablet is used for treating the common orthopedic disease, hormone‑induced avascular necrosis of the femoral head (ANFH) in China. However, its underlying mechanism and the changes induced in the treatment of ANFH remain to be fully elucidated. In the present study, through the use of isobaric Tag for Relative and Absolute Quantitation and multiple reaction monitoring quantifications, corticosteroid‑induced femoral head necrosis and the effects of treatment with Yuanshi Shengmai Chenggu Tablet were examined. The aim was to identify serum proteins, which may be potential serum markers for the early clinical diagnosis of ANFH, and maybe used to develop more rapid and convenient detection strategies. A total of five proteins were identified, comprising Ig mu chain C region, keratin, type I cytoskeletal 9, properdin, apolipoprotein A‑IV, and IQ and AAA domain‑containing protein 1. The expression levels of all five proteins were lower in ANFH and were higher following TCM treatment. These findings were confirmed using ELISA and western blot analysis.
Collapse
Affiliation(s)
- Jianchun Zeng
- The Third Department of Orthopedics and Traumatology of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Peng Deng
- The Third Department of Orthopedics and Traumatology of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jie Li
- The Third Department of Orthopedics and Traumatology of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Wenjun Feng
- The Third Department of Orthopedics and Traumatology of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jinlun Chen
- The Third Department of Orthopedics and Traumatology of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yirong Zeng
- The Third Department of Orthopedics and Traumatology of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
19
|
Blatt AZ, Pathan S, Ferreira VP. Properdin: a tightly regulated critical inflammatory modulator. Immunol Rev 2017; 274:172-190. [PMID: 27782331 PMCID: PMC5096056 DOI: 10.1111/imr.12466] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complement alternative pathway is a powerful arm of the innate immune system that enhances diverse inflammatory responses in the human host. Key to the effects of the alternative pathway is properdin, a serum glycoprotein that can both initiate and positively regulate alternative pathway activity. Properdin is produced by many different leukocyte subsets and circulates as cyclic oligomers of monomeric subunits. While the formation of non‐physiological aggregates in purified properdin preparations and the presence of potential properdin inhibitors in serum have complicated studies of its function, properdin has, regardless, emerged as a key player in various inflammatory disease models. Here, we review basic properdin biology, emphasizing the major hurdles that have complicated the interpretation of results from properdin‐centered studies. In addition, we elaborate on an emerging role for properdin in thromboinflammation and discuss the potential utility of properdin inhibitors as long‐term therapeutic options to treat diseases marked by increased formation of platelet/granulocyte aggregates. Finally, we describe the interplay between properdin and the alternative pathway negative regulator, Factor H, and how aiming to understand these interactions can provide scientists with the most effective ways to manipulate alternative pathway activation in complex systems.
Collapse
Affiliation(s)
- Adam Z Blatt
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sabina Pathan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
20
|
Marinozzi MC, Chauvet S, Le Quintrec M, Mignotet M, Petitprez F, Legendre C, Cailliez M, Deschenes G, Fischbach M, Karras A, Nobili F, Pietrement C, Dragon-Durey MA, Fakhouri F, Roumenina LT, Fremeaux-Bacchi V. C5 nephritic factors drive the biological phenotype of C3 glomerulopathies. Kidney Int 2017; 92:1232-1241. [PMID: 28712854 DOI: 10.1016/j.kint.2017.04.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 04/09/2017] [Accepted: 04/13/2017] [Indexed: 11/29/2022]
Abstract
C3 Glomerulopathies, which include Dense Deposit Disease and C3 Glomerulonephritis, are associated with genetic and acquired dysregulation of the C3 convertase alternative pathway of complement. The potential role of the activation of the C5 convertase has not been studied extensively. Here we analyzed IgG samples from patients with C3 Glomerulopathies to identify circulating autoantibodies that stabilize the C3 alternative pathway (C3 Nephritic Factors) as well as C5 convertases (C5 Nephritic Factors), thus preventing decay of these enzyme complexes. Rare variants in alternative pathway genes were found in 28 of 120 tested patients. C3 and C5 Nephritic Factors were found in 76 of 101 (75%) and 29 of 59 (49%) of the patients, respectively. Therefore, we compared the results of the assays for the C3 and C5 nephritic factors functional activity: 29% were positive for C3 Nephritic Factors alone, 39% were positive for both C3 and C5 Nephritic Factors, and 10% were positive for C5 Nephritic Factors alone. We found that the addition of properdin-enhanced stabilization of C3 convertase in the presence of IgG doubly positive for both Nephritic Factors, while it did not modify the stabilization mediated by IgG solely positive for C3 Nephritic Factors. Both C3 and C5 Nephritic Factors correlated with C3 consumption, while only C5 Nephritic Factors correlated with sC5b9 levels. C5 Nephritic Factors-positive patients were more likely to have C3 Glomerulonephritis than Dense Deposit Disease. Thus, dysregulation of the C5 convertase contributes to C3 Glomerulopathies inter-disease differences and may have direct therapeutic implications.
Collapse
Affiliation(s)
- Maria-Chiara Marinozzi
- Assistance Publique - Hopitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France; INSERM UMRS 1138, Cordeliers Research Center, Complement and Diseases team, Paris, France
| | - Sophie Chauvet
- INSERM UMRS 1138, Cordeliers Research Center, Complement and Diseases team, Paris, France; Assistance Publique - Hopitaux de Paris, Service de Nephrologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Moglie Le Quintrec
- Service de Néphrologie, Transplantation Rénale, CHU Montpellier, Montpellier, France
| | - Morgane Mignotet
- Assistance Publique - Hopitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France; INSERM UMRS 1138, Cordeliers Research Center, Complement and Diseases team, Paris, France
| | - Florent Petitprez
- INSERM UMRS 1138, Cordeliers Research Center, Complement and Diseases team, Paris, France
| | - Christophe Legendre
- Assistance Publique - Hôpitaux de Paris, Département de Néphrologie et de Transplantation Hôpital Necker, Paris, France
| | - Mathilde Cailliez
- Assistance Publique, Hôpitaux de Marseille, Service de Néphrologie Pédiatrique, Marseille, France
| | - Georges Deschenes
- Assistance Publique - Hôpitaux de Paris, Hôpital Robert-Debré, Service de Néphrologie Pédiatrique, Transplantation rénale, Paris, France
| | | | - Alexandre Karras
- Assistance Publique - Hopitaux de Paris, Service de Nephrologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Francois Nobili
- Service de Pediatrie-Nephrologie Pediatrique, CHRU de Besançon, Besançon, France
| | | | - Marie-Agnes Dragon-Durey
- Assistance Publique - Hopitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France; INSERM UMRS 1138, Cordeliers Research Center, Complement and Diseases team, Paris, France
| | - Fadi Fakhouri
- Service de Néphrologie, Transplantation Rénale, Nantes, France
| | - Lubka T Roumenina
- INSERM UMRS 1138, Cordeliers Research Center, Complement and Diseases team, Paris, France
| | - Veronique Fremeaux-Bacchi
- Assistance Publique - Hopitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France; INSERM UMRS 1138, Cordeliers Research Center, Complement and Diseases team, Paris, France.
| |
Collapse
|
21
|
Mastellos DC, Reis ES, Ricklin D, Smith RJ, Lambris JD. Complement C3-Targeted Therapy: Replacing Long-Held Assertions with Evidence-Based Discovery. Trends Immunol 2017; 38:383-394. [PMID: 28416449 DOI: 10.1016/j.it.2017.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/17/2017] [Accepted: 03/16/2017] [Indexed: 02/06/2023]
Abstract
Complement dysregulation underlies several inflammatory disorders, and terminal complement inhibition has thus far afforded significant clinical gains. Nonetheless, emerging pathologies, fueled by complement imbalance and therapy-skewing genetic variance, underscore the need for more comprehensive, disease-tailored interventions. Modulation at the level of C3, a multifaceted orchestrator of the complement cascade, opens up prospects for broader therapeutic efficacy by targeting multiple pathogenic pathways modulated by C3-triggered proinflammatory crosstalk. Notably, C3 intervention is emerging as a viable therapeutic strategy for renal disorders with predominantly complement-driven etiology, such as C3 glomerulopathy (C3G). Using C3G as a paradigm, we argue that concerns about the feasibility of long-term C3 intervention need to be placed into perspective and weighed against actual therapeutic outcomes in prospective clinical trials.
Collapse
Affiliation(s)
- Dimitrios C Mastellos
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Biodiagnostic Sciences and Technologies, Institute of Nuclear and Radiological Sciences and Technology, Energy, and Safety (INRASTES), National Center for Scientific Research 'Demokritos', Aghia Paraskevi Attikis, 15310 Athens, Greece
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Richard J Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Blom AM, Corvillo F, Magda M, Stasiłojć G, Nozal P, Pérez-Valdivia MÁ, Cabello-Chaves V, Rodríguez de Córdoba S, López-Trascasa M, Okrój M. Testing the Activity of Complement Convertases in Serum/Plasma for Diagnosis of C4NeF-Mediated C3 Glomerulonephritis. J Clin Immunol 2016; 36:517-27. [PMID: 27146825 PMCID: PMC4896984 DOI: 10.1007/s10875-016-0290-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/25/2016] [Indexed: 12/31/2022]
Abstract
Autoantibodies termed C3-nephritic factor (C3NeF), which stabilize convertases of the alternative complement pathway, often stimulate autoinflammatory diseases. However, knowledge about analogous autoantibodies acting on the classical pathway (C4NeF) is limited to a few reports, which indicate association with kidney dysfunction, systemic lupus erythematous, and infections. C4NeF may appear independently from C3NeF, but the lack of a routine diagnostic method predisposes C4NeF for being an underestimated player in autoinflammatory episodes. We tested the activity of classical convertases directly in serum/plasma to screen samples from 13 patients with C3 glomerulopathies and identified one patient showing significantly prolonged half-life of these enzymes. Observed effect was reproduced by immunoglobulins purified from patient's plasma and additionally confirmed on classical convertase built from purified components. Isolated immunoglobulins protected classical convertases from both spontaneous and inhibitor-driven decay but not from C4b proteolysis. The patient had a decreased serum level of C3, elevated sC5b-9, and normal concentrations of factor B and C4. Neither C3NeF nor other autoantibodies directed against alternative pathway proteins (factor H, factor B, factor I, C3, and properdin) were found. Genetic analysis showed no mutations in C3, CFB, CFH, CFI, MCP, THBD, and DGKE genes. Renal biopsy revealed a membranoproliferative pattern with intense C3 deposits. Our results underline the importance of C4NeF as an independent pathogenic factor and a need for the implementation of routine examination of classical convertase activity. Proposed method may enable robust inspection of such atypical cases.
Collapse
Affiliation(s)
- Anna M Blom
- Department of Translational Medicine, Lund University, 20502, Malmö, Sweden
| | | | - Michal Magda
- Department of Translational Medicine, Lund University, 20502, Malmö, Sweden
| | - Grzegorz Stasiłojć
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG‑MUG, Medical University of Gdańsk, Dębinki 1 street, 80-210, Gdańsk, Poland
| | - Pilar Nozal
- Immunology Unit, University Hospital La Paz, IdiPAZ, Madrid, Spain.,Unit 754, Centre for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | | | | | - Santiago Rodríguez de Córdoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Centro de Investigación Médica en Red (CIBERER U738), Madrid, Spain
| | - Margarita López-Trascasa
- Immunology Unit, University Hospital La Paz, IdiPAZ, Madrid, Spain.,Unit 754, Centre for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Marcin Okrój
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG‑MUG, Medical University of Gdańsk, Dębinki 1 street, 80-210, Gdańsk, Poland.
| |
Collapse
|