1
|
Inui T, Tsuchiya M, Watanabe T, Sada M, Mouri A, Iwanari S, Kamimura M. Investigation of the Number of Oral Bacteria in Patients with Chronic Obstructive Pulmonary Disease, Asthma, and Asthma and Chronic Obstructive Pulmonary Disease Overlap. Intern Med 2025:4825-24. [PMID: 40128989 DOI: 10.2169/internalmedicine.4825-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Objective Bacteria in the airways are reportedly involved in the pathogenesis of chronic obstructive pulmonary disease (COPD) and asthma. In addition, oral bacteria are thought to contribute to respiratory diseases by migrating to the airway. Therefore, we investigated whether or not the number of oral bacteria influences COPD, asthma, and asthma and COPD overlap (ACO). Methods We analyzed the correlations between the number of oral bacteria and clinical variables, such as pulmonary function tests, in patients with COPD, asthma, and ACO whose condition was stable and who visited our center from August 2019 to December 2020. The number of oral bacteria was assessed using the dielectrophoretic impedance measurement method. Results In patients with COPD (n = 50), the number of oral bacteria was significantly negatively correlated with the percentage predicted forced expiratory volume in one second (%FEV1), percentage peak expiratory flow, and percentage forced vital capacity but was not correlated with the COPD Assessment Test. In patients with asthma (n = 32), it was significantly negatively correlated with the FEV1 percentage and with the increase in FEV1 in the reversibility test but not with fractional exhaled nitric oxide. In patients with ACO (n = 39), we found no significant correlation between the number of oral bacteria and any clinical variable. Conclusion The results suggest that the number of oral bacteria is associated with both lung capacity and airflow obstruction in patients with COPD and with airflow obstruction in patients with asthma.
Collapse
Affiliation(s)
- Toshiya Inui
- Pulmonology Department, National Hospital Organization Disaster Medical Center, Japan
- Department of Respiratory Medicine, Kyorin University School of Medicine, Japan
- Second Department of Internal Medicine, Gifu University Graduate School of Medicine, Japan
- Department of Respirology, Chuno kosei Hospital, Japan
| | - Maya Tsuchiya
- Pulmonology Department, National Hospital Organization Disaster Medical Center, Japan
| | - Takayasu Watanabe
- Pulmonology Department, National Hospital Organization Disaster Medical Center, Japan
- Department of Respiratory Medicine, Kyorin University School of Medicine, Japan
| | - Mitsuru Sada
- Pulmonology Department, National Hospital Organization Disaster Medical Center, Japan
- Department of Respiratory Medicine, Kyorin University School of Medicine, Japan
| | - Atsuto Mouri
- Pulmonology Department, National Hospital Organization Disaster Medical Center, Japan
| | - Shinkichi Iwanari
- Department of Oral and Maxillofacial Surgery, National Hospital Organization Disaster Medical Center, Japan
| | - Mitsuhiro Kamimura
- Pulmonology Department, National Hospital Organization Disaster Medical Center, Japan
| |
Collapse
|
2
|
Sanchez-Orozco NY, Rosier BT, Ruiz-Gutierrez A, Marquez-Sandoval F, Artacho A, Carrera-Quintanar L, Mira A. The blood pressure lowering effect of beetroot juice is impaired in periodontitis and recovered after periodontal treatment. NPJ Biofilms Microbiomes 2025; 11:10. [PMID: 39788958 PMCID: PMC11717912 DOI: 10.1038/s41522-024-00622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025] Open
Abstract
We have previously demonstrated that subgingival levels of nitrate-reducing bacteria, as well as the in vitro salivary nitrate reduction capacity (NRC), were diminished in periodontitis patients, increasing after periodontal treatment. However, it remains unclear if an impaired NRC in periodontitis can affect systemic health. To determine this, the effect of nitrate-rich beetroot juice (BRJ) on blood pressure was determined in 15 periodontitis patients before and 70 days after periodontal treatment (i.e., professional mechanical plaque removal, oral hygiene instruction, and subgingival instrumentation), as well as in a healthy control group of 15 individuals. Additionally, subgingival and tongue samples were taken to analyse the bacterial composition with Illumina sequencing of the 16S rRNA gene. In healthy individuals, the systolic and diastolic blood pressure (SBP and DPB) decreased significantly (both P < 0.01) 90 min after BRJ intake, but not in periodontitis patients. However, after periodontal treatment, this blood pressure-lowering effect was recovered (P < 0.05 for SBP; P < 0.01 for DBP). Lower levels of salivary nitrate after identical doses of BRJ intake indicated a potentially higher NRC in healthy individuals (P < 0.05). Periodontitis-associated bacteria decreased in tongue and subgingival samples after periodontal treatment (P < 0.01). In contrast, nitrate-reducing bacteria were associated with health in both habitats, but increased only in subgingival plaque after periodontal treatment (P < 0.001). This is the first study showing that periodontitis could limit the blood-pressure lowering effects of nitrate reduction by the oral microbiota. We propose that an impaired NRC represents a potential link between periodontitis and systemic conditions, which should be confirmed in future randomized controlled trials. Future work should also aim to determine if nitrate prebiotic supplementation and/or tongue cleaning could improve the treatment of periodontitis and its associated comorbidities.
Collapse
Affiliation(s)
- Nydia Y Sanchez-Orozco
- PhD Program in Translational Nutrition Sciences, Department of Human Reproduction, Child Growth and Development, University Center of Health Sciences (CUCS), University of Guadalajara (UdeG), Guadalajara, Jalisco, Mexico
| | - Bob T Rosier
- Department of Health and Genomics, FISABIO Foundation, Valencia, Spain.
| | - Alondra Ruiz-Gutierrez
- Specialty of Periodontics, Department of Integral Dental Clinics, University Center of Health Sciences (CUCS), University of Guadalajara (UdeG), Guadalajara, Jalisco, Mexico
| | - Fabiola Marquez-Sandoval
- PhD Program in Translational Nutrition Sciences, Department of Human Reproduction, Child Growth and Development, University Center of Health Sciences (CUCS), University of Guadalajara (UdeG), Guadalajara, Jalisco, Mexico
| | - Alejandro Artacho
- Department of Health and Genomics, FISABIO Foundation, Valencia, Spain
| | - Lucrecia Carrera-Quintanar
- PhD Program in Translational Nutrition Sciences, Department of Human Reproduction, Child Growth and Development, University Center of Health Sciences (CUCS), University of Guadalajara (UdeG), Guadalajara, Jalisco, Mexico.
| | - Alex Mira
- Department of Health and Genomics, FISABIO Foundation, Valencia, Spain
- CIBER Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| |
Collapse
|
3
|
Sáenz-Ravello G, Hernández M, Baeza M, Hernández-Ríos P. The Role of Oral Biomarkers in the Assessment of Noncommunicable Diseases. Diagnostics (Basel) 2024; 15:78. [PMID: 39795606 PMCID: PMC11719684 DOI: 10.3390/diagnostics15010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Oral biomarkers have gained attention as non-invasive tools for assessing systemic diseases due to their potential to reflect physiological and pathological conditions. This review aims to explore the role of oral biomarkers in diagnosing and monitoring systemic diseases, emphasizing their diagnostic relevance and predictive capabilities in clinical practice. Methods: This narrative review synthesizes the current literature on biochemical, immunological, genetic, and microbiological oral biomarkers, with a focus on their sources, types, and clinical applications. Key studies were analyzed to identify associations between oral biomarkers and systemic diseases such as cardiovascular diseases, type 2 diabetes mellitus, autoimmune disorders, and cancers. Results: Oral fluids, including saliva and gingival crevicular fluid, contain diverse biomarkers such as matrix metalloproteinases, cytokines, and genetic indicators. These markers have demonstrated potential in diagnosing and monitoring systemic conditions. Among others, elevated levels of salivary glucose and inflammatory cytokines correlate with diabetes progression, while vascular endothelial growth factor (VEGF) and salivary C-reactive protein might be applicable as indicators for periodontal disease and cardiovascular risk. Additionally, salivary biomarkers like amyloid-beta and tau are promising in detecting neurodegenerative disorders. Conclusions: Oral biomarkers might represent a transformative and point-of-care approach to the early management of systemic diseases; however, challenges in measurement variability, standardization, and validation remain.
Collapse
Affiliation(s)
- Gustavo Sáenz-Ravello
- Centro de Epidemiologia y Vigilancia de las Enfermedades Orales (CEVEO), Faculty of Dentistry, University of Chile, Santiago 9170022, Chile; (G.S.-R.); (M.B.)
| | - Marcela Hernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, University of Chile, Santiago 9170022, Chile;
- Department of Pathology and Oral Medicine, Faculty of Dentistry, University of Chile, Santiago 9170022, Chile
| | - Mauricio Baeza
- Centro de Epidemiologia y Vigilancia de las Enfermedades Orales (CEVEO), Faculty of Dentistry, University of Chile, Santiago 9170022, Chile; (G.S.-R.); (M.B.)
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago 9170022, Chile
| | - Patricia Hernández-Ríos
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago 9170022, Chile
| |
Collapse
|
4
|
Chasov V, Gilyazova E, Ganeeva I, Zmievskaya E, Davletshin D, Valiullina A, Bulatov E. Gut Microbiota Modulation: A Novel Strategy for Rheumatoid Arthritis Therapy. Biomolecules 2024; 14:1653. [PMID: 39766360 PMCID: PMC11674688 DOI: 10.3390/biom14121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to joint inflammation, progressive tissue damage and significant disability, severely impacting patients' quality of life. While the exact mechanisms underlying RA remain elusive, growing evidence suggests a strong link between intestinal microbiota dysbiosis and the disease's development and progression. Differences in microbial composition between healthy individuals and RA patients point to the role of gut microbiota in modulating immune responses and promoting inflammation. Therapies targeting microbiota restoration have demonstrated promise in improving treatment efficacy, enhancing patient outcomes and slowing disease progression. However, the complex interplay between gut microbiota and autoimmune pathways in RA requires further investigation to establish causative relationships and mechanisms. Here, we review the current understanding of the gut microbiota's role in RA pathogenesis and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Vitaly Chasov
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Elvina Gilyazova
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Irina Ganeeva
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Ekaterina Zmievskaya
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Damir Davletshin
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Aygul Valiullina
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Emil Bulatov
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
5
|
Al-Sharqi AJB, Abdulkareem A. Microbiological and Salivary Biomarkers Successfully Predict Site-Specific and Whole-Mouth Outcomes of Nonsurgical Periodontal Treatment. J Clin Med 2024; 13:4256. [PMID: 39064296 PMCID: PMC11277870 DOI: 10.3390/jcm13144256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Nonsurgical periodontal treatment (NSPT) is the gold-standard technique for treating periodontitis. However, an individual's susceptibility or the inadequate removal of subgingival biofilms could lead to unfavorable responses to NSPT. This study aimed to assess the potential of salivary and microbiological biomarkers in predicting the site-specific and whole-mouth outcomes of NSPT. Methods: A total of 68 periodontitis patients exhibiting 1111 periodontal pockets 4 to 6 mm in depth completed the active phase of periodontal treatment. Clinical periodontal parameters, saliva, and subgingival biofilm samples were collected from each patient at baseline and three months after NSPT. A quantitative PCR assay was used to detect the presence of Fusobaterium nucleatum and Porphyromonas gingivalis in the biofilm samples. Salivary biomarkers including matrix metalloproteinase (MMP)-9, glutathione S-transferase (GST), and Annexin-1 were assayed both qualitatively (Western blot analysis) and quantitively (ELISA). Results: NSPT yielded significant improvements in all clinical parameters, including a reduction in bacterial load and decreased levels of MMP-9 together with increased concentrations of GST and Annexin-1. The binary logistic regression suggested that the overall accuracy of P. gingivalis identification, probing pocket depth, and interproximal sites was 71.1% in predicting successful site-specific outcomes. The salivary biomarker model yielded an overall accuracy of 79.4% in predicting whole-mouth outcomes following NSPT. Conclusions: At baseline, the presence of shallow periodontal pockets at interdental locations with a lower abundance of P. gingivalis is predictive of a favorable response to NSPT at the site level. Decreased salivary MMP-9 associated with increased GST and Annexin-1 levels can predict successful whole-mouth outcomes following NSPT.
Collapse
Affiliation(s)
| | - Ali Abdulkareem
- Department of Periodontics, College of Dentistry, University of Baghdad, Bab Al Mudam, Baghdad P.O. Box 1417, Iraq;
| |
Collapse
|
6
|
Zhao M, Wen X, Liu R, Xu K. Microbial dysbiosis in systemic lupus erythematosus: a scientometric study. Front Microbiol 2024; 15:1319654. [PMID: 38863759 PMCID: PMC11166128 DOI: 10.3389/fmicb.2024.1319654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/01/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Mounting evidence suggests microbiota dysbiosis augment autoimmune response. This study aims to provide a systematic overview of this research field in SLE through a bibliometric analysis. Methods We conducted a comprehensive search and retrieval of literature related to microbial researches in SLE from the Web of Science Core Collection (WOSCC) database. The retrieved articles were subjected to bibliometric analysis using VOSviewer and Bibliometricx to explore annual publication output, collaborative patterns, research hotspots, current research status, and emerging trends. Results In this study, we conducted a comprehensive analysis of 218 research articles and 118 review articles. The quantity of publications rises annually, notably surging in 2015 and 2018. The United States and China emerged as the leading contributors in microbial research of SLE. Mashhad University of Medical Sciences had the highest publication outputs among the institutions. Frontiers in Immunology published the most papers. Luo XM and Margolles A were the most prolific and highly cited contributors among individual authors. Microbial research in SLE primarily focused on changes in microbial composition, particularly gut microbiota, as well as the mechanisms and practical applications in SLE. Recent trends emphasize "metabolites," "metabolomics," "fatty acids," "T cells," "lactobacillus," and "dietary supplementation," indicating a growing emphasis on microbial metabolism and interventions in SLE. Conclusion This study provides a thorough analysis of the research landscape concerning microbiota in SLE. The microbial research in SLE mainly focused on three aspects: microbial dysbiosis, mechanism studies and translational studies (microbiota-based therapeutics). It identifies current research trends and focal points, offering valuable guidance for scholars in the field.
Collapse
Affiliation(s)
- Miaomiao Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaoting Wen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruiling Liu
- Department of Microbiology and Immunology, Basic Medical College, Shanxi Medical University, Jinzhong, China
| | - Ke Xu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Juárez-Chairez MF, Cid-Gallegos MS, Jiménez-Martínez C, Prieto-Contreras LF, Bollain-Y-Goytia de-la-Rosa JJ. The role of microbiota on rheumatoid arthritis onset. Int J Rheum Dis 2024; 27:e15122. [PMID: 38487975 DOI: 10.1111/1756-185x.15122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes inflammation and pain, which can lead to the loss of normal joint function. Although the exact cause of the disease is not yet fully understood, both environmental factors and genetics may play a role in its development. Moreover, research suggests microbiota contributes to the onset and progression of RA. People with RA show higher quantities of bacteria such as Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Prevotella copri, Proteus mirabilis, and Lactobacillus salivarius compared to healthy individuals. Conversely, studies propose that Lactobacillus casei, a probiotic bacterium with immunomodulatory properties, has beneficial effects for RA in murine and human models. Therefore, this work reviews the potential role of the gut microbiota in the development of RA and explores the feasibility of using probiotic bacteria as a supplementary treatment for this disease.
Collapse
Affiliation(s)
- Milagros Faridy Juárez-Chairez
- Laboratorios de Inmunología y Biología Molecular, Unidad Académica de Ciencias Biológicas de la Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - María Stephanie Cid-Gallegos
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Ciudad de Mexico, Mexico
| | - Luis Fernando Prieto-Contreras
- Laboratorio de Microbiología, Unidad Académica de Ciencias Químicas de la Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Juan José Bollain-Y-Goytia de-la-Rosa
- Laboratorios de Inmunología y Biología Molecular, Unidad Académica de Ciencias Biológicas de la Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| |
Collapse
|
8
|
Bhattacharjee P, Karim KA, Khan Z. Harnessing the Microbiome: A Comprehensive Review on Advancing Therapeutic Strategies for Rheumatic Diseases. Cureus 2023; 15:e50964. [PMID: 38249228 PMCID: PMC10800157 DOI: 10.7759/cureus.50964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Rheumatic diseases are a group of disorders that affect the joints, muscles, and bones. These diseases, such as rheumatoid arthritis, lupus, and psoriatic arthritis, can cause pain, stiffness, and swelling, leading to reduced mobility and disability. Recent studies have identified the microbiome, the diverse community of microorganisms that live in and on the human body, as a potential factor in the development and progression of rheumatic diseases. Harnessing the microbiome offers a promising new avenue for developing therapeutic strategies for these debilitating conditions. There is growing interest in the role of oral and gut microbiomes in the management of rheumatoid arthritis and other autoimmune disease. Microbial metabolites have immunomodulatory properties that could be exploited for rheumatic disorders. A wide range of microorganisms are present in the oral cavity and are found to be vulnerable to the effects of the environment. The physiology and ecology of the microbiota become intimately connected with those of the host, and they critically influence the promotion of health or progression toward disease. This article aims to provide a comprehensive overview of the current state of knowledge on oral and gut microbiome and its potential future role in the management of rheumatic diseases. This article will also discuss newer treatment strategies such as bioinformatic analyses and fecal transplantation.
Collapse
Affiliation(s)
- Priyadarshini Bhattacharjee
- Acute Medicine, Cambridge University Hospital NHS Foundation Trust, Cambridge, GBR
- School of Clinical Medicine, University of Cambridge, Cambridge, GBR
| | - Karim Arif Karim
- Medicine and Surgery, Kamuzu University of Health Sciences, Blantyre, MWI
| | - Zahid Khan
- Acute Medicine, Mid and South Essex NHS Foundation Trust, Southend-on-Sea, GBR
- Cardiology, Bart's Heart Centre, London, GBR
- Cardiology and General Medicine, Barking, Havering and Redbridge University Hospitals NHS Trust, London, GBR
- Cardiology, Royal Free Hospital, London, GBR
| |
Collapse
|
9
|
Kozhakhmetov S, Babenko D, Issilbayeva A, Nurgaziyev M, Kozhakhmetova S, Meiramova A, Akhmetova Z, Kunz J, Ainabekova B, Marotta F, Kushugulova A. Oral Microbial Signature of Rheumatoid Arthritis in Female Patients. J Clin Med 2023; 12:3694. [PMID: 37297889 PMCID: PMC10253734 DOI: 10.3390/jcm12113694] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
This study aimed to identify the oral microbial signature of Kazakh female rheumatoid arthritis (RA) patients. A total of 75 female patients who met the American College of Rheumatology 2010 classification criteria for RA and 114 healthy volunteers were included in the study. Amplicons of the 16S rRNA gene were sequenced to analyze the microbial composition. We identified significant differences in bacterial diversity and abundance between the RA and control groups, as measured by Shannon (p value = 0.0205) and Simpson (p value = 0.00152) indices. The oral samples from RA patients had higher bacterial diversity than those from non-RA volunteers. The RA samples had a higher relative abundance of Prevotellaceae and Leptotrichiaceae, but a lower content of butyrate and propionate-producing bacteria compared to the control group. The samples from patients in remission had a higher abundance of Treponema sp. and Absconditabacteriales (SR1), whereas those with low disease activity had higher levels of Porphyromonas and those with high RA activity had higher levels of Staphylococcus. A positive correlation was found between the taxa Prevotella_9 and serum levels of antibodies to cyclic citrullinated peptide (ACPA) and rheumatoid factor (RF). The predicted functional pattern of the ACPA+/RF- and ACPA+/RF+ seropositive groups was characterized by increased ascorbate metabolism, degradation of glycosaminoglycans, and reduced biodegradation of xenobiotics. These findings suggest that the functional pattern of the microflora should be considered when selecting a therapeutic strategy for RA in order to provide a personalized approach.
Collapse
Affiliation(s)
- Samat Kozhakhmetov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan
| | | | - Argul Issilbayeva
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan
- Department of Internal Medicine with the Course of Gastroenterology, Endocrinology and Pulmonology, NJSC Astana Medical University, Astana 010000, Kazakhstan
| | - Madiyar Nurgaziyev
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan
| | | | - Assel Meiramova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan
- Department of Internal Medicine with the Course of Gastroenterology, Endocrinology and Pulmonology, NJSC Astana Medical University, Astana 010000, Kazakhstan
| | - Zhanar Akhmetova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan
- Department of Internal Medicine with the Course of Gastroenterology, Endocrinology and Pulmonology, NJSC Astana Medical University, Astana 010000, Kazakhstan
| | - Jeanette Kunz
- Department of Medicine, Nazarbayev University School of Medicine, Astana Z05H0P9, Kazakhstan
| | - Bayan Ainabekova
- Department of Internal Medicine with the Course of Gastroenterology, Endocrinology and Pulmonology, NJSC Astana Medical University, Astana 010000, Kazakhstan
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention, 20144 Milan, Italy
| | - Almagul Kushugulova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan
| |
Collapse
|
10
|
Afrasiabi S, Chiniforush N, Partoazar A, Goudarzi R. The role of bacterial infections in rheumatoid arthritis development and novel therapeutic interventions: Focus on oral infections. J Clin Lab Anal 2023:e24897. [PMID: 37225674 DOI: 10.1002/jcla.24897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) represents a primary public health challenge, which is a major source of pain, disability, and socioeconomic effects worldwide. Several factors contribute to its pathogenesis. Infections are an important concern in RA patients, which play a key role in mortality risk. Despite major advances in the clinical treatment of RA, long-term use of disease-modifying anti-rheumatic drugs can cause serious adverse effects. Therefore, effective strategies for developing novel prevention and RA-modifying therapeutic interventions are sorely needed. OBJECTIVE This review investigates the available evidence on the interplay between various bacterial infections, particularly oral infections and RA, and focuses on some potential interventions such as probiotics, photodynamic therapy, nanotechnology, and siRNA that can have therapeutic effects.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Chiniforush
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, California, USA
| |
Collapse
|
11
|
Ahmadi P, Mahmoudi M, Kheder RK, Faraj TA, Mollazadeh S, Abdulabbas HS, Esmaeili SA. Impacts of Porphyromonas gingivalis periodontitis on rheumatoid arthritis autoimmunity. Int Immunopharmacol 2023; 118:109936. [PMID: 37098654 DOI: 10.1016/j.intimp.2023.109936] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023]
Abstract
In RA patients' synovial sites, citrullinated RA-related antigens such as type II collagens, fibrin (ogen), vimentin, and α-enolase could be targeted by ACCPAs. Since ACCPA production can be initiated a long time before RA sign appearance, primary auto-immunization against these citrullinated proteins can be originated from extra-articular sites. It has been shown that there is a significant association between P. gingivalis periodontitis, anti- P. gingivalis antibodies, and RA. P. gingivalis gingipains (Rgp, Kgp) can degrade proteins such as fibrin and α-enolase into some peptides in the form of Arg in the C-terminal which is converted to citrulline by PPAD. Also, PPAD can citrullinate type II collagen and vimentins (SA antigen). P. gingivalis induces inflammation and chemoattraction of immune cells such as neutrophils and macrophages through the increase of C5a (gingipain C5 convertase-like activity) and SCFA secretion. Besides, this microorganism stimulates anoikis, a special type of apoptosis, and NETosis, an antimicrobial form of neutrophil death, leading to the release of PAD1-4, α-enolase, and vimentin from apoptotic cells into the periodontal site. In addition, gingipains can degrade macrophages CD14 and decrease their ability in apoptotic cell removal. Gingipains also can cleave IgGs in the Fc region and transform them into rheumatoid factor (RF) antigens. In the present study, the effects of P. gingivalis on rheumatoid arthritis autoimmune response have been reviewed, which could attract practical insight both in bench and clinic.
Collapse
Affiliation(s)
- Parisa Ahmadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Tola Abdulsattar Faraj
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq; Department of Basic Sciences, College of Medicine, Hawler Medical University, Erbil, Iraq
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research center north Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala 56001, Iraq
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Huang X, Huang X, Huang Y, Zheng J, Lu Y, Mai Z, Zhao X, Cui L, Huang S. The oral microbiome in autoimmune diseases: friend or foe? J Transl Med 2023; 21:211. [PMID: 36949458 PMCID: PMC10031900 DOI: 10.1186/s12967-023-03995-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/15/2023] [Indexed: 03/24/2023] Open
Abstract
The human body is colonized by abundant and diverse microorganisms, collectively known as the microbiome. The oral cavity has more than 700 species of bacteria and consists of unique microbiome niches on mucosal surfaces, on tooth hard tissue, and in saliva. The homeostatic balance between the oral microbiota and the immune system plays an indispensable role in maintaining the well-being and health status of the human host. Growing evidence has demonstrated that oral microbiota dysbiosis is actively involved in regulating the initiation and progression of an array of autoimmune diseases.Oral microbiota dysbiosis is driven by multiple factors, such as host genetic factors, dietary habits, stress, smoking, administration of antibiotics, tissue injury and infection. The dysregulation in the oral microbiome plays a crucial role in triggering and promoting autoimmune diseases via several mechanisms, including microbial translocation, molecular mimicry, autoantigen overproduction, and amplification of autoimmune responses by cytokines. Good oral hygiene behaviors, low carbohydrate diets, healthy lifestyles, usage of prebiotics, probiotics or synbiotics, oral microbiota transplantation and nanomedicine-based therapeutics are promising avenues for maintaining a balanced oral microbiome and treating oral microbiota-mediated autoimmune diseases. Thus, a comprehensive understanding of the relationship between oral microbiota dysbiosis and autoimmune diseases is critical for providing novel insights into the development of oral microbiota-based therapeutic approaches for combating these refractory diseases.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Xiangyu Huang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Yi Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ye Lu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China
| | - Zizhao Mai
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xinyuan Zhao
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| | - Li Cui
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, 90095, USA.
| | - Shaohong Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| |
Collapse
|
13
|
Immune dysregulation and pathogenic pathways mediated by common infections in rheumatoid arthritis. Folia Microbiol (Praha) 2023; 68:325-335. [PMID: 36680729 DOI: 10.1007/s12223-023-01036-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Rheumatoid arthritis (RA) is one of the world's most prevalent inflammatory autoimmune diseases, affecting between 0.4 and 1.3% of the population. The susceptibility to RA appears to be influenced by a complex interaction between a favorable genetic background and the existence of a specific immune reaction against a wide range of environmental variables. Among the known environmental variables, infections are believed to have a significant role in promoting the formation of autoimmune disorders, which are frequently caused by specific microorganisms. Infections have been linked to RA in recent medical studies. In this study, we selected the most prevalent infections associated with RA from the literature and described the data confirming their pathogenic role in RA. Our investigation included Mycobacterium, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Proteus mirabilis, Epstein-Barr virus, parvovirus, and Prevotella copri.
Collapse
|
14
|
Zaragoza-García O, Castro-Alarcón N, Pérez-Rubio G, Falfán-Valencia R, Briceño O, Navarro-Zarza JE, Parra-Rojas I, Tello M, Guzmán-Guzmán IP. Serum Levels of IFABP2 and Differences in Lactobacillus and Porphyromonas gingivalis Abundance on Gut Microbiota Are Associated with Poor Therapeutic Response in Rheumatoid Arthritis: A Pilot Study. Int J Mol Sci 2023; 24:ijms24031958. [PMID: 36768285 PMCID: PMC9916456 DOI: 10.3390/ijms24031958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Intestinal dysbiosis is related to the physiopathology and clinical manifestation of rheumatoid arthritis (RA) and the response to pharmacologic treatment. The objectives of this study were (1) to analyze the effect of conventional synthetic disease modifying anti-rheumatic drugs (csDMARDs) on the abundance of gut microbiota's bacteria; (2) to evaluate the relationship between the differences in microbial abundance with the serum levels of intestinal fatty-acid binding protein 2 (IFABP2), cytokines, and the response phenotype to csDMARDs therapy in RA. A cross-sectional study was conducted on 23 women diagnosed with RA. The abundance of bacteria in gut microbiota was determined with qPCR. The ELISA technique determined serum levels of IFABP2, TNF-α, IL-10, and IL-17A. We found that the accumulated dose of methotrexate or prednisone is negatively associated with the abundance of Lactobacillus but positively associated with the abundance of Bacteroides fragilis. The Lactobacillus/Porphyromonas gingivalis ratio was associated with the Disease Activity Score-28 for RA with Erythrocyte Sedimentation Rate (DAS28-ESR) (r = 0.778, p = 0.030) and with the levels of IL-17A (r = 0.785, p = 0.027) in the group treated with csDMARD. Moreover, a relation between the serum levels of IFABP2 and TNF-α (r = 0.593, p = 0.035) was observed in the group treated with csDMARD. The serum levels of IFABP2 were higher in patients with secondary non-response to csDMARDs therapy. In conclusion, our results suggest that the ratios of gut microbiota's bacteria and intestinal permeability seems to establish the preamble for therapeutic secondary non-response in RA.
Collapse
Affiliation(s)
- Oscar Zaragoza-García
- Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Natividad Castro-Alarcón
- Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Olivia Briceño
- Infectious Diseases Research Center, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
| | | | - Isela Parra-Rojas
- Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mario Tello
- Bacterial Metagenomics Laboratory, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 8320000, Chile
| | - Iris Paola Guzmán-Guzmán
- Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
- Correspondence: or
| |
Collapse
|
15
|
Casu C, Murgia MS, Orrù G, Scano A. Photodynamic therapy for the successful management of cyclosporine-related gum hypertrophy: A novel therapeutic option. J Public Health Res 2022; 11:22799036221116177. [PMID: 36226306 PMCID: PMC9549190 DOI: 10.1177/22799036221116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Drug-induced gingival overgrowth is associated with the intake of three classes of drugs: anticonvulsants, immunosuppressants, and calcium channel blockers. It is clinically characterized by hyperplasia of the gingival connective tissue which appears edematous, bloody, and purplish-red in color. In more severe cases, drug-induced gingival hyperplasia negatively affects the patient's quality of life, making it difficult to eat and practice good oral hygiene. Drug-induced gingival overgrowth therapy is controversial and, in fact, no studies in the literature highlight a well-defined therapeutic protocol. The therapies that are described provide primarily for non-surgical periodontal treatment and second-line surgical treatment. The aim of this work is to highlight a case of drug-induced gingival hyperplasia which was completely resolved thanks to photodynamic therapy which is completely free from side effects. DESIGN AND METHODS Photodynamic therapy was performed on an 18 year-old female patient with LEDs at a power of 450-470 nm and 5500 mW/cm2 + 7500 mW/cm2, combined with a Curcuma longa-based photosensitizer. A single session was performed, with applications of approximately 30 s for each interdental papilla. RESULTS The patient improved markedly after only one cycle of PDT. There was an absence of clinically detectable inflammation, edema, and rubor of the involved dental papillae. At the 4, 6, and 12 week follow-ups there were no recurrences. CONCLUSIONS This case report highlights the first case of drug-induced gingival hypertrophy entirely treated with photodynamic therapy to be described in the literature. Therefore, although it is only a case report, this therapy which is free from side effects should be investigated as an alternative to current therapies.
Collapse
Affiliation(s)
- Cinzia Casu
- International Ph.D. in Innovation
Sciences and Technologies, University of Cagliari, Cagliari, Italy
- Department of Surgical Science, Oral
Biotechnology Laboratory, University of Cagliari, Cagliari, Italy
| | | | - Germano Orrù
- Department of Surgical Science, Oral
Biotechnology Laboratory, University of Cagliari, Cagliari, Italy
| | - Alessandra Scano
- Department of Surgical Science, Oral
Biotechnology Laboratory, University of Cagliari, Cagliari, Italy
| |
Collapse
|
16
|
Li Y, Guo R, Oduro PK, Sun T, Chen H, Yi Y, Zeng W, Wang Q, Leng L, Yang L, Zhang J. The Relationship Between Porphyromonas Gingivalis and Rheumatoid Arthritis: A Meta-Analysis. Front Cell Infect Microbiol 2022; 12:956417. [PMID: 35923803 PMCID: PMC9340274 DOI: 10.3389/fcimb.2022.956417] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systematical autoimmune disease, characterized by chronic synovial joint inflammation and hurt. Porphyromonas gingivalis(P. gingivalis) can cause life-threatening inflammatory immune responses in humans when the host pathogenic clearance machinery is disordered. Some epidemiological studies have reported that P. gingivalis exposure would increase the prevalence of RA. However, the results remain inconsistent. Therefore, a meta-analysis was done to systematically analyze the relationship between P. gingivalis exposure and the prevalence of rheumatoid arthritis. Database including Cochrane Library, Web of Science, PubMed, and EMBASE were searched for published epidemiological articles assessed the relationship between P. gingivalis and RA. Obtained studies were screened based on the predefined inclusion and exclusion criteria. The overall Odds Ratios (ORs) of incorporated articles were pooled by random-effect model with STATA 15.1 software. The literature search returned a total of 2057 studies. After exclusion, 28 articles were included and analyzed. The pooled ORs showed a significant increase in the risk of RA in individuals with P. gingivalis exposure (OR = 1.86; 95% CI: 1.43-2.43). Subgroup analysis revealed that pooled ORs from populations located in Europe (OR = 2.17; 95% CI: 1.46-3.22) and North America (OR = 2.50; 95% CI: 1.23-5.08) were significantly higher than that from population in Asia (OR = 1.11; 95% CI: 1.03-1.20). Substantial heterogeneity was observed but did not significantly influence the overall outcome. In conclusion, our results indicated P. gingivalis exposure was a risk factor in RA. Prompt diagnosis and management decisions on P. gingivalis antimicrobial therapy would prevent rheumatoid arthritis development and progression.
Collapse
Affiliation(s)
- Yilin Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Rui Guo
- Research center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Tongke Sun
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yating Yi
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Weiqian Zeng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Ling Leng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
- *Correspondence: Ling Leng, ; Long Yang, ; Jun Zhang,
| | - Long Yang
- Research center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Ling Leng, ; Long Yang, ; Jun Zhang,
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- *Correspondence: Ling Leng, ; Long Yang, ; Jun Zhang,
| |
Collapse
|
17
|
Koziel J, Potempa J. Pros and cons of causative association between periodontitis and rheumatoid arthritis. Periodontol 2000 2022; 89:83-98. [PMID: 35262966 PMCID: PMC9935644 DOI: 10.1111/prd.12432] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 02/05/2023]
Abstract
Research in recent decades has brought significant advancements in understanding of the molecular basis of the etiology of autoimmune diseases, including rheumatoid arthritis, a common systemic disease in which an inappropriate or inadequate immune response to environmental challenges leads to joint destruction. Recent studies have indicated that the classical viewpoint of the immunological processes underpinning the pathobiology of rheumatoid arthritis is restricted and needs to be expanded to include a more holistic and interdisciplinary approach incorporating bacteria-induced inflammatory reactions as an important pathway in rheumatoid arthritis etiology. Here, we discuss in detail data showing the clinical and molecular association of rheumatoid arthritis development with periodontal diseases. We also describe the unique role of periopathogens, which have been proposed to be crucial in the initiation and progression of this autoimmune pathological disorder.
Collapse
Affiliation(s)
- Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
18
|
Ceccarelli F, Saccucci M, Natalucci F, Olivieri G, Bruni E, Iacono R, Colasanti T, Di Carlo G, Alessandri C, Uccelletti D, Russo P, Pilloni A, Conti F, Polimeni A. Porphyromonas gingivalis amount in the tongue biofilm is associated with erosive arthritis in systemic lupus erythematosus. Lupus 2022; 31:921-926. [PMID: 35477339 DOI: 10.1177/09612033221098528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Several data have demonstrated the occurrence of erosive arthritis in Systemic Lupus Erythematosus (SLE) patients. However, a few studies have focused on the pathogenic mechanisms involved in this feature. The implication of oral pathogens has been proved in Rheumatoid Arthritis: in particular, Porphyromonas gingivalis (Pg), by inducing citrullination, could trigger autoimmune response. Here, we evaluated amount of Pg on the tongue in a cohort of SLE patients with arthritis, focusing on the association with the erosive phenotype. METHODS SLE patients with arthritis were enrolled. DAS28 was applied to assess activity. Erosive damage was evaluated by ultrasound at level of MCP (metacarpophalangeal) and PIP (proximal interphalangeals) joints. All subjects underwent a tongue cytologic swab in order to quantify the amount of Pg (real-time PCR). The bacterium expression was obtained from the ratio between the patient's DNA amount and that obtained from healthy subjects. RESULTS 33 patients were enrolled (M/F 3/30; median age 47 years, IQR 17; median disease duration 216 months, IQR 180): 12 of them (36.4%) showed erosive damage, significantly associated with ACPA positivity (p = 0.03) and higher values of DAS28 (p = 0.01). A mean ratio of 19.7 ± 31.1 was found for Pg amount. Therefore, we used Pg mean values as threshold, identifying two groups of patients, namely, highPg and lowPg. Erosive damage was significantly more frequent in highPg patients in comparison with lowPg (60.0% vs 26.0%, p = 0.001). Furthermore, highPg patients showed higher prevalence of skin manifestations, serositis, and neurological involvement (p = 0.005, p = 0.03, p = 0.0001, respectively). CONCLUSION The possible contribution of oral microbiota in SLE erosive arthritis was here evaluated for the first time, finding a significant association between erosive damage and higher expression of Pg at tongue level.
Collapse
Affiliation(s)
- Fulvia Ceccarelli
- Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Rome, Italy
| | - Matteo Saccucci
- Department of Oral and Maxillofacial Science, 9311Sapienza University of Rome, Italy
| | - Francesco Natalucci
- Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Rome, Italy
| | - Giulio Olivieri
- Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Rome, Italy
| | - Erika Bruni
- Department of Biology and Biotecnology Charles Darwin, 9311Sapienza University of Rome, Italy
| | - Roberta Iacono
- Department of Oral and Maxillofacial Science, 9311Sapienza University of Rome, Italy
| | - Tania Colasanti
- Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Rome, Italy
| | - Gabriele Di Carlo
- Department of Oral and Maxillofacial Science, 9311Sapienza University of Rome, Italy
| | - Cristiano Alessandri
- Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotecnology Charles Darwin, 9311Sapienza University of Rome, Italy
| | - Paola Russo
- Department of Oral and Maxillofacial Science, 9311Sapienza University of Rome, Italy
| | - Andrea Pilloni
- Department of Oral and Maxillofacial Science, 9311Sapienza University of Rome, Italy
| | - Fabrizio Conti
- Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Rome, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillofacial Science, 9311Sapienza University of Rome, Italy
| |
Collapse
|
19
|
Ali Mohammed MM, Al Kawas S, Al-Qadhi G. Tongue-coating microbiome as a cancer predictor: A scoping review. Arch Oral Biol 2021; 132:105271. [PMID: 34610507 DOI: 10.1016/j.archoralbio.2021.105271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The tongue microbiome has emerged as a non-invasive diagnostic and tracking prognostic tool in the detection of diseases mainly cancer. This scoping review aimed to identify the association between tongue microbiome and pre-cancer or cancer lesions. DESIGN A comprehensive electronic database search including PubMed, Web of Science, and Scopus was undertaken up to March 2021, without language or date restrictions. This review was conducted following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guideline. All observational studies that compared microbial community on the dorsal surface of the tongue between cancer or precancerous cases and healthy controls using NGS techniques were included. RESULTS Of 274 records identified, nine studies were eligible to be included. Despite the inconsistent observations in terms of diversity and richness, most studies reported alteration in bacterial communities between pre-cancer or cancer cases and control groups. The bacterial profile among cases was so far correlated at the phylum level with a noticeable diverse degree at the genus level. The majority of included studies reported a higher abundance of certain kinds of microorganisms as compared to healthy participants including Firmicutes, Fusobacteria and Actinobacteria at phyla level as well as Streptococcus, Actinomyces, Leptotrichia, Campylobacter, and Fusobacterium at the genus level. CONCLUSION The alteration of the tongue microbial community has been associated with several diseases mainly cancer. So, the tongue microbiome may serve as a promising diagnostic tool or as a long-term monitor in precancerous or cancer cases.
Collapse
Affiliation(s)
- Marwan Mansoor Ali Mohammed
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, United Arab Emirates.
| | - Sausan Al Kawas
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, United Arab Emirates.
| | - Gamilah Al-Qadhi
- Department of Basic Dental Sciences, Faculty of Dentistry, University of Science and Technology, Yemen.
| |
Collapse
|
20
|
Bregaint S, Boyer E, Fong SB, Meuric V, Bonnaure-Mallet M, Jolivet-Gougeon A. Porphyromonas gingivalis outside the oral cavity. Odontology 2021; 110:1-19. [PMID: 34410562 DOI: 10.1007/s10266-021-00647-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/31/2021] [Indexed: 12/14/2022]
Abstract
Porphyromonas gingivalis, a Gram-negative anaerobic bacillus present in periodontal disease, is considered one of the major pathogens in periodontitis. A literature search for English original studies, case series and review articles published up to December 2019 was performed using the MEDLINE, PubMed and GoogleScholar databases, with the search terms "Porphyromonas gingivalis" AND the potentially associated condition or systemic disease Abstracts and full text articles were used to make a review of published research literature on P. gingivalis outside the oral cavity. The main points of interest of this narrative review were: (i) a potential direct action of the bacterium and not the systemic effects of the inflammatory acute-phase response induced by the periodontitis, (ii) the presence of the bacterium (viable or not) in the organ, or (iii) the presence of its virulence factors. Virulence factors (gingipains, capsule, fimbriae, hemagglutinins, lipopolysaccharide, hemolysin, iron uptake transporters, toxic outer membrane blebs/vesicles, and DNA) associated with P. gingivalis can deregulate certain functions in humans, particularly host immune systems, and cause various local and systemic pathologies. The most recent studies linking P. gingivalis to systemic diseases were discussed, remembering particularly the molecular mechanisms involved in different infections, including cerebral, cardiovascular, pulmonary, bone, digestive and peri-natal infections. Recent involvement of P. gingivalis in neurological diseases has been demonstrated. P. gingivalis modulates cellular homeostasis and increases markers of inflammation. It is also a factor in the oxidative stress involved in beta-amyloid production.
Collapse
Affiliation(s)
- Steeve Bregaint
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France
| | - Emile Boyer
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France.,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Shao Bing Fong
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France
| | - Vincent Meuric
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France.,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Martine Bonnaure-Mallet
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France.,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Anne Jolivet-Gougeon
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France. .,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France.
| |
Collapse
|
21
|
Casu C, Mosaico G, Natoli V, Scarano A, Lorusso F, Inchingolo F. Microbiota of the Tongue and Systemic Connections: The Examination of the Tongue as an Integrated Approach in Oral Medicine. HYGIENE 2021; 1:56-68. [DOI: 10.3390/hygiene1020006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The tongue is able to quickly reflect the state of health or disease of the human body. Tongue inspection is an important diagnostic approach. It is a unique method that allows to explore the pathogenesis of diseases based on the guiding principles of the holistic concept that involves the observation of changes in the lining of the tongue in order to understand the physiological functions and pathological changes of the body. It is a potential method of screening and early detection of cancer. However, the subjective inspection of the tongue has a low reliability index, and therefore computerized systems of acquisition of diagnostic bioinformation have been developed to analyze the lining of the tongue. Next-generation sequencing technology is used to determine the V2–V4 hypervariable regions of 16S rRNA to study the microbiota. A lot of neoplasms are identified only at an advanced phase, while in the early stages, many subjects remain in an asymptomatic form. On the contrary, the early diagnosis is able to increase the prognosis of cancer and improve the survival rates of subjects. Evidently, it is necessary to develop new strategies in oral medicine for the early diagnosis of diseases, and the diagnosis of the tongue as a minimally invasive method is certainly one of them.
Collapse
Affiliation(s)
- Cinzia Casu
- Department of Surgical Sciences, Oral Biotechnology Laboratory (OBL), University of Cagliari, 09126 Cagliari, Italy
| | | | - Valentino Natoli
- DDS, Private Dental Practice, 72015 Fasano, Italy
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | | |
Collapse
|
22
|
Bellando-Randone S, Russo E, Venerito V, Matucci-Cerinic M, Iannone F, Tangaro S, Amedei A. Exploring the Oral Microbiome in Rheumatic Diseases, State of Art and Future Prospective in Personalized Medicine with an AI Approach. J Pers Med 2021; 11:625. [PMID: 34209167 PMCID: PMC8306274 DOI: 10.3390/jpm11070625] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
The oral microbiome is receiving growing interest from the scientific community, as the mouth is the gateway for numerous potential etiopathogenetic factors in different diseases. In addition, the progression of niches from the mouth to the gut, defined as "oral-gut microbiome axis", affects several pathologies, as rheumatic diseases. Notably, rheumatic disorders (RDs) are conditions causing chronic, often intermittent pain affecting the joints or connective tissue. In this review, we examine evidence which supports a role for the oral microbiome in the etiology and progression of various RDs, including rheumatoid arthritis (RA), Sjogren's syndrome (SS), and systemic lupus erythematosus (SLE). In addition, we address the most recent studies endorsing the oral microbiome as promising diagnostic biomarkers for RDs. Lastly, we introduce the concepts of artificial intelligence (AI), in particular, machine learning (ML) and their general application for understanding the link between oral microbiota and rheumatic diseases, speculating the application of a possible AI approach-based that can be applied to personalized medicine in the future.
Collapse
Affiliation(s)
- Silvia Bellando-Randone
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.B.-R.); (E.R.); (M.M.-C.)
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.B.-R.); (E.R.); (M.M.-C.)
| | - Vincenzo Venerito
- Rheumatology Unit, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro”, 70121 Bari, Italy; (V.V.); (F.I.)
| | - Marco Matucci-Cerinic
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.B.-R.); (E.R.); (M.M.-C.)
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Florenzo Iannone
- Rheumatology Unit, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro”, 70121 Bari, Italy; (V.V.); (F.I.)
| | - Sabina Tangaro
- Dipartimento Interateneo di Fisica “M. Merlin”, Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70121 Bari, Italy;
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.B.-R.); (E.R.); (M.M.-C.)
| |
Collapse
|
23
|
Paul AK, Paul A, Jahan R, Jannat K, Bondhon TA, Hasan A, Nissapatorn V, Pereira ML, Wilairatana P, Rahmatullah M. Probiotics and Amelioration of Rheumatoid Arthritis: Significant Roles of Lactobacillus casei and Lactobacillus acidophilus. Microorganisms 2021; 9:1070. [PMID: 34065638 PMCID: PMC8157104 DOI: 10.3390/microorganisms9051070] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disorder that can lead to disability conditions with swollen joints, pain, stiffness, cartilage degradation, and osteoporosis. Genetic, epigenetic, sex-specific factors, smoking, air pollution, food, oral hygiene, periodontitis, Prevotella, and imbalance in the gastrointestinal microbiota are possible sources of the initiation or progression of rheumatoid arthritis, although the detailed mechanisms still need to be elucidated. Probiotics containing Lactobacillus spp. are commonly used as alleviating agents or food supplements to manage diarrhea, dysentery, develop immunity, and maintain general health. The mechanism of action of Lactobacillus spp. against rheumatoid arthritis is still not clearly known to date. In this narrative review, we recapitulate the findings of recent studies to understand the overall pathogenesis of rheumatoid arthritis and the roles of probiotics, particularly L. casei or L. acidophilus, in the management of rheumatoid arthritis in clinical and preclinical studies.
Collapse
Affiliation(s)
- Alok K. Paul
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Anita Paul
- Department of Pharmacy, University of Development Alternative, Dhaka 1207, Bangladesh;
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Tohmina A. Bondhon
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Anamul Hasan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Maria L. Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 73170, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| |
Collapse
|
24
|
Saadaoui M, Singh P, Al Khodor S. Oral microbiome and pregnancy: A bidirectional relationship. J Reprod Immunol 2021; 145:103293. [PMID: 33676065 DOI: 10.1016/j.jri.2021.103293] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/28/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
The oral cavity contains the second most complex microbial population within the human body, with more than 700 bacterial organisms. Recent advances in Next Generation Sequencing technology have unraveled the complexities of the oral microbiome and provided valuable insights into its role in health and disease. The human oral microbiome varies dramatically during the different stages of life, including pregnancy. The total viable microbial counts in pregnant women are known to be higher compared to non-pregnant women, especially in the first trimester of pregnancy. A balanced oral microbiome is vital for a healthy pregnancy, as perturbations in the oral microbiome composition can contribute to pregnancy complications. On the other hand, physiological changes and differences in hormonal levels during pregnancy, increase susceptibility to various oral diseases such as gingivitis and periodontitis. A growing body of evidence supports the link between the composition of the oral microbiome and adverse pregnancy outcomes such as preterm birth, preeclampsia, low birth weight among others. This review aims to summarize the dynamics of oral microbiome during pregnancy and to discuss the relationship between a dysbiotic oral microbiome and pregnancy complications.
Collapse
Affiliation(s)
| | - Parul Singh
- Research Department, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW To explore the pathogenic association between periodontal disease and rheumatoid arthritis focusing on the role of Porphyromonas gingivalis. RECENT FINDINGS In the last decades our knowledge about the pathogenesis of rheumatoid arthritis substantially changed. Several evidences demonstrated that the initial production of autoantibodies is not localized in the joint, rather in other immunological-active sites. A central role seems to be played by periodontal disease, in particular because of the ability of P. gingivalis to induce citrullination, the posttranslational modification leading to the production of anticitrullinated protein/peptide antibodies, the most sensitive and specific rheumatoid arthritis biomarker. SUMMARY The pathogenic role of P. gingivalis has been demonstrated in mouse models in which arthritis was either triggered or worsened in infected animals. P. gingivalis showed its detrimental role not only by inducing citrullination but also by means of other key mechanisms including induction of NETosis, osteoclastogenesis, and Th17 proinflammatory response leading to bone damage and systemic inflammation.
Collapse
|
26
|
Kwiatkowska B, Maślińska M. The place of omega-3 and omega-6 acids in supplementary treatment of inflammatory joint diseases. Reumatologia 2020; 58:34-41. [PMID: 32322122 PMCID: PMC7174795 DOI: 10.5114/reum.2020.93511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Eating habits have been analysed for years as a factor influencing the development of autoimmune diseases and susceptibility to infections. On the basis of research, observational studies and meta-analyses, special attention was paid to omega-3 and omega-6 acids. The purpose of the review is to show the importance of omega-3 and omega-6 acids as important ingredients in the healthy diet and as factors protecting against the development of the most common inflammatory rheumatic diseases. The influence of these omega-3 and -6 acids on the course of rheumatic diseases and arguments for their use as complementary therapy are also presented.
Collapse
Affiliation(s)
- Brygida Kwiatkowska
- Early Arthritis Clinic, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Maria Maślińska
- Early Arthritis Clinic, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| |
Collapse
|
27
|
Ceccarelli F, Saccucci M, Di Carlo G, Lucchetti R, Pilloni A, Pranno N, Luzzi V, Valesini G, Polimeni A. Periodontitis and Rheumatoid Arthritis: The Same Inflammatory Mediators? Mediators Inflamm 2019; 2019:6034546. [PMID: 31191116 PMCID: PMC6525860 DOI: 10.1155/2019/6034546] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/06/2019] [Indexed: 02/07/2023] Open
Abstract
The strict link between periodontitis (PD) and rheumatoid arthritis (RA) has been widely demonstrated by several studies. PD is significantly more frequent in RA patients in comparison with healthy subjects: this prevalence is higher in individuals at the earliest stages of disease and in seropositive patients. This is probably related to the role of P. gingivalis in inducing citrullination and leading to the development of the new antigens. Despite the many studies conducted on this topic, there is very little data available concerning the possibility to use the same biomarkers to evaluate both RA and PD patients. The aim of the review is to summarize this issue. Starting from genetic factors, data from literature demonstrated the association between HLA-DRB1 alleles and PD susceptibility, similar to RA patients; moreover, SE-positive patients showed simultaneously structural damage to the wrist and periodontal sites. Contrasting results are available concerning other genetic polymorphisms. Moreover, the possible role of proinflammatory cytokines, such as TNF and IL6 and autoantibodies, specifically anticyclic citrullinated peptide antibodies, has been examined, suggesting the need to perform further studies to better define this issue.
Collapse
Affiliation(s)
- Fulvia Ceccarelli
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Matteo Saccucci
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Viale Regina Elena 287a, 00161 Rome, Italy
| | - Gabriele Di Carlo
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Viale Regina Elena 287a, 00161 Rome, Italy
| | - Ramona Lucchetti
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Andrea Pilloni
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Viale Regina Elena 287a, 00161 Rome, Italy
| | - Nicola Pranno
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Viale Regina Elena 287a, 00161 Rome, Italy
| | - Valeria Luzzi
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Viale Regina Elena 287a, 00161 Rome, Italy
| | - Guido Valesini
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Viale Regina Elena 287a, 00161 Rome, Italy
| |
Collapse
|