1
|
Arce-Aceves MF, Espinosa-Neira R, Mata-Espinosa DA, Barrios-Payan JA, Castelán-Sánchez HG, Alcaraz-Estrada SL, Castañón-Arreola M, Hernández-Pando R. Fitness costs of Mycobacterium tuberculosis resistant to rifampicin is compensated by rapid Th2 polarization mediated by early and high IL-4 production during mice infection. Sci Rep 2025; 15:2811. [PMID: 39843896 PMCID: PMC11754857 DOI: 10.1038/s41598-024-81446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025] Open
Abstract
It was a general belief that drug resistance in Mycobacterium tuberculosis (Mtb) was associated with lesser virulence, particularly rifampicin resistance, which is usually produced by mutations in the RNA polymerase Beta subunit (RpoB). Interestingly, this kind of bacterial mutations affect gene transcription with significant effects on bacterial physiology and metabolism, affecting also the bacterial antigenic constitution that in consequence can produce diverse immune responses and disease outcome. In the present study, we show the results of the Mtb clinical isolate A96, which is resistant to rifampicin and when used to infect BALB/c mice showed hypervirulence, apparently by rapidly polarization of the Th2 immune response through early and high production of IL-4. The 2D-PAGE analysis of the secretome of Mtb A96 showed 204 spots, and by immunoproteome, seven proteins that were differentially recognized with the sera of infected mice on day 28 were identified by LC-MS/MS. The proteins correspond to surface antigens, virulence factors, and energy metabolism enzymes. Some of them are immunodominant antigens, such as LpqH lipoprotein that induces IL-4 secretion in cell suspensions from the lung and spleen of mice infected with Mtb A96 at 28 days postinfection, suggesting that LpqH could be one of the main antigens involved in the Th2 polarization. The reduction of Mtb A96 hypervirulence in IL-4Rα-/- BALB/c mice highlights the importance of IL-4 induction and Th2 response polarization and the immunopathological response. Thus, high and rapid bias to Th2 response is a mechanism of Mtb virulence, which could be mediated by rifampicin-resistant Mtb isolates, probably by high production and secretion of specific antigens.
Collapse
Affiliation(s)
- Ma Fernanda Arce-Aceves
- Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
| | - Roberto Espinosa-Neira
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Colonia Del Valle Sur, Alcaldía Benito Juárez, Ciudad de México, CP. 03100, Mexico
| | - Dulce A Mata-Espinosa
- Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
| | - Jorge A Barrios-Payan
- Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
| | - Hugo G Castelán-Sánchez
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Sofía L Alcaraz-Estrada
- Virological Analysis and Reference Unit, Institute for Social Security and Services for State Workers, National Medical Center "20 de Noviembre", Mexico City, Mexico
| | - Mauricio Castañón-Arreola
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Colonia Del Valle Sur, Alcaldía Benito Juárez, Ciudad de México, CP. 03100, Mexico.
| | - Rogelio Hernández-Pando
- Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico.
- Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Alcaldía Tlalpan, 14080, Ciudad de México, CDMX, Mexico.
| |
Collapse
|
2
|
Lyu J, Narum DE, Baldwin SL, Larsen SE, Bai X, Griffith DE, Dartois V, Naidoo T, Steyn AJC, Coler RN, Chan ED. Understanding the development of tuberculous granulomas: insights into host protection and pathogenesis, a review in humans and animals. Front Immunol 2024; 15:1427559. [PMID: 39717773 PMCID: PMC11663721 DOI: 10.3389/fimmu.2024.1427559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Granulomas, organized aggregates of immune cells which form in response to Mycobacterium tuberculosis (Mtb), are characteristic but not exclusive of tuberculosis (TB). Despite existing investigations on TB granulomas, the determinants that differentiate host-protective granulomas from granulomas that contribute to TB pathogenesis are often disputed. Thus, the goal of this narrative review is to help clarify the existing literature on such determinants. We adopt the a priori view that TB granulomas are host-protective organelles and discuss the molecular and cellular determinants that induce protective granulomas and those that promote their failure. While reports about protective TB granulomas and their failure may initially seem contradictory, it is increasingly recognized that either deficiencies or excesses of the molecular and cellular components in TB granuloma formation may be detrimental to the host. More specifically, insufficient or excessive expression/representation of the following components have been reported to skew granulomas toward the less protective phenotype: (i) epithelioid macrophages; (ii) type 1 adaptive immune response; (iii) type 2 adaptive immune response; (iv) tumor necrosis factor; (v) interleukin-12; (vi) interleukin-17; (vii) matrix metalloproteinases; (viii) hypoxia in the TB granulomas; (ix) hypoxia inducible factor-1 alpha; (x) aerobic glycolysis; (xi) indoleamine 2,3-dioxygenase activity; (xii) heme oxygenase-1 activity; (xiii) immune checkpoint; (xiv) leukotriene A4 hydrolase activity; (xv) nuclear-factor-kappa B; and (xvi) transforming growth factor-beta. Rather, more precise and timely coordinated immune responses appear essential for eradication or containment of Mtb infection. Since there are several animal models of infection with Mtb, other species within the Mtb complex, and the surrogate Mycobacterium marinum - whether natural (cattle, elephants) or experimental (zebrafish, mouse, guinea pig, rabbit, mini pig, goat, non-human primate) infections - we also compared the TB granulomatous response and other pathologic lung lesions in various animals infected with one of these mycobacteria with that of human pulmonary TB. Identifying components that dictate the formation of host-protective granulomas and the circumstances that result in their failure can enhance our understanding of the macrocosm of human TB and facilitate the development of novel remedies - whether they be direct therapeutics or indirect interventions - to efficiently eliminate Mtb infection and prevent its pathologic sequelae.
Collapse
Affiliation(s)
- Jiwon Lyu
- Division of Pulmonary and Critical Medicine, Soon Chun Hyang University Cheonan Hospital, Seoul, Republic of Korea
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Drew E. Narum
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Susan L. Baldwin
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Sasha E. Larsen
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Xiyuan Bai
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - David E. Griffith
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Threnesan Naidoo
- Departments of Forensic & Legal Medicine and Laboratory Medicine & Pathology, Faculty of Medicine & Health Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rhea N. Coler
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Edward D. Chan
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| |
Collapse
|
3
|
Imperiale BR, Gamberale A, Yokobori N, García A, Bartoletti B, Aidar O, López B, Cruz V, González Montaner P, Palmero DJ, de la Barrera S. Transforming growth factor-β, Interleukin-23 and interleukin-1β modulate TH22 response during active multidrug-resistant tuberculosis. Immunology 2024; 171:45-59. [PMID: 37715690 DOI: 10.1111/imm.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023] Open
Abstract
We previously reported that patients with multidrug-resistant tuberculosis (MDR-TB) showed low systemic and Mtb-induced Th22 responses associated to high sputum bacillary load and severe lung lesions suggesting that Th22 response could influence the ability of these patients to control bacillary growth and tissue damage. In MDR-TB patients, the percentage of IL-22+ cells inversely correlates with the proportion of senescent PD-1+ T cells. Herein, we aimed to evaluate the pathways involved on the regulation of systemic and Mtb-induced Th22 response in MDR-TB and fully drug-susceptible TB patients (S-TB) and healthy donors. Our results show that while IL-1β and IL-23 promote Mtb-induced IL-22 secretion and expansion of IL-22+ cells, TGF-β inhibits this response. Systemic and in vitro Mtb-induced Th22 response inversely correlates with TGF-β amounts in plasma and in PBMC cultures respectively. The number of circulating PD-1+ T cells directly correlates with plasmatic TGF-β levels and blockade of PD-1/PD-L1 signalling enhances in vitro Mtb-induced expansion of IL-22+ cells. Thus, TGF-β could also inhibit Th22 response through upregulation of PD-1 expression in T cells. Higher percentage of IL-23+ monocytes was observed in TB patients. In contrast, the proportion of IL-1β+ monocytes was lower in TB patients with bilateral lung cavities (BCC) compared to those patients with unilateral cavities (UCC). Interestingly, TB patients with BCC showed higher plasmatic and Mtb-induced TGF-β secretion than patients with UCC. Thus, high TGF-β secretion and subtle differences in IL-23 and IL-1β expression could diminish systemic and in vitro Mtb-induced Th22 response along disease progression in TB patients.
Collapse
Affiliation(s)
- Belén R Imperiale
- Institute of Experimental Medicine (IMEX)-CONICET, National Academy of Medicine, Buenos Aires City, Argentina
| | - Ana Gamberale
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
| | - Noemí Yokobori
- National Institute of Infectious Diseases, ANLIS Carlos G. Malbrán, Buenos Aires City, Argentina
| | - Ana García
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
| | - Bruno Bartoletti
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
| | - Omar Aidar
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
| | - Beatriz López
- National Institute of Infectious Diseases, ANLIS Carlos G. Malbrán, Buenos Aires City, Argentina
| | - Victor Cruz
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
| | - Pablo González Montaner
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
- Vaccareza Institute, Buenos Aires City, Argentina
| | - Domingo J Palmero
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
- Vaccareza Institute, Buenos Aires City, Argentina
| | - Silvia de la Barrera
- Institute of Experimental Medicine (IMEX)-CONICET, National Academy of Medicine, Buenos Aires City, Argentina
| |
Collapse
|
4
|
Li F, Chen D, Zeng Q, Du Y. Possible Mechanisms of Lymphopenia in Severe Tuberculosis. Microorganisms 2023; 11:2640. [PMID: 38004652 PMCID: PMC10672989 DOI: 10.3390/microorganisms11112640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis). In lymphopenia, T cells are typically characterized by progressive loss and a decrease in their count results. Lymphopenia can hinder immune responses and lead to systemic immunosuppression, which is strongly associated with mortality. Lymphopenia is a significant immunological abnormality in the majority of patients with severe and advanced TB, and its severity is linked to disease outcomes. However, the underlying mechanism remains unclear. Currently, the research on the pathogenesis of lymphopenia during M. tuberculosis infection mainly focuses on how it affects lymphocyte production, survival, or tissue redistribution. This includes impairing hematopoiesis, inhibiting T-cell proliferation, and inducing lymphocyte apoptosis. In this study, we have compiled the latest research on the possible mechanisms that may cause lymphopenia during M. tuberculosis infection. Lymphopenia may have serious consequences in severe TB patients. Additionally, we discuss in detail potential intervention strategies to prevent lymphopenia, which could help understand TB immunopathogenesis and achieve the goal of preventing and treating severe TB.
Collapse
Affiliation(s)
- Fei Li
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (D.C.); (Q.Z.); (Y.D.)
| | | | | | | |
Collapse
|
5
|
Elmadbouly AA, Abdul-Mohymen AM, Eltrawy HH, Elhasan HAA, Althoqapy AA, Amin DR. The association of IL-17A rs2275913 single nucleotide polymorphism with anti-tuberculous drug resistance in patients with pulmonary tuberculosis. J Genet Eng Biotechnol 2023; 21:90. [PMID: 37665411 PMCID: PMC10477154 DOI: 10.1186/s43141-023-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Drug-resistant Tuberculosis (DR-TB) is a global health burden with high morbidity and mortality in developing countries including Egypt. The susceptibility to infection with DR-TB strains may be genetically determined. Several interleukin gene polymorphisms were investigated as risk factors for tuberculosis infection but focusing on their association with DR-TB was limited. Therefore, the objective of this study is to assess the association of IL 17 - 197 G > A (rs2275913) single nucleotide polymorphism (SNP) with susceptibility to DR-TB strains in comparison to drug-sensitive tuberculosis (DS-TB) strains in Egyptian patients with pulmonary TB. This cross-sectional study was conducted on 80 patients with DR-TB strains and 80 with DS-TB strains as a control group. Both age and sex were comparable among the study's groups. IL-17 - 197 G > A (rs2275913) SNP was genotyped by real-time PCR, and IL-17 serum concentration was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS The GA and AA genotype frequencies of IL 17 - 197 G > A (rs2275913) SNP were significantly higher in patients with DR-TB strains than those with DS-TB strains (p < 0.001). The frequency of the A allele was significantly (p < 0.001) higher in patients with DR-TB group (32.5%) compared to the control group (13.8%). Substantial higher serum levels of IL-17 were detected in the DR-TB group with significant association with AA and AG genotypes. CONCLUSION Polymorphism in IL-17 -197 G > A (rs2275913) resulted in higher serum levels of IL-17 and Egyptian patients with such polymorphism are three times at risk of infection with DR-TB strains than patients with wild type.
Collapse
Affiliation(s)
- Asmaa A Elmadbouly
- Clinical Pathology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt.
| | | | - Heba H Eltrawy
- Chest Diseases Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Hanaa A Abou Elhasan
- Community Medicine Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Azza Ali Althoqapy
- Medical Microbiology and Immunology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Doaa R Amin
- Biochemistry Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Bobba S, Khader SA. Rifampicin drug resistance and host immunity in tuberculosis: more than meets the eye. Trends Immunol 2023; 44:712-723. [PMID: 37543504 PMCID: PMC11170062 DOI: 10.1016/j.it.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/07/2023]
Abstract
Tuberculosis (TB) is the leading cause of death due to an infectious agent, with more than 1.5 million deaths attributed to TB annually worldwide. The global dissemination of drug resistance across Mycobacterium tuberculosis (Mtb) strains, causative of TB, resulted in an estimated 450 000 cases of drug-resistant (DR) TB in 2021. Dysregulated immune responses have been observed in patients with multidrug resistant (MDR) TB, but the effects of drug resistance acquisition and impact on host immunity remain obscure. In this review, we compile studies that span aspects of altered host-pathogen interactions and highlight research that explores how drug resistance and immunity might intersect. Understanding the immune processes differentially induced during DR TB would aid the development of rational therapeutics and vaccines for patients with MDR TB.
Collapse
Affiliation(s)
- Suhas Bobba
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Shabaana A Khader
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
7
|
Yokobori N, López B, Ritacco V. The host-pathogen-environment triad: Lessons learned through the study of the multidrug-resistant Mycobacterium tuberculosis M strain. Tuberculosis (Edinb) 2022; 134:102200. [PMID: 35339874 DOI: 10.1016/j.tube.2022.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
Multidrug-resistant tuberculosis is one of the major obstacles that face the tuberculosis eradication efforts. Drug-resistant Mycobacterium tuberculosis clones were initially disregarded as a public health threat, because they were assumed to have paid a high fitness cost in exchange of resistance acquisition. However, some genotypes manage to overcome the impact of drug-resistance conferring mutations, retain transmissibility and cause large outbreaks. In Argentina, the HIV-AIDS epidemics fuelled the expansion of the so-called M strain in the early 1990s, which is responsible for the largest recorded multidrug-resistant tuberculosis cluster of Latin America. The aim of this work is to review the knowledge gathered after nearly three decades of multidisciplinary research on epidemiological, microbiological and immunological aspects of this highly successful strain. Collectively, our results indicate that the successful transmission of the M strain could be ascribed to its unaltered virulence, low Th1/Th17 response, a low fitness cost imposed by the resistance conferring mutations and a high resistance to host-related stress. In the early 2000s, the incident cases due to the M strain steadily declined and stabilized in the latest years. Improvements in the management, diagnosis and treatment of multidrug-resistant tuberculosis along with societal factors such as the low domestic and international mobility of the patients affected by this strain probably contributed to the outbreak containment. This stresses the importance of sustaining the public health interventions to avoid the resurgence of this conspicuous multidrug-resistant strain.
Collapse
Affiliation(s)
- Noemí Yokobori
- Servicio de Micobacterias, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Beatriz López
- Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina.
| | - Viviana Ritacco
- Servicio de Micobacterias, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| |
Collapse
|
8
|
Bacillus coagulans TL3 Inhibits LPS-Induced Caecum Damage in Rat by Regulating the TLR4/MyD88/NF-κB and Nrf2 Signal Pathways and Modulating Intestinal Microflora. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5463290. [PMID: 35178157 PMCID: PMC8843965 DOI: 10.1155/2022/5463290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
Background Bacillus coagulans has been widely used in food and feed additives, which can effectively inhibit the growth of harmful bacteria, improve intestinal microecological environment, promote intestinal development, and enhance intestinal function, but its probiotic mechanism is not completely clear. Aim The aim of this study is to discuss the effect and mechanism of Bacillus coagulans TL3 on oxidative stress and inflammatory injury of cecum induced by LPS. Method The Wistar rats were randomly divided into four groups, each containing 7 animals. Two groups were fed with basic diet (the LPS and control, or CON, groups). The remaining groups were fed with basic diet and either a intragastric administration high or low dose of B. coagulans, forming the HBC and LBC groups, respectively. The rats were fed normally for two weeks. On the 15th day, those in the LPS, HBC, and LBC groups were injected intraperitoneally with LPS—the rats in the CON group were injected intraperitoneally with physiological saline. After 4 hours, all the rats were anesthetized and sacrificed by cervical dislocation, allowing samples to be collected and labeled. The inflammatory and antioxidant cytokine changes of the cecum were measured, and the pathological changes of the cecum were observed, determining the cecal antioxidant, inflammation, and changes in tight junction proteins and analysis of intestinal flora. Result The results show that LPS induces oxidative damage in the cecal tissues of rats and the occurrence of inflammation could also be detected in the serum. The Western blot results detected changes in the NF-κB- and Nrf2-related signaling pathways and TJ-related protein levels. Compared with the LPS group, the HBC group showed significantly downregulated levels of expression of Nrf2, NQO1, HO-1, GPX, and GCLC. The expression of TLR4, MYD88, NF-κB, IL-6, TNFα, and IL-1β was also significantly downregulated, while the expression of other proteins (ZO-1, occludin, and claudin-1) increased significantly. Bacillus coagulans TL3 was also found to increase the relative abundance of the beneficial bacterium Akkermansia muciniphila in the intestines. There is also a significant reduction in the number of harmful bacteria Escherichia coli and Shigella (Enterobacteriaceae). Conclusion Bacillus coagulans TL3 regulates the TLR4/MyD88/NF-κB and Nrf2 signaling pathways in the cecal tissue of rats, protects the intestine from inflammation and oxidative damage caused by LPS, and inhibits the reproduction of harmful bacteria and promotes beneficial effects by regulating the intestinal flora bacteria grow, thereby enhancing intestinal immunity.
Collapse
|
9
|
Zhao Y, Zhang J, Xue B, Zhang F, Xu Q, Ma H, Sha T, Peng L, Li F, Ding J. Serum levels of inhibitory costimulatory molecules and correlations with levels of innate immune cytokines in patients with pulmonary tuberculosis. J Int Med Res 2021; 49:3000605211036832. [PMID: 34463584 PMCID: PMC8414942 DOI: 10.1177/03000605211036832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective To analyze serum levels of inhibitory costimulatory molecules and their
correlations with innate immune cytokine levels in patients with pulmonary
tuberculosis (PTB). Methods Data for 280 PTB patients and 280 healthy individuals were collected. Serum
levels of immune molecules were measured using ELISA. Univariate,
multivariate, subgroup, matrix correlation, and receiver operating
characteristic curve analyses were performed. Results Host, environment, lifestyle, clinical features, and medical history all
influenced PTB. Serum levels of soluble programmed death ligand 1 (sPD-L1),
soluble T-cell immunoglobulin- and mucin-domain–containing molecule 3
(sTim-3), soluble galectin-9 (sGal-9), interleukin (IL)-4, and IL-33 were
significantly higher in patients with PTB, while levels of IL-12, IL-23,
IL-18, and interferon (IFN)-γ were significantly lower. Serum levels of
sTim-3 were higher in alcohol users. Levels of sTim-3 were negatively
correlated with those of IL-12. Levels of IL-12, IL-23, and IL-18 were
positively correlated with those of IFN-γ, while levels of IL-12 were
negatively correlated with those of IL-4. The areas under the curve of
sPD-L1, sTim-3, sGal-9, IL-12, IL-23, IL-18, IFN-γ, IL-4, and IL-33 for
identifying PTB were all >0.77. Conclusions Inhibitory costimulatory molecules may be targets for controlling PTB. Immune
molecules may be helpful for diagnosis of PTB.
Collapse
Affiliation(s)
- Yunjuan Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China.,Postdoctoral Workstation of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Jia Zhang
- Postdoctoral Workstation of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Bing Xue
- Shihezi University School of Medicine, Shihezi, China
| | - Fengbo Zhang
- Department of Clinical Laboratory Medicine, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qian Xu
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Haimei Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tong Sha
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Lei Peng
- Department of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | | | - Jianbing Ding
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
10
|
Wu L, Cheng Q, Wen Z, Song Y, Zhu Y, Wang L. IRF1 as a potential biomarker in Mycobacterium tuberculosis infection. J Cell Mol Med 2021; 25:7270-7279. [PMID: 34213077 PMCID: PMC8335664 DOI: 10.1111/jcmm.16756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Pulmonary tuberculosis (PTB) is a major global public health problem. The purpose of this study was to find biomarkers that can be used to diagnose tuberculosis. We used four NCBI GEO data sets to conduct analysis. Among the four data sets, GSE139825 is lung tissue microarray, and GSE83456, GSE19491 and GSE50834 are blood microarray. The differential genes of GSE139825 and GSE83456 were 68 and 226, and intersection genes were 11. Gene ontology (GO) analyses of 11 intersection genes revealed that the changes were mostly enriched in regulation of leucocyte cell-cell adhesion and regulation of T-cell activation. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs revealed that the host response in TB strongly involves cytokine-cytokine receptor interactions and folate biosynthesis. In order to further narrow the range of biomarkers, we used protein-protein interaction to establish a hub gene network of two data sets and a network of 11 candidate genes. Eventually, IRF1 was selected as a biomarker. As validation, IRF1 levels were shown to be up-regulated in patients with TB relative to healthy controls in data sets GSE19491 and GSE50834. Additionally, IRF1 levels were measured in the new patient samples using ELISA. IRF1 was seen to be significantly up-regulated in patients with TB compared with healthy controls with an AUC of 0.801. These results collectively indicate that IRF1 could serve as a new biomarker for the diagnosis of pulmonary tuberculosis.
Collapse
Affiliation(s)
- Liwei Wu
- Department of Thoracic SurgeryShanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Qiliang Cheng
- Department of Thoracic SurgeryTuberculosis Hospital of Shaanxi ProvinceXi’anChina
| | - Zilu Wen
- Department of Scientific ResearchShanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Yanzheng Song
- Department of Thoracic SurgeryShanghai Public Health Clinical CenterFudan UniversityShanghaiChina
- TB CenterShanghai Emerging & Re‐emerging Infectious Diseases InstituteShanghaiChina
| | - Yijun Zhu
- Department of Thoracic SurgeryShanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Lin Wang
- Department of Thoracic SurgeryShanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| |
Collapse
|
11
|
Téllez-Navarrete NA, Ramon-Luing LA, Muñoz-Torrico M, Preciado-García M, Medina-Quero K, Hernandez-Pando R, Chavez-Galan L. Anti-tuberculosis chemotherapy alters TNFR2 expression on CD4+ lymphocytes in both drug-sensitive and -resistant tuberculosis: however, only drug-resistant tuberculosis maintains a pro-inflammatory profile after a long time. Mol Med 2021; 27:76. [PMID: 34261449 PMCID: PMC8278684 DOI: 10.1186/s10020-021-00320-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/27/2021] [Indexed: 01/05/2023] Open
Abstract
Background Tuberculosis (TB) is an infectious disease. During TB, regulatory T cells (Treg) are related to poor prognosis. However, information about conventional and unconventional Treg (cTreg and uTreg, respectively) is limited. The tumour necrosis factor (TNF) and its receptors (TNFR1 and TNFR2) are necessary for mycobacterial infection, and TNFR2 signalling is required to maintain Treg. Methods A blood sample of drug-susceptible (DS-TB) and drug-resistant tuberculosis (DR-TB) patients was obtained before (basal) and after 2 and 6 months of anti-TB therapy. Expression of TNF, TNFR1, and TNFR2 (transmembrane form, tm) on cTreg, uTreg, activated CD4+ (actCD4+), and CD4+ CD25− (CD4+) T cell subpopulations were evaluated. The main objective was to identify immunological changes associated with sensitive/resistant Mtb strains and with the use of anti-TB therapy. Results We found that after 6 months of anti-TB therapy, both DS- and DR-TB patients have decreased the frequency of cTreg tmTNF+, CD4+ tmTNFR1+ and CD4+ tmTNFR2+. Nevertheless, after 6 months of therapy, only DR-TB patients decreased the frequency of actCD4+ tmTNF+ and actCD4+ tmTNFR2+, exhibited a systemic inflammatory status (high levels of TNF, IFN-γ and IL-12), and their purified CD4+ T cells showed that TNF and TNFR2 are up-regulated at the transcriptional level. Moreover, DS- and DR-TB down-regulated TNFR1 and other proteins associated with Treg (FOXP3 and TGFβ1) in response to the anti-TB therapy. Conclusion These results partially explain the differences in the immune response of DS-TB vs DR-TB. The frequency of actCD4+ tmTNFR2+ cells and inflammatory status should be considered in the follow-up of therapy in DR-TB patients. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00320-4.
Collapse
Affiliation(s)
- Norma A Téllez-Navarrete
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan No. 4510, CP. 14080, Mexico City, Mexico
| | - Lucero A Ramon-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan No. 4510, CP. 14080, Mexico City, Mexico
| | - Marcela Muñoz-Torrico
- Clinic of Tuberculosis, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Mario Preciado-García
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan No. 4510, CP. 14080, Mexico City, Mexico
| | - Karen Medina-Quero
- Laboratory of Immunology, Escuela Militar de Graduados en Sanidad, Mexico City, Mexico
| | - Rogelio Hernandez-Pando
- Experimental Pathology Section, Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan No. 4510, CP. 14080, Mexico City, Mexico.
| |
Collapse
|
12
|
Tomioka H, Tatano Y, Shimizu T, Sano C. Immunoadjunctive Therapy against Bacterial Infections Using Herbal Medicines Based on Th17 Cell-mediated Protective Immunity. Curr Pharm Des 2021; 27:3949-3962. [PMID: 34102961 DOI: 10.2174/1381612827666210608143449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
One of the major health concerns in the world is the global increase in intractable bacterial infectious diseases due to the emergence of multi- and extensively drug-resistant bacterial pathogens as well as an increase in compromised hosts around the world. Particularly, in the case of mycobacteriosis, the high incidence of tuberculosis in developing countries, resurgence of tuberculosis in industrialized countries, and increase in the prevalence of Mycobacterium avium complex infections are important worldwide health concerns. However, the development of novel antimycobacterial drugs is currently making slow progress. Therefore, it is considered that devising improved administration protocols for clinical treatment against refractory mycobacteriosis using existing chemotherapeutics is more practical than awaiting the development of new antimycobacterial drugs. The regulation of host immune responses using immunoadjunctive agents may increase the efficacy of antimicrobial treatment against mycobacteriosis. The same situations also exist in cases of intractable infectious diseases due to common bacteria other than mycobacteria. The mild and long-term up-regulation of host immune reactions in hosts with intractable chronic bacterial infections, using herbal medicines and medicinal plants, may be beneficial for such immunoadjunctive therapy. This review describes the current status regarding basic and clinical studies on therapeutic regimens using herbal medicines, useful for the clinical treatment of patients with intractable bacterial infections. In particular, we focus on immunoadjunctive effects of herbal medicines on the establishment and manifestation of host antibacterial immunity related to the immunological roles of Th17 cell lineages.
Collapse
Affiliation(s)
- Haruaki Tomioka
- Department of Basic Medical Science for Nursing, Department of Contemporary Psychology, Yasuda Women's University, Hiroshima, Japan
| | - Yutaka Tatano
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan
| | - Toshiaki Shimizu
- Department of Nutrition Administration, Yasuda Women's University, Hiroshima,, Japan
| | - Chiaki Sano
- Department of Community Medicine Management, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
13
|
Allué-Guardia A, García JI, Torrelles JB. Evolution of Drug-Resistant Mycobacterium tuberculosis Strains and Their Adaptation to the Human Lung Environment. Front Microbiol 2021; 12:612675. [PMID: 33613483 PMCID: PMC7889510 DOI: 10.3389/fmicb.2021.612675] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
In the last two decades, multi (MDR), extensively (XDR), extremely (XXDR) and total (TDR) drug-resistant Mycobacterium tuberculosis (M.tb) strains have emerged as a threat to public health worldwide, stressing the need to develop new tuberculosis (TB) prevention and treatment strategies. It is estimated that in the next 35 years, drug-resistant TB will kill around 75 million people and cost the global economy $16.7 trillion. Indeed, the COVID-19 pandemic alone may contribute with the development of 6.3 million new TB cases due to lack of resources and enforced confinement in TB endemic areas. Evolution of drug-resistant M.tb depends on numerous factors, such as bacterial fitness, strain's genetic background and its capacity to adapt to the surrounding environment, as well as host-specific and environmental factors. Whole-genome transcriptomics and genome-wide association studies in recent years have shed some insights into the complexity of M.tb drug resistance and have provided a better understanding of its underlying molecular mechanisms. In this review, we will discuss M.tb phenotypic and genotypic changes driving resistance, including changes in cell envelope components, as well as recently described intrinsic and extrinsic factors promoting resistance emergence and transmission. We will further explore how drug-resistant M.tb adapts differently than drug-susceptible strains to the lung environment at the cellular level, modulating M.tb-host interactions and disease outcome, and novel next generation sequencing (NGS) strategies to study drug-resistant TB.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | | | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
14
|
Imperiale BR, García A, Minotti A, González Montaner P, Moracho L, Morcillo NS, Palmero DJ, Sasiain MDC, de la Barrera S. Th22 response induced by Mycobacterium tuberculosis strains is closely related to severity of pulmonary lesions and bacillary load in patients with multi-drug-resistant tuberculosis. Clin Exp Immunol 2021; 203:267-280. [PMID: 33128773 PMCID: PMC7806416 DOI: 10.1111/cei.13544] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
The role of interleukin-22 (IL-22) in the pathogenesis or tissue repair in human tuberculosis (TB) remains to be established. Here, we aimed to explore the ex-vivo and in-vitro T helper 22 (Th22) response in TB patients and healthy donors (HD) induced by different local multi-drug-resistant (MDR) Mvcobacterium tuberculosis (Mtb) strains. For this purpose, peripheral blood mononuclear cells from drug-susceptible (S-TB) MDR-TB patients and HD were stimulated with local MDR strains and the laboratory strain H37Rv. IL-22 and IL-17 expression and senescent status were assessed in CD4+ and CD8+ cells by flow cytometry, while IL-22 amount was measured in plasma and culture supernatants by enzyme-linked immunosorbent assay (ELISA). We found lower IL-22 amounts in plasma from TB patients than HD, together with a decrease in the number of circulating T cells expressing IL-22. In a similar manner, all Mtb strains enhanced IL-22 secretion and expanded IL-22+ cells within CD4+ and CD8+ subsets, being the highest levels detected in S-TB patients. In MDR-TB, low systemic and Mtb-induced Th22 responses associated with high sputum bacillary load and bilateralism of lung lesions, suggesting that Th22 response could be influencing the ability of MDR-TB patients to control bacillary growth and tissue damage. In addition, in MDR-TB patients we observed that the higher the percentage of IL-22+ cells, the lower the proportion of programmed cell death 1 (PD-1)+ or CD57+ T cells. Furthermore, the highest proportion of senescent T cells was associated with severe lung lesions and bacillary load. Thus, T cell senescence would markedly influence Th22 response mounted by MDR-TB patients.
Collapse
Affiliation(s)
- B. R. Imperiale
- Institute of Experimental Medicine (IMEX)‐CONICETNational Academy of MedicineBuenos Aires CityArgentina
| | - A. García
- Dr. F.J. Muñiz HospitalBuenos Aires CityArgentina
| | - A. Minotti
- Institute of Experimental Medicine (IMEX)‐CONICETNational Academy of MedicineBuenos Aires CityArgentina
| | - P. González Montaner
- Dr. F.J. Muñiz HospitalBuenos Aires CityArgentina
- Vaccareza InstituteUBABuenos Aires CityArgentina
| | - L. Moracho
- Dr. F.J. Muñiz HospitalBuenos Aires CityArgentina
| | - N. S. Morcillo
- Tuberculosis and Mycobacterioses LaboratoryDr. Antonio A. Cetrángolo HospitalBuenos Aires ProvinceArgentina
| | - D. J. Palmero
- Dr. F.J. Muñiz HospitalBuenos Aires CityArgentina
- Vaccareza InstituteUBABuenos Aires CityArgentina
| | - M. del Carmen Sasiain
- Institute of Experimental Medicine (IMEX)‐CONICETNational Academy of MedicineBuenos Aires CityArgentina
| | - S. de la Barrera
- Institute of Experimental Medicine (IMEX)‐CONICETNational Academy of MedicineBuenos Aires CityArgentina
| |
Collapse
|
15
|
Singh M, Vaughn C, Sasaninia K, Yeh C, Mehta D, Khieran I, Venketaraman V. Understanding the Relationship between Glutathione, TGF-β, and Vitamin D in Combating Mycobacterium tuberculosis Infections. J Clin Med 2020; 9:jcm9092757. [PMID: 32858837 PMCID: PMC7563738 DOI: 10.3390/jcm9092757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) remains a pervasive global health threat. A significant proportion of the world's population that is affected by latent tuberculosis infection (LTBI) is at risk for reactivation and subsequent transmission to close contacts. Despite sustained efforts in eradication, the rise of multidrug-resistant strains of Mycobacteriumtuberculosis (M. tb) has rendered traditional antibiotic therapy less effective at mitigating the morbidity and mortality of the disease. Management of TB is further complicated by medications with various off-target effects and poor compliance. Immunocompromised patients are the most at-risk in reactivation of a LTBI, due to impairment in effector immune responses. Our laboratory has previously reported that individuals suffering from Type 2 Diabetes Mellitus (T2DM) and HIV exhibited compromised levels of the antioxidant glutathione (GSH). Restoring the levels of GSH resulted in improved control of M. tb infection. The goal of this review is to provide insights on the diverse roles of TGF- β and vitamin D in altering the levels of GSH, granuloma formation, and clearance of M. tb infection. We propose that these pathways represent a potential avenue for future investigation and development of new TB treatment modalities.
Collapse
Affiliation(s)
- Mohkam Singh
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
| | - Charles Vaughn
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
| | - Kayvan Sasaninia
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
| | - Christopher Yeh
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
| | - Devanshi Mehta
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
| | - Ibrahim Khieran
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
| | - Vishwanath Venketaraman
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
- Correspondence: ; Tel.: +1-909-706-3736
| |
Collapse
|
16
|
Li Y, Yu X, Ma Y, Hua S. IL-23 and dendritic cells: What are the roles of their mutual attachment in immune response and immunotherapy? Cytokine 2019; 120:78-84. [PMID: 31029042 DOI: 10.1016/j.cyto.2019.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
Interleukin-23 (IL-23) is a cytokine that is composed of the subunits p19 and p40, while its receptor (IL-23R) consists of two subunits, that is, IL-23Rα and IL-12Rβ1. The interaction between IL-23 and IL-23R is necessary for exerting cardinal biological effects upon certain cell types, including promotion of memory T cell proliferation and Th17 cell-mediated IL-17 secretion. Accordingly, dendritic cells (DCs) are one of the main sources for IL-23 secretion. Interestingly, IL-23R is also present on the DC plasma membrane, suggesting that IL-23 potentially acts on DCs via an autocrine manner. In this review, we have summarized a variety of IL-23-mediated effects on the intracellular signaling pathways such as Janus kinase 2, tyrosine kinase 2, signal transducer and activator of transcription (STAT), mitogen-activated protein kinase signaling, and so forth, which may underlie numerous processes such as DC maturation, antigen presentation, T cell proliferation/activation, and cytokine secretion, which may be implicated in many immune-related diseases through IL-23/DC interactions. Accordingly, these signaling pathways are extensively involved in the pathogenesis and progression of numerous diseases, including autoimmune disease (e.g., atopic dermatitis, asthma, and multiple sclerosis) and infection (e.g., bacterial, fungal, and viral infections). Taken together, they are potentially applicable to novel but promising strategies for treating numerous diseases associated with the mutual attachment of IL-23 and DCs.
Collapse
Affiliation(s)
- Yanchun Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130 021 Jinlin, China
| | - Xiuhua Yu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130 021 Jinlin, China
| | - Yucong Ma
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130 021 Jinlin, China
| | - Shucheng Hua
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130 021 Jinlin, China.
| |
Collapse
|
17
|
Kong J, Qiu Y, Li Y, Zhang H, Wang W. TGF-β1 elevates P-gp and BCRP in hepatocellular carcinoma through HOTAIR/miR-145 axis. Biopharm Drug Dispos 2019; 40:70-80. [DOI: 10.1002/bdd.2172] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/13/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jiehong Kong
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences; Soochow University; Suzhou 215123 China
| | - Yajing Qiu
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences; Soochow University; Suzhou 215123 China
| | - Yuan Li
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences; Soochow University; Suzhou 215123 China
| | - Hongjian Zhang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences; Soochow University; Suzhou 215123 China
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences; Soochow University; Suzhou 215123 China
| |
Collapse
|
18
|
The crucial roles of Th17-related cytokines/signal pathways in M. tuberculosis infection. Cell Mol Immunol 2017; 15:216-225. [PMID: 29176747 DOI: 10.1038/cmi.2017.128] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/14/2017] [Accepted: 10/15/2017] [Indexed: 12/19/2022] Open
Abstract
Interleukin-17 (IL-17), IL-21, IL-22 and IL-23 can be grouped as T helper 17 (Th17)-related cytokines because they are either produced by Th17/Th22 cells or involved in their development. Here, we review Th17-related cytokines/Th17-like cells, networks/signals and their roles in immune responses or immunity against Mycobacterium tuberculosis (Mtb) infection. Published studies suggest that Th17-related cytokine pathways may be manipulated by Mtb microorganisms for their survival benefits in primary tuberculosis (TB). In addition, there is evidence that immune responses of the signal transducer and activator of transcription 3 (STAT3) signal pathway and Th17-like T-cell subsets are dysregulated or destroyed in patients with TB. Furthermore, Mtb infection can impact upstream cytokines in the STAT3 pathway of Th17-like responses. Based on these findings, we discuss the need for future studies and the rationale for targeting Th17-related cytokines/signals as a potential adjunctive treatment.
Collapse
|
19
|
Sun ET, Xia D, Li BH, Ma J, Dong YY, Ding SS, Chen BF, Wen YF. Association of Immune Factors with Drug-Resistant Tuberculosis: A Case-Control Study. Med Sci Monit 2017; 23:5330-5336. [PMID: 29118314 PMCID: PMC5691569 DOI: 10.12659/msm.904309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Presently, studies of factors associated with drug-resistant tuberculosis (TB) focus on patients’ socio-demographic characteristics and living habits, to the exclusion of biochemical indicators, especially immune factors. This study was carried out to determine whether immune factors are associated with drug-resistant TB. Material/Methods A total of 227 drug-resistant pulmonary TB patients and 225 drug-susceptible pulmonary TB patients were enrolled in this study. Information on socio-demographic characteristics and biochemical indicators were obtained through their clinical records. Non-conditional logistic regression was used to analyze the association of these indicators with drug-resistant TB. Results There were significant differences in re-treatment, marital status, alanine aminotransferase (ALT), blood uric acid (BUA), carcino-embryonic antigen (CEA), T-spot, and CD3 and CD4 counts between the 2 groups. In multivariable analysis, re-treatment [Odds Ratio (OR)=5.290, 95% Confidence Interval [CI]=2.652–10.551); CD3 (OR=1.034, 95% CI=1.001–1.068); CD4 (OR=1.035, 95% CI =1.001–1.070) and IgM (OR=1.845, 95% CI=1.153–2.952) were associated with drug-resistant TB. Conclusions These results suggest the need for greater attention to re-treatment cases and immune function when treating drug-resistant TB.
Collapse
Affiliation(s)
- En-Tao Sun
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Dan Xia
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Ben-He Li
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Jun Ma
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Yuan-Yuan Dong
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Shu-Shu Ding
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Bai-Feng Chen
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Yu-Feng Wen
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| |
Collapse
|
20
|
Izzo AA. Tuberculosis vaccines - perspectives from the NIH/NIAID Mycobacteria vaccine testing program. Curr Opin Immunol 2017; 47:78-84. [PMID: 28750280 PMCID: PMC5626602 DOI: 10.1016/j.coi.2017.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
The development of novel vaccine candidates against infections with Mycobacterium tuberculosis has highlighted our limited understanding of immune mechanisms required to kill M. tuberculosis. The induction of a Th1 immunity is vital, but new studies are required to identify other mechanisms that may be necessary. Novel vaccines formulations that invoke effector cells such as innate lymphoid cells may provide an environment that promote effector mechanisms including T cell and B cell mediated immunity. Identifying pathways associated with killing this highly successful infectious agent has become critical to achieving the goal of reducing the global tuberculosis burden.
Collapse
Affiliation(s)
- Angelo A Izzo
- Colorado State University, Department of Microbiology, Immunology & Pathology, 1682 Campus Delivery, Fort Collins, CO 80523, United States.
| |
Collapse
|
21
|
Nickel Sulfate Promotes IL-17A Producing CD4+ T Cells by an IL-23-Dependent Mechanism Regulated by TLR4 and Jak-STAT Pathways. J Invest Dermatol 2017. [PMID: 28634033 DOI: 10.1016/j.jid.2017.05.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Allergic contact dermatitis, caused by nickel, is a delayed-type hypersensitivity reaction, and 14.5% of the general population may be affected in Europe. Among a wide range of cytokines, the IL-12 family has unique structural and immunological characteristics. Whereas IL-12p70 promotes T helper (Th) 1 cell polarization, IL-23 promotes Th17 cell development and both have been isolated from nickel-allergic patients. In this work, we were interested in understanding the mechanism behind nickel-induced Th17 cell development. We showed that nickel induced an early production of IL-23 in human monocyte-derived dendritic cells along with an increase in the expression of il-23p19 and il-12p40 mRNA. However, the production of a significant level of IL-12p70 required an additional signal such as IFN-γ. Moreover, nickel-treated monocyte-derived dendritic cells induced an increase in the percentage of IL-17A+ CD4+ T cells, an effect reduced by IL-23 neutralization. We then investigated the molecular mechanism of IL-23 production. Our results showed that toll-like receptor 4, p38 mitogen-activated protein kinase, and NF-κB were involved in IL-23 production induced by nickel. However, Jak-signal transducer and activator of transcription activation seems to maintain the IL-23/IL-12p70 balance by limiting IL-23 production and promoting Th1 polarization. These results indicate that nickel-induced Th17 cell development is dependent on the production of IL-23 by human monocyte-derived dendritic cells via toll-like receptor 4, p38 mitogen-activated protein kinase, NF-κB, and Jak-signal transducer and activator of transcription pathways.
Collapse
|
22
|
Mourik BC, Lubberts E, de Steenwinkel JEM, Ottenhoff THM, Leenen PJM. Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Front Immunol 2017; 8:294. [PMID: 28424682 PMCID: PMC5380685 DOI: 10.3389/fimmu.2017.00294] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 01/04/2023] Open
Abstract
The classical paradigm of tuberculosis (TB) immunity, with a central protective role for Th1 responses and IFN-γ-stimulated cellular responses, has been challenged by unsatisfactory results of vaccine strategies aimed at enhancing Th1 immunity. Moreover, preclinical TB models have shown that increasing IFN-γ responses in the lungs is more damaging to the host than to the pathogen. Type 1 interferon signaling and altered Th17 responses have also been associated with active TB, but their functional roles in TB pathogenesis remain to be established. These two host responses have been studied in more detail in autoimmune diseases (AID) and show functional interactions that are of potential interest in TB immunity. In this review, we first identify the role of type 1 interferons and Th17 immunity in TB, followed by an overview of interactions between these responses observed in systemic AID. We discuss (i) the effects of GM-CSF-secreting Th17.1 cells and type 1 interferons on CCR2+ monocytes; (ii) convergence of IL-17 and type 1 interferon signaling on stimulating B-cell activating factor production and the central role of neutrophils in this process; and (iii) synergy between IL-17 and type 1 interferons in the generation and function of tertiary lymphoid structures and the associated follicular helper T-cell responses. Evaluation of these autoimmune-related pathways in TB pathogenesis provides a new perspective on recent developments in TB research.
Collapse
Affiliation(s)
- Bas C Mourik
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jurriaan E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|