1
|
Pamela RH, Minerva MR, Ernesto CMM, Manuel MAJ, Norberto SE, Francisco AH, de la Torre Silvia MD, Angélica RL, Elva JH, Carlos NEJ, Sara O, Juan XC, Ariadnna CC, Paula FA, José AG. Is the vIL-10 Protein from Cytomegalovirus Associated with the Potential Development of Acute Lymphoblastic Leukemia? Viruses 2025; 17:435. [PMID: 40143362 PMCID: PMC11945621 DOI: 10.3390/v17030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/01/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Leukemia is a hematologic malignancy; acute lymphoblastic leukemia (ALL) is the most prevalent subtype among children rather than in adults. Orthoherpesviridae family members produce proteins during latent infection phases that may contribute to cancer development. One such protein, viral interleukin-10 (vIL-10), closely resembles human interleukin-10 (IL-10) in structure. Research has explored the involvement of human cytomegalovirus (hCMV) in the pathogenesis of ALL. However, the limited characterization of its latent-phase proteins restricts a full understanding of the relationship between hCMV infection and leukemia progression. Studies have shown that hCMV induces an inflammatory response during infection, marked by the release of cytokines and chemokines. Inflammation may, therefore, play a role in how hCMV contributes to oncogenesis in pediatric ALL, possibly mediated by latent viral proteins. The classification of a virus as oncogenic is based on its alignment with cancer's established hallmarks. Viruses can manipulate host cellular mechanisms, causing dysregulated cell proliferation, evasion of apoptosis, and genomic instability. These processes lead to mutations, chromosomal abnormalities, and chronic inflammation, all of which are vital for carcinogenesis. This study aims to investigate the role of vIL-10 during the latent phase of hCMV as a potential factor in leukemia development.
Collapse
Affiliation(s)
- Ruvalcaba-Hernández Pamela
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.-H.P.); (M.-D.d.l.T.S.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mata-Rocha Minerva
- Unidad de Investigación en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Avenida Cuauhtémoc 330, Doctores, Ciudad de México 06720, Mexico; (M.-R.M.); (S.-E.N.)
| | | | - Mejía-Aranguré Juan Manuel
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sánchez-Escobar Norberto
- Unidad de Investigación en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Avenida Cuauhtémoc 330, Doctores, Ciudad de México 06720, Mexico; (M.-R.M.); (S.-E.N.)
- Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68120, Mexico
| | - Arenas-Huertero Francisco
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico;
| | - Melchor-Doncel de la Torre Silvia
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.-H.P.); (M.-D.d.l.T.S.)
| | - Rangel-López Angélica
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.-H.P.); (M.-D.d.l.T.S.)
| | - Jiménez-Hernández Elva
- Departamento de Oncología, Hospital Pediátrico Moctezuma SEDESA, Universidad Autónoma Metropolitana, Mexico City 09769, Mexico;
| | - Nuñez-Enriquez Juan Carlos
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Ochoa Sara
- Laboratorio de Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (O.S.); (X.-C.J.)
| | - Xicohtencatl-Cortes Juan
- Laboratorio de Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (O.S.); (X.-C.J.)
| | - Cruz-Córdova Ariadnna
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | | | - Arellano-Galindo José
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.-H.P.); (M.-D.d.l.T.S.)
- Centro Interdisciplinario de Ciencias de la Salud Unidad Milpa Alta Instituto Politécnico Nacional, Mexico City 12000, Mexico
| |
Collapse
|
2
|
Trivic A, Milovanovic J, Kablar D, Tomic A, Folic M, Jotic A, Tomanovic N, Tomic AM, Djoric I, Jankovic M. Friend or Foe? Exploring the Role of Cytomegalovirus (HCMV) Infection in Head and Neck Tumors. Biomedicines 2024; 12:872. [PMID: 38672226 PMCID: PMC11048144 DOI: 10.3390/biomedicines12040872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Although not regarded as an oncogenic pathogen, the human cytomegalovirus (HCMV) has been associated with a wide array of malignancies. Conversely, a number of studies report on possible anti-tumor properties of the virus, apparently mediated via HCMV-galvanized T-cell tumor killing; these were recently being investigated in clinical trials for the purposes of anti-cancer treatment by means of dendritic cell vaccines and HCMV-specific cytotoxic T cells. In the present study, we have analyzed the relation between a complement of head-and-neck tumors and HCMV infection across 73 countries worldwide using Spearman correlation, univariate and multivariate regression analysis. Intriguingly, HCMV was found to be pro-oncogenic in patients with nasopharyngeal carcinoma; contrarywise, the virus manifested an inverse (i.e., anti-tumor) association with the tumors of the lip/oral region and the salivary glands. Although this putative protective effect was noted initially for thyroid neoplasia and hypopharyngeal tumors as well, after multivariate regression analysis the connection did not hold. There was no association between laryngeal cancer and HCMV infection. It would appear that, depending on the tissue, HCMV may exert both protective and oncogenic effects. The globally observed protective feature of the virus could potentially be utilized in future therapeutic approaches for salivary tumors and neoplasia in the lip/oral region. As correlation does not necessarily imply causation, more in-depth molecular analyses from comprehensive clinical studies are warranted to substantiate our findings.
Collapse
Affiliation(s)
- Aleksandar Trivic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, 2 Pasterova Street, 11000 Belgrade, Serbia; (A.T.); (J.M.); (M.F.); (A.J.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
| | - Jovica Milovanovic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, 2 Pasterova Street, 11000 Belgrade, Serbia; (A.T.); (J.M.); (M.F.); (A.J.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
| | - Djurdjina Kablar
- Department for Pathology, Pathohistology and Medical Cytology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia;
| | - Ana Tomic
- Center for Radiology Imaging, University Clinical Center of Serbia, 2 Pasterova Street, 11000 Belgrade, Serbia;
| | - Miljan Folic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, 2 Pasterova Street, 11000 Belgrade, Serbia; (A.T.); (J.M.); (M.F.); (A.J.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
| | - Ana Jotic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, 2 Pasterova Street, 11000 Belgrade, Serbia; (A.T.); (J.M.); (M.F.); (A.J.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
| | - Nada Tomanovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
- Institute of Pathology, 1 Dr. Subotica Street, 11000 Belgrade, Serbia
| | - Ana Marija Tomic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
- Institute of Pathology, 1 Dr. Subotica Street, 11000 Belgrade, Serbia
| | - Igor Djoric
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
- Clinic of Neurosurgery, University Clinical Center of Serbia, Institute of Radiology, 4 Dr. Koste Todorovića Street, 11000 Belgrade, Serbia
| | - Marko Jankovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
- Department of Virology, Institute of Microbiology and Immunology, 1 Dr. Subotica Street, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Jankovic M, Knezevic T, Tomic A, Milicevic O, Jovanovic T, Djunic I, Mihaljevic B, Knezevic A, Todorovic-Balint M. Human Cytomegalovirus Oncoprotection across Diverse Populations, Tumor Histologies, and Age Groups: The Relevance for Prospective Vaccinal Therapy. Int J Mol Sci 2024; 25:3741. [PMID: 38612552 PMCID: PMC11012084 DOI: 10.3390/ijms25073741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The oncogenicity of the human cytomegalovirus (CMV) is currently being widely debated. Most recently, mounting clinical evidence suggests an anti-cancer effect via CMV-induced T cell-mediated tumor destruction. However, the data were mostly obtained from single-center studies and in vitro experiments. Broad geographic coverage is required to offer a global perspective. Our study examined the correlation between country-specific CMV seroprevalence (across 73 countries) and the age-standardized incidence rate (of 34 invasive tumors). The populations studied were stratified according to decadal age periods as the immunologic effects of CMV seropositivity may depend upon age at initial infection. The International Agency for Research on Cancer of the World Health Organization (IARC WHO) database was used. The multivariate linear regression analysis revealed a worldwide inverse correlation between CMV seroprevalence and the incidences of 62.8% tumors. Notably, this inverse link persists for all cancers combined (Spearman's ρ = -0.732, p < 0.001; β = -0.482, p < 0.001, adjusted R2 = 0.737). An antithetical and significant correlation was also observed in particular age groups for the vast majority of tumors. Our results corroborate the conclusions of previous studies and indicate that this oncopreventive phenomenon holds true on a global scale. It applies to a wide spectrum of cancer histologies, additionally supporting the idea of a common underlying mechanism-CMV-stimulated T cell tumor targeting. Although these results further advance the notion of CMV-based therapies, in-depth investigation of host-virus interactions is still warranted.
Collapse
Affiliation(s)
- Marko Jankovic
- Department of Virology, Institute of Microbiology and Immunology, 1 Dr Subotica Street, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
| | - Tara Knezevic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
| | - Ana Tomic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
| | - Ognjen Milicevic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
- Institute of Medical Statistics and Informatics, 15 Dr Subotica Street, 11000 Belgrade, Serbia
| | - Tanja Jovanovic
- Institute for Biocides and Medical Ecology, 16 Trebevicka Street, 11000 Belgrade, Serbia;
| | - Irena Djunic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
- Clinic of Hematology, University Clinical Centre of Serbia, 2 Dr Koste Todorovica Street, 11000 Belgrade, Serbia
| | - Biljana Mihaljevic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
- Clinic of Hematology, University Clinical Centre of Serbia, 2 Dr Koste Todorovica Street, 11000 Belgrade, Serbia
| | - Aleksandra Knezevic
- Department of Virology, Institute of Microbiology and Immunology, 1 Dr Subotica Street, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
| | - Milena Todorovic-Balint
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
- Clinic of Hematology, University Clinical Centre of Serbia, 2 Dr Koste Todorovica Street, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Vasiljevic T, Jankovic M, Tomic A, Bakrac I, Radenovic S, Miljanovic D, Knezevic A, Jovanovic T, Djunic I, Todorovic-Balint M. Significance of Cytomegalovirus gB Genotypes in Adult Patients Undergoing Hematopoietic Stem Cell Transplantation: Insights from a Single-Centre Investigation. Pharmaceuticals (Basel) 2024; 17:428. [PMID: 38675390 PMCID: PMC11054653 DOI: 10.3390/ph17040428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Cytomegalovirus (CMV) infection is a major clinical issue after allogeneic hematopoietic stem cell transplantation (HSCT). The CMV envelope glycoproteins are key in viral pathogenesis; the glycoprotein B (gB) encoded by the UL55 gene might be an important determinant of viral virulence and disease severity marker in patients treated with allogeneic HSCT. Our aim was to investigate the molecular diversity of CMV gB and inquire into the associations between UL55 gene variations and clinical manifestations in adult patients treated with allogeneic HSCT. RESULTS The most prevalent genotypes were gB1 and gB4 (11/27, 40.7%). Patients with genotype gB1 infection had earlier platelet engraftment (p < 0.033) and less frequent minimal/measurable residual disease post HSCT than those without this genotype. Patients with gB4 glycoprotein infection had a significantly lower CD4+/CD8+ ratio at D90 (p < 0.026). Interestingly, patients with gB5 glycoprotein infection had shorter overall survival from base condition diagnosis (p < 0.042), as well as shorter overall survival after HSCT (p < 0.036). Acute GvHD was noted more frequently in those with mixed-genotype infection (p = 0.047). MATERIAL AND METHODS The study included fifty-nine adult patients treated with allogeneic HSCT. Peripheral venous blood was sampled typically per week, with detection of CMV performed by quantitative real-time PCR. Multiplex nested PCR was used to determine specific gB genotypes, which were then statistically compared vis-à-vis specific clinical variables. CONCLUSIONS Our study points to variations in the viral UL55 locus imparting both beneficial (earlier platelet engraftment, less frequent MRD post HSCT) and adverse effects (shorter overall survival, more frequent acute GvHD, less frequent 100% chimerism at day 90) to the transplanted host. Comprehensive molecular investigations are necessary to validate this apparent duality, as the potential benefits of CMV could perhaps be utilized for the benefit of the patient in the future.
Collapse
Affiliation(s)
- Tamara Vasiljevic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.V.); (I.B.); (S.R.); (D.M.); (A.K.); (I.D.); (M.T.-B.)
| | - Marko Jankovic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.V.); (I.B.); (S.R.); (D.M.); (A.K.); (I.D.); (M.T.-B.)
- Department of Virology, Institute of Microbiology and Immunology, 1 Dr Subotica Street, 11000 Belgrade, Serbia
| | - Ana Tomic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.V.); (I.B.); (S.R.); (D.M.); (A.K.); (I.D.); (M.T.-B.)
| | - Ida Bakrac
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.V.); (I.B.); (S.R.); (D.M.); (A.K.); (I.D.); (M.T.-B.)
| | - Stefan Radenovic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.V.); (I.B.); (S.R.); (D.M.); (A.K.); (I.D.); (M.T.-B.)
| | - Danijela Miljanovic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.V.); (I.B.); (S.R.); (D.M.); (A.K.); (I.D.); (M.T.-B.)
- Department of Virology, Institute of Microbiology and Immunology, 1 Dr Subotica Street, 11000 Belgrade, Serbia
| | - Aleksandra Knezevic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.V.); (I.B.); (S.R.); (D.M.); (A.K.); (I.D.); (M.T.-B.)
- Department of Virology, Institute of Microbiology and Immunology, 1 Dr Subotica Street, 11000 Belgrade, Serbia
| | - Tanja Jovanovic
- Institute for Biocides and Medical Ecology, 16 Trebevicka Street, 11000 Belgrade, Serbia;
| | - Irena Djunic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.V.); (I.B.); (S.R.); (D.M.); (A.K.); (I.D.); (M.T.-B.)
- Clinic of Haematology, University Clinical Centre of Serbia, University of Belgrade, 2 Dr Koste Todorovica Street, 11000 Belgrade, Serbia
| | - Milena Todorovic-Balint
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.V.); (I.B.); (S.R.); (D.M.); (A.K.); (I.D.); (M.T.-B.)
- Clinic of Haematology, University Clinical Centre of Serbia, University of Belgrade, 2 Dr Koste Todorovica Street, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Grønvold BL, Ali MM, Myklebust TÅ, Lenartova A, Remberger M, Abrahamsen IW, Tjønnfjord GE, Myhre AE, Fløisand Y, Gedde‐Dahl T. Allogeneic stem cell transplant recipients surviving at least 2 years without relapse: outcome and risk factors. EJHAEM 2024; 5:117-124. [PMID: 38406518 PMCID: PMC10887237 DOI: 10.1002/jha2.842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 02/27/2024]
Abstract
Outcomes of 2-year survivours undergoing allo-haematopoietic stem cell transplantation at Oslo University Hospital were retrospectively assessed with the objectives of identification of risk factors for late death as possible means for precautionary measures and interventions to improve long-term survival. 421 patients with haematological malignancy, transplanted between 2005 and 2019, alive and free of disease after 2 years were included with data reported from The OUS-HSCT registry. Median follow-up was 6.2 years (2.016.1), and 232 patients (55%) were observed for minimum 5 years. The probability of being alive 5 and 10 years after HSCT was 86% and 76%. Primary risk factors for late death included initial diagnosis of age ≥ 60 years, chronic lymphocytic leukaemia (CLL), previous blood stream- or invasive fungal infection (BSI, IFI), and chronic graft-versus-host disease (cGVHD). Transplant-related mortality (TRM) and relapse at 5 years were 9.0% and 7.7%, respectively. Two factors were associated with the latter: cytomegalovirus (CMV) seronegative donor and CLL. Compared with the age- and gender-matched Norwegian general population, life expectancy was lower for each disease, except for CML. The prospect for the long-term survival is good for 2-year survivors of the allogeneic hematopoietic stem cell transplantation. However, life expectancy remains inferior to the age- and gender-matched general population. Optimising prophylaxis and treatment for chronic GVHD, BSI and IFI are needed along with the improved adherence to guidelines for early detection of secondary malignancies. Measures to improve immune reconstitution, possibly the microbiota, and the use of CMV seropositive donors regardless of recipient sero-status may be warranted and should be addressed in further studies.
Collapse
Affiliation(s)
- B. Linder Grønvold
- Department of HaematologyOslo University HospitalOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | | | - Tor Å Myklebust
- Department of RegistrationCancer Registry NorwayOsloNorway
- Department of Research and InnovationMøre and Romsdal Hospital TrustÅlesundNorway
| | | | - Mats Remberger
- Department of HaematologyOslo University HospitalOsloNorway
- Department of Medical SciencesUppsala University and KFUEUppsala University HospitalUppsalaSweden
| | | | - Geir Erland Tjønnfjord
- Department of HaematologyOslo University HospitalOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | | | - Yngvar Fløisand
- Center for Cancer Cell ReprogrammingInstitute of Clinical MedicineUniversity of OsloOsloNorway
| | - Tobias Gedde‐Dahl
- Department of HaematologyOslo University HospitalOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| |
Collapse
|
6
|
Prinz I, Koenecke C. Antigen-specific γδ T cells contribute to cytomegalovirus control after stem cell transplantation. Curr Opin Immunol 2023; 82:102303. [PMID: 36947903 DOI: 10.1016/j.coi.2023.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/24/2023]
Abstract
γδ T cells support the immunological control of viral infections, in particular during cytomegalovirus (CMV) reactivation in immunocompromised patients after allogeneic hematopoietic stem cell transplantation. It is unclear how γδ T cells sense CMV-infection and whether this involves specific T cell receptor (TCR)-ligand interaction. Here we summarize recent findings that revealed an adaptive-like anti-CMV immune response of γδ T cells, characterized by acquisition of effector functions and long-lasting clonal expansion. We propose that rather CMV-induced self-antigen than viral antigens trigger γδ TCRs during CMV reactivation. Given that the TCRs of CMV-activated γδ T cells are often cross-reactive to tumor cells, these findings pinpoint γδ T cells and their γδ TCRs as attractive multipurpose tools for antiviral and antitumor therapy.
Collapse
Affiliation(s)
- Immo Prinz
- Institute of Immunology, Hannover Medical School (MHH), Germany; Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Germany.
| | - Christian Koenecke
- Institute of Immunology, Hannover Medical School (MHH), Germany; Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, MHH, Germany
| |
Collapse
|
7
|
Palamarchuk AI, Alekseeva NA, Streltsova MA, Ustiuzhanina MO, Kobyzeva PA, Kust SA, Grechikhina MV, Boyko AA, Shustova OA, Sapozhnikov AM, Kovalenko EI. Increased Susceptibility of the CD57 - NK Cells Expressing KIR2DL2/3 and NKG2C to iCasp9 Gene Retroviral Transduction and the Relationships with Proliferative Potential, Activation Degree, and Death Induction Response. Int J Mol Sci 2021; 22:ijms222413326. [PMID: 34948123 PMCID: PMC8709225 DOI: 10.3390/ijms222413326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022] Open
Abstract
Nowadays, the use of genetically modified NK cells is a promising strategy for cancer immunotherapy. The additional insertion of genes capable of inducing cell suicide allows for the timely elimination of the modified NK cells. Different subsets of the heterogenic NK cell population may differ in proliferative potential, in susceptibility to genetic viral transduction, and to the subsequent induction of cell death. The CD57−NKG2C+ NK cells are of special interest as potential candidates for therapeutic usage due to their high proliferative potential and certain features of adaptive NK cells. In this study, CD57− NK cell subsets differing in KIR2DL2/3 and NKG2C expression were transduced with the iCasp9 suicide gene. The highest transduction efficacy was observed in the KIR2DL2/3+NKG2C+ NK cell subset, which demonstrated an increased proliferative potential with prolonged cultivation. The increased transduction efficiency of the cell cultures was associated with the higher expression level of the HLA-DR activation marker. Among the iCasp9-transduced subsets, KIR2DL2/3+ cells had the weakest response to the apoptosis induction by the chemical inductor of dimerization (CID). Thus, KIR2DL2/3+NKG2C+ NK cells showed an increased susceptibility to the iCasp9 retroviral transduction, which was associated with higher proliferative potential and activation status. However, the complete elimination of these cells with CID is impeded.
Collapse
Affiliation(s)
- Anastasia I. Palamarchuk
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
| | - Nadezhda A. Alekseeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
| | - Maria A. Streltsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
| | - Maria O. Ustiuzhanina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Polina A. Kobyzeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
| | - Sofya A. Kust
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
| | - Maria V. Grechikhina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
| | - Anna A. Boyko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
| | - Olga A. Shustova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
| | - Alexander M. Sapozhnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
| | - Elena I. Kovalenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
- Correspondence: ; Tel.: +7-495-330-40-11
| |
Collapse
|
8
|
Gaballa A, Alagrafi F, Uhlin M, Stikvoort A. Revisiting the Role of γδ T Cells in Anti-CMV Immune Response after Transplantation. Viruses 2021; 13:v13061031. [PMID: 34072610 PMCID: PMC8228273 DOI: 10.3390/v13061031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 01/15/2023] Open
Abstract
Gamma delta (γδ) T cells form an unconventional subset of T lymphocytes that express a T cell receptor (TCR) consisting of γ and δ chains. Unlike conventional αβ T cells, γδ T cells share the immune signature of both the innate and the adaptive immunity. These features allow γδ T cells to act in front-line defense against infections and tumors, rendering them an attractive target for immunotherapy. The role of γδ T cells in the immune response to cytomegalovirus (CMV) has been the focus of intense research for several years, particularly in the context of transplantation, as CMV reactivation remains a major cause of transplant-related morbidity and mortality. Therefore, a better understanding of the mechanisms that underlie CMV immune responses could enable the design of novel γδ T cell-based therapeutic approaches. In this regard, the advent of next-generation sequencing (NGS) and single-cell TCR sequencing have allowed in-depth characterization of CMV-induced TCR repertoire changes. In this review, we try to shed light on recent findings addressing the adaptive role of γδ T cells in CMV immunosurveillance and revisit CMV-induced TCR reshaping in the era of NGS. Finally, we will demonstrate the favorable and unfavorable effects of CMV reactive γδ T cells post-transplantation.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden; (F.A.); (M.U.); (A.S.)
- Department of Biochemistry and Molecular Biology, National Liver Institute, Menoufia University, Shebin Elkom 51132, Egypt
- Correspondence: ; Tel.: +46-858-580-000
| | - Faisal Alagrafi
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden; (F.A.); (M.U.); (A.S.)
- National Center for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden; (F.A.); (M.U.); (A.S.)
- Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, 141 52 Stockholm, Sweden
- Department of Immunology and Transfusion Medicine, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Arwen Stikvoort
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden; (F.A.); (M.U.); (A.S.)
| |
Collapse
|
9
|
Abstract
Natural killer (NK) cells are innate lymphocytes that provide critical host defense against pathogens and cancer. Originally heralded for their early and rapid effector activity, NK cells have been recognized over the last decade for their ability to undergo adaptive immune processes, including antigen-driven clonal expansion and generation of long-lived memory. This review presents an overview of how NK cells lithely partake in both innate and adaptive responses and how this versatility is manifest in human NK cell-mediated immunity.
Collapse
Affiliation(s)
- Adriana M Mujal
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Rebecca B Delconte
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; .,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
10
|
Horowitz NB, Mohammad I, Moreno-Nieves UY, Koliesnik I, Tran Q, Sunwoo JB. Humanized Mouse Models for the Advancement of Innate Lymphoid Cell-Based Cancer Immunotherapies. Front Immunol 2021; 12:648580. [PMID: 33968039 PMCID: PMC8100438 DOI: 10.3389/fimmu.2021.648580] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a branch of the immune system that consists of diverse circulating and tissue-resident cells, which carry out functions including homeostasis and antitumor immunity. The development and behavior of human natural killer (NK) cells and other ILCs in the context of cancer is still incompletely understood. Since NK cells and Group 1 and 2 ILCs are known to be important for mediating antitumor immune responses, a clearer understanding of these processes is critical for improving cancer treatments and understanding tumor immunology as a whole. Unfortunately, there are some major differences in ILC differentiation and effector function pathways between humans and mice. To this end, mice bearing patient-derived xenografts or human cell line-derived tumors alongside human genes or human immune cells represent an excellent tool for studying these pathways in vivo. Recent advancements in humanized mice enable unparalleled insights into complex tumor-ILC interactions. In this review, we discuss ILC behavior in the context of cancer, the humanized mouse models that are most commonly employed in cancer research and their optimization for studying ILCs, current approaches to manipulating human ILCs for antitumor activity, and the relative utility of various mouse models for the development and assessment of these ILC-related immunotherapies.
Collapse
Affiliation(s)
- Nina B Horowitz
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Department of Bioengineering, Stanford University School of Medicine and School of Engineering, Stanford, CA, United States
| | - Imran Mohammad
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Uriel Y Moreno-Nieves
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ievgen Koliesnik
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Quan Tran
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - John B Sunwoo
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
11
|
Han SH, Yoo SG, Do Han K, La Y, Kwon DE, Lee KH. The Incidence and Effect of Cytomegalovirus Disease on Mortality in Transplant Recipients and General Population: Real-world Nationwide Cohort Data. Int J Med Sci 2021; 18:3333-3341. [PMID: 34400903 PMCID: PMC8364452 DOI: 10.7150/ijms.62621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: In addition to the conventional opportunistic infections in solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT) recipients, cytomegalovirus (CMV) infection is associated with various chronic inflammatory diseases or poor outcomes in non-immunocompromised critically ill patients. To evaluate the burden or outcome of CMV replication in non-transplant individuals, we compared the incidence rates (IRs) for CMV disease and all-cause mortality between SOT recipients, HSCT recipients, and non-transplant population. Methods: The SOT (N=16,368) and HSCT (N=10,206) cohorts between 2010 and 2015 were established using the WHO ICD-10 from the whole population-based large database of the Health Insurance Review & Assessment Service (HIRA). CMV cases, defined as symptomatic disease with isolation of virus, DNA, pp65 antigen, and pathology except CMV syndrome, were extracted with the unique codes for relief of medical costs of HIRA in the same dataset. Cox's proportional hazard regression analyses and log-rank test in the Kaplan-Meier curves were performed to compare all-cause mortality between the three groups. Results: The CMV IRs adjusted by age and sex were significantly higher in the SOT (adjusted IR [95% confidence intervals], 33.1 [28.8-38.0] per 1,000 person-years) and HSCT recipients (5.1 [4.6-6.1] per 1,000 person-years) than in the whole population (0.58 [0.49-0.67] per 100,000 person-years). However, SOT recipients with CMV (18/283, 6.4%) had significantly lower all-cause mortality than non-transplant individuals with CMV (207/1,258, 16.5%) (adjusted hazard ratio [95% CI], 0.42 [0.25-0.67], log-rank P < 0.001). Conclusion: These data suggest that CMV disease in patients without transplants is associated with poor outcomes.
Collapse
Affiliation(s)
- Sang Hoon Han
- Divison of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seul Gi Yoo
- Divison of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Yeonju La
- Divison of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Da Eun Kwon
- Divison of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Hwa Lee
- Divison of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Mardani M, Abolghasemi S, Shabani S, Tavakoli F, Saeedi A, Parkhideh S, Hajifathali A. The association of conditioning regimen with cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation. IRANIAN JOURNAL OF MICROBIOLOGY 2020; 12:636-643. [PMID: 33613920 PMCID: PMC7884275 DOI: 10.18502/ijm.v12i6.5040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background and Objectives: Infections is yet one of the life-threatening complications of the hematopoietic stem cell transplantation (HSCT). The myeloablative and immunosuppressive conditioning regimens, which are administered before HSCT, dampen the defense capacity of the recipients’ immune systems. In this condition, opportunistic infections, especially viral infections such as cytomegalovirus (CMV) can be reactivated and cause morbidity and mortality in HSCT patients. Here, we aimed to find out any possible relationship between types of conditioning regimen and CMV reactivation in allogeneic HSCT patients. Materials and Methods: We retrospectively analyzed the data of 145 CMV-seropositive cases out of total 201 allo-HSCT patients, including age, gender, underlying disease, conditioning regimen, prophylaxis regimen and occurrence of acute graft-versus-host disease (aGVHD) to evaluate their roles in CMV reactivation. Results: Our result showed that conditioning regimen containing Busulfan and Fludarabine (P=0.003) or Cyclophospha-mide (P=0.02) significantly decrease the early CMV reactivation. Patients who developed aGVHD (P=0.003) and those who received anti-thymocyte globulin (ATG) as prophylaxis regimen (P=0.002), had 1.84 and 2.63 times higher risks of CMV reactivation, respectively. Conclusion: Our findings suggest the conditioning regimen, aGVHD and ATG as influencing factors for early CMV reactivation post-HSCT which should be considered in the future studies.
Collapse
Affiliation(s)
- Masoud Mardani
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medial Sciences, Tehran, Iran
| | - Sara Abolghasemi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medial Sciences, Tehran, Iran
| | - Shiva Shabani
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medial Sciences, Tehran, Iran
| | - Farzaneh Tavakoli
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahita Saeedi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayeh Parkhideh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Jaiswal SR, Bhakuni P, Aiyer HM, Soni M, Bansal S, Chakrabarti S. CTLA4Ig in an Extended Schedule along with Sirolimus Improves Outcome with a Distinct Pattern of Immune Reconstitution Following Post-Transplantation Cyclophosphamide-Based Haploidentical Transplantation for Hemoglobinopathies. Biol Blood Marrow Transplant 2020; 26:1469-1476. [PMID: 32428732 DOI: 10.1016/j.bbmt.2020.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 01/24/2023]
Abstract
The major hindrances to the success of a haploidentical hematopoietic cell transplantation for hemoglobinopathies are graft failure, early post-transplant hemophagocytic syndrome (PTHPS), and graft-versus-host disease (GVHD). Following the successful incorporation of CTLA4Ig (abatacept) in post-transplantation cyclophosphamide-based haploidentical transplantation, we piloted this approach in 10 patients (aged 3 to 19 years), with thalassemia major (TM, n=5) and sickle cell disease (n = 5). Pretransplant immunosuppressive therapy (pTIST) was administered for 10 weeks. Conditioning was myeloablative. CTLA4Ig was administered every 2 weeks during pTIST and on days -1, +5, +20, and +35 and every 4 weeks thereafter for 6 months, along with sirolimus. A short course of low-dose dexamethasone was given from day +6 for 14 days. Nine patients engrafted at a median of 15 days, with 1 patient with TM dying of sepsis on day +19. None of the patients developed acute or chronic GVHD. All 9 patients are alive and disease free at a median follow-up of 28 months. Only 4 patients had cytomegalovirus reactivation. The pattern of immune reconstitution showed a prompt and sustained recovery of T cell subsets with memory phenotype, along with early and sustained increase of Tregs and NKG2C+ natural killer (NK) cells. This novel approach, targeting CD80 and CD86 on monocytes/macrophages, promoted engraftment and limited early-onset PTHPS and graft failure. The lack of GVHD and serious infections with this approach reflects an early recovery of Tregs, memory T cells, and persistence of NKG2C+ NK cells.
Collapse
Affiliation(s)
- Sarita Rani Jaiswal
- Cellular Therapy and Immunology, Manashi Chakrabarti Foundation, Kolkata, India; Department of Blood and Marrow Transplantation, Dharamshila Narayana Superspeciality Hospital and Research Centre, New Delhi, India.
| | - Prakash Bhakuni
- Department of Blood and Marrow Transplantation, Dharamshila Narayana Superspeciality Hospital and Research Centre, New Delhi, India
| | - Hema Malini Aiyer
- Department of Anatomic Pathology, Dharamshila Narayana Superspeciality Hospital and Research Centre, New Delhi, India
| | - Mayank Soni
- Department of Blood and Marrow Transplantation, Dharamshila Narayana Superspeciality Hospital and Research Centre, New Delhi, India
| | - Satish Bansal
- Department of Radiology, Dharamshila Narayana Superspeciality Hospital and Research Centre, New Delhi, India
| | - Suparno Chakrabarti
- Cellular Therapy and Immunology, Manashi Chakrabarti Foundation, Kolkata, India; Department of Blood and Marrow Transplantation, Dharamshila Narayana Superspeciality Hospital and Research Centre, New Delhi, India
| |
Collapse
|
14
|
Herbein G, Nehme Z. Tumor Control by Cytomegalovirus: A Door Open for Oncolytic Virotherapy? MOLECULAR THERAPY-ONCOLYTICS 2020; 17:1-8. [PMID: 32300639 PMCID: PMC7150429 DOI: 10.1016/j.omto.2020.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Belonging to the herpesviridae family, human cytomegalovirus (HCMV) is a well-known ubiquitous pathogen that establishes a lifelong infection in humans. Recently, a beneficial tumor-cytoreductive role of CMV infection has been defined in human and animal models. Described as a potential anti-tumoral activity, HCMV modulates the tumor microenvironment mainly by inducing cell death through apoptosis and prompting a robust stimulatory effect on the immune cells infiltrating the tumor tissue. However, major current limitations embrace transient protective effect and a viral dissemination potential in immunosuppressed hosts. The latter could be counteracted through direct viral intratumoral delivery, use of non-human strains, or even defective CMV vectors to ascertain transformed cells-selective tropism. This potential oncolytic activity could be complemented by tackling further platforms, namely combination with immune checkpoint inhibitors or epigenetic therapy, as well as the use of second-generation chimeric oncovirus, for instance HCMV/HSV-1 oncolytic virus. Overall, preliminary data support the use of CMV in viral oncolytic therapy as a viable option, establishing thus a potential new modality, where further assessment through extensive basic research armed by molecular biotechnology is compulsory.
Collapse
Affiliation(s)
- Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 25030 Besançon, France.,Department of Virology, CHRU Besancon, 25030 Besançon, France
| | - Zeina Nehme
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 25030 Besançon, France.,Université Libanaise 1003, Beirut, Lebanon
| |
Collapse
|
15
|
Massara L, Khairallah C, Yared N, Pitard V, Rousseau B, Izotte J, Giese A, Dubus P, Gauthereau X, Déchanet-Merville J, Capone M. Uncovering the Anticancer Potential of Murine Cytomegalovirus against Human Colon Cancer Cells. MOLECULAR THERAPY-ONCOLYTICS 2020; 16:250-261. [PMID: 32140563 PMCID: PMC7052516 DOI: 10.1016/j.omto.2020.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 12/28/2022]
Abstract
Human cytomegalovirus (HCMV) components are often found in tumors, but the precise relationship between HCMV and cancer remains a matter of debate. Pro-tumor functions of HCMV were described in several studies, but an association between HCMV seropositivity and reduced cancer risk was also evidenced, presumably relying on recognition and killing of cancer cells by HCMV-induced lymphocytes. This study aimed at deciphering whether CMV influences cancer development in an immune-independent manner. Using immunodeficient mice, we showed that systemic infection with murine CMV (MCMV) inhibited the growth of murine carcinomas. Surprisingly, MCMV, but not HCMV, also reduced human colon carcinoma development in vivo. In vitro, both viruses infected human cancer cells. Expression of human interferon-β (IFN-β) and nuclear domain (ND10) were induced in MCMV-infected, but not in HCMV-infected human colon cancer cells. These results suggest a decreased capacity of MCMV to counteract intrinsic defenses in the human cellular host. Finally, immunodeficient mice receiving peri-tumoral MCMV therapy showed a reduction of human colon cancer cell growth, albeit no clinical sign of systemic virus dissemination was evidenced. Our study, which describes a selective advantage of MCMV over HCMV to control human colon cancer, could pave the way for the development of CMV-based therapies against cancer.
Collapse
Affiliation(s)
- Layal Massara
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33076 Bordeaux, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France
| | - Camille Khairallah
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33076 Bordeaux, France
| | - Nathalie Yared
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33076 Bordeaux, France
| | - Vincent Pitard
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33076 Bordeaux, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France.,University of Bordeaux, INSERM, CNRS, TBM Core, UMS 3427, Plateforme de Cytométrie, 33076 Bordeaux, France
| | - Benoit Rousseau
- University of Bordeaux, Service Commun des Animaleries, Animalerie A2, 33076 Bordeaux, France
| | - Julien Izotte
- University of Bordeaux, Service Commun des Animaleries, Animalerie A2, 33076 Bordeaux, France
| | - Alban Giese
- University of Bordeaux, EA2406 Histologie et Pathologie Moléculaire des Tumeurs, 33076 Bordeaux, France
| | - Pierre Dubus
- University of Bordeaux, EA2406 Histologie et Pathologie Moléculaire des Tumeurs, 33076 Bordeaux, France
| | - Xavier Gauthereau
- University of Bordeaux, INSERM, CNRS, TBM Core, UMS 3427, Plateforme de PCR Quantitative, 33076 Bordeaux, France
| | - Julie Déchanet-Merville
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33076 Bordeaux, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France.,University of Bordeaux, INSERM, CNRS, TBM Core, UMS 3427, Plateforme de Cytométrie, 33076 Bordeaux, France
| | - Myriam Capone
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33076 Bordeaux, France.,Equipe Labellisée Ligue Contre le Cancer, Toulouse, France.,University of Bordeaux, INSERM, CNRS, TBM Core, UMS 3427, Plateforme de PCR Quantitative, 33076 Bordeaux, France
| |
Collapse
|
16
|
Jaiswal SR, Chakrabarti S. Natural killer cell-based immunotherapy with CTLA4Ig-primed donor lymphocytes following haploidentical transplantation. Immunotherapy 2019; 11:1221-1230. [DOI: 10.2217/imt-2019-0037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
NK cell-based immunotherapy is one of the more exciting propositions in the field of cellular therapy for hematological malignancies. Current protocols are largely based on expanded and activated NK cells which are used both with and without allogeneic transplantation. Based on our recent findings, we discuss the concept of CTLA4Ig-primed donor lymphocyte infusions following haploidentical transplantation as an effective tool to garner NK cell-mediated antitumor effect with abrogation of T cell-mediated alloreactivity. This approach might widen the possibility of immunotherapy following haploidentical transplantation without increase in graft-versus-host disease. Further studies would be needed to establish the veracity of this concept with better understanding of the antitumor effect via this pathway. Future studies would decide if CTLA4Ig might be used to augment NK-cell activation in vitro as well.
Collapse
Affiliation(s)
- Sarita Rani Jaiswal
- Cellular Therapy & Immunology, Manashi Chakrabarti Foundation, Kolkata
- Department of Blood & Marrow Transplantation, Dharamshila Narayana Superspeciality Hospital & Research Centre, New Delhi, India
| | - Suparno Chakrabarti
- Cellular Therapy & Immunology, Manashi Chakrabarti Foundation, Kolkata
- Department of Blood & Marrow Transplantation, Dharamshila Narayana Superspeciality Hospital & Research Centre, New Delhi, India
| |
Collapse
|