1
|
Son GY, Zou A, Wahl A, Huang KT, Zorgit S, Vinu M, Zhou F, Wagner L, Idaghdour Y, Yule DI, Feske S, Lacruz RS. Loss of STIM1 and STIM2 in Salivary Glands Disrupts ANO1 Function but Does Not Induce Sjogren's Disease. FUNCTION 2025; 6:zqae047. [PMID: 39479800 PMCID: PMC11815586 DOI: 10.1093/function/zqae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024] Open
Abstract
Ca2+ signaling via the store-operated Ca2+ entry (SOCE) mediated by STIM1 and STIM2 proteins and the ORAI1 Ca2+ channel is important in saliva fluid secretion and has been associated with Sjogren's disease (SjD). However, there are no studies addressing STIM1/2 dysfunction in salivary glands or SjD in animal models. We report that mice lacking Stim1 and Stim2 [Stim1/2K14Cre(+)] in salivary glands exhibited reduced Ca2+ levels and hyposalivate. SOCE was functionally required for the activation of the Ca2+ activated Cl- channel ANO1. Ageing Stim1/2K14Cre(+) mice showed no evidence of lymphocytic infiltration or increased levels of autoantibodies characteristic of SjD, possibly associated with a downregulation of toll-like receptor 8 (Tlr8) expression. Salivary gland biopsies of SjD patients showed increased expression of STIM1 and TLR7/8. Our study shows that SOCE activates ANO1 function and fluid secretion in salivary glands and highlights a potential link between SOCE and TLR signaling in SjD.
Collapse
Affiliation(s)
- Ga-Yeon Son
- Department of Molecular Pathobiology, New York University College of Dentistry, New York 10010, USA
| | - Anna Zou
- Department of Molecular Pathobiology, New York University College of Dentistry, New York 10010, USA
| | - Amanda Wahl
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642, USA
| | - Kai Ting Huang
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642, USA
| | - Saruul Zorgit
- Biology Program, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Manikandan Vinu
- Biology Program, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Fang Zhou
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10010, USA
| | - Larry Wagner
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642, USA
| | - Youssef Idaghdour
- Biology Program, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642, USA
| | - Stefan Feske
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10010, USA
| | - Rodrigo S Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York 10010, USA
| |
Collapse
|
2
|
Zhao T, Zhang R, Li Z, Qin D, Wang X. A comprehensive review of Sjögren's syndrome: Classification criteria, risk factors, and signaling pathways. Heliyon 2024; 10:e36220. [PMID: 39286095 PMCID: PMC11403439 DOI: 10.1016/j.heliyon.2024.e36220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease that affects the exocrine glands and may lead to a range of systemic symptoms that impact various organs. Both innate and adaptive immune pathways might trigger the disease. Studying the signaling pathways underlying SS is crucial for enhancing diagnostic and therapeutic effectiveness. SS poses an ongoing challenge for medical professionals owing to the limited therapeutic options available. This review offers a comprehensive understanding of the intricate nature of SS, encompassing disease classification criteria, risk factors, and signaling pathways in immunity and inflammation. The advancements summarized herein have the potential to spark new avenues of research into SS.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Runrun Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Zhaofu Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Xinchang Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| |
Collapse
|
3
|
Zhou P, Huang M, Hang Y, Liu S, Yao G, Tang X, Xia N, Sun L. Artesunate alleviates Sjögren's Syndrome by inhibiting the interferon-α signaling in plasmacytoid dendritic cells via TLR-MyD88-IRF7. Biomed Pharmacother 2024; 177:116885. [PMID: 38878633 DOI: 10.1016/j.biopha.2024.116885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disease in which the salivary glands (SGs) and the lacrimal glands (LGs) are affected by lymphocytic infiltration and inflammation. It has been reported that interferon-α (IFN-α) released by plasmacytoid dendritic cells (pDCs) contribute to the pathology of SS, and ART has been shown to effectively ameliorates SS. Despite the current research endeavors, the mechanism of how ART works in the treatment of SS remains to be fully elucidated. Whether ART can treat SS by inhibiting IFN-α remains unclear. This hypothesis was tested both in vivo and in vitro settings during the study. The SS model mice, which were treated with ART, showed amelioration in symptoms related to dryness. RNA-seq analysis revealed strong anti-IFN-α signaling response upon ART treatment. Additional in vitro studies provided further confirmation that the application of ART inhibits the MyD88 protein expression and the nuclear translocation of IRF7. This suggests that the intervention of ART in the TLR-MyD88-IRF7 pathway plays a role in the therapeutic approach for SS. In summary, this study highlighted the therapeutic potential of ART in SS and ART inhibited the IFN-α signaling in pDCs via the TLR-MyD88-IRF7 pathway.
Collapse
Affiliation(s)
- Panpan Zhou
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Mengxi Huang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Yang Hang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Sha Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Nan Xia
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China; Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
| |
Collapse
|
4
|
Nakamura H, Tanaka T, Zheng C, Afione SA, Atsumi T, Noguchi M, Oliveira FR, Motta ACF, Chahud F, Rocha EM, Warner BM, Chiorini JA. Amplified Type I Interferon Response in Sjögren's Disease via Ectopic Toll-Like Receptor 7 Expression in Salivary Gland Epithelial Cells Induced by Lysosome-Associated Membrane Protein 3. Arthritis Rheumatol 2024; 76:1109-1119. [PMID: 38472139 DOI: 10.1002/art.42844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
OBJECTIVE Lysosome-associated membrane protein 3 (LAMP3) misexpression in salivary gland epithelial cells plays a causal role in the development of salivary gland dysfunction and autoimmunity associated with Sjögren's disease (SjD). This study aimed to clarify how epithelial LAMP3 misexpression is induced in SjD. METHODS To explore upstream signaling pathways associated with LAMP3 expression, we conducted multiple RNA sequencing analyses of minor salivary glands from patients with SjD, submandibular glands from a mouse model of SjD, and salivary gland epithelial cell lines. A hypothesis generated by the RNA sequencing analyses was further tested by in vitro and in vivo assays with gene manipulation. RESULTS Transcriptome analysis suggested LAMP3 expression was associated with enhanced type I interferon (IFN) and IFNγ signaling pathways in patients with SjD. In vitro studies showed that type I IFN but not IFNγ stimulation could induce LAMP3 expression in salivary gland epithelial cells. Moreover, we discovered that LAMP3 overexpression could induce ectopic Toll-like receptor 7 (TLR-7) expression and type I IFN production in salivary gland epithelial cells both in vitro and in vivo. TLR-7 knockout mice did not develop any SjD-related symptoms following LAMP3 induction. CONCLUSION Epithelial LAMP3 misexpression can be induced through enhanced type I IFN response in salivary glands. In addition, LAMP3 can promote type I IFN production via ectopic TLR-7 expression in salivary gland epithelial cells. This positive feedback loop can contribute to maintaining LAMP3 misexpression and amplifying type I IFN production in salivary glands, which plays an essential role in the pathophysiology of SjD.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Sapporo Medical University School of Medicine, Sapporo, Japan
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Tsutomu Tanaka
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Changyu Zheng
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Sandra A Afione
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Tatsuya Atsumi
- Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masayuki Noguchi
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | - Ana Carolina F Motta
- School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Fernando Chahud
- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo M Rocha
- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Blake M Warner
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - John A Chiorini
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| |
Collapse
|
5
|
Li XX, Maitiyaer M, Tan Q, Huang WH, Liu Y, Liu ZP, Wen YQ, Zheng Y, Chen X, Chen RL, Tao Y, Yu SL. Emerging biologic frontiers for Sjogren's syndrome: Unveiling novel approaches with emphasis on extra glandular pathology. Front Pharmacol 2024; 15:1377055. [PMID: 38828450 PMCID: PMC11140030 DOI: 10.3389/fphar.2024.1377055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Primary Sjögren's Syndrome (pSS) is a complex autoimmune disorder characterized by exocrine gland dysfunction, leading to dry eyes and mouth. Despite growing interest in biologic therapies for pSS, FDA approval has proven challenging due to trial complications. This review addresses the absence of a molecular-target-based approach to biologic therapy development and highlights novel research on drug targets and clinical trials. A literature search identified potential pSS treatment targets and recent advances in molecular understanding. Overlooking extraglandular symptoms like fatigue and depression is a notable gap in trials. Emerging biologic agents targeting cytokines, signal pathways, and immune responses have proven efficacy. These novel therapies could complement existing methods for symptom alleviation. Improved grading systems accounting for extraglandular symptoms are needed. The future of pSS treatment may involve gene, stem-cell, and tissue-engineering therapies. This narrative review offers insights into advancing pSS management through innovative biologic interventions.
Collapse
Affiliation(s)
- Xiao Xiao Li
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Maierhaba Maitiyaer
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Qing Tan
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Wen Hui Huang
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yu Liu
- Department of Clinical Medicine, The First Clinical Medical School of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhi Ping Liu
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yue Qiang Wen
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yu Zheng
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xing Chen
- Department of Geriatrics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Rui Lin Chen
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yi Tao
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shui Lian Yu
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Yang H, Sun C, Wang X, Wang T, Xie C, Li Z. Elevated expression of Toll-like receptor 7 and its correlation with clinical features in patients with primary Sjögren's syndrome. Adv Rheumatol 2024; 64:17. [PMID: 38439071 DOI: 10.1186/s42358-024-00360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The labial salivary glands (LSGs) are important for the diagnosis, evaluation of therapeutic efficacy, and genetic analyses of primary Sjögren's syndrome (pSS). In autoimmune diseases, the recognition of self nucleic acids and viral RNA and DNA through endogenous Toll-like receptor(TLR) triggers the production of type I IFN and pro-inflammatory cytokines, leading to the occurrence and progression of the disease. Here, we detected the expression of TLR7 in LSGs and analyse its correlation with clinical features and serum cytokines in pSS patients. METHODS LSGs and serum samples were obtained from 56 pSS patients and 19 non-SS patients (non-pSS patients). The expression of TLR7 in the LSGs was evaluated with immunohistochemistry. The serum levels of interferon-α (IFN-α) and interleukin-6 (IL-6) were quantified by ELISA. Laboratory parameters were measured by clinical standard laboratory techniques. RESULTS TLR7-positive cells in pSS were localized in the ductal epithelial cells and lymphocytes of LSGs. The expression of TLR7 was upregulated in pSS patients compared with controls. Patients with anti-Ro52 antibody positivity showed higher TLR7 levels than those who were negative but not those with anti-Ro60 and anti-SSB. TLR7 levels were positively associated with the levels of IgG, IgA, ANA, IL-6, IFN-α and serum globulin but were not associated with IgM, C3, C4, or rheumatoid factor (RF) in serum. CONCLUSION TLR7 may be involved in the inflammatory response and the production of antibodies in pSS and plays an important role in local and systemic pSS manifestations. This research showed that TLR7 is involved in pSS pathogenesis.
Collapse
Affiliation(s)
- Huimin Yang
- Jinan University, Guangzhou, China
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Bengbu Medical College, Anhui, China
- Key Laboratory of Infection and Immunity of Anhui Higher Education Institutes, Bengbu Medical College, Anhui, China
| | - Chao Sun
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, 233004, Bengbu, Anhui, China
| | - Xin Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, 233004, Bengbu, Anhui, China
| | - Tao Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, 233004, Bengbu, Anhui, China
| | - Changhao Xie
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, 233004, Bengbu, Anhui, China
| | - Zhijun Li
- Jinan University, Guangzhou, China.
- Key Laboratory of Infection and Immunity of Anhui Higher Education Institutes, Bengbu Medical College, Anhui, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, 233004, Bengbu, Anhui, China.
| |
Collapse
|
7
|
Son GY, Zou A, Wahl A, Huang KT, Vinu M, Zorgit S, Zhou F, Wagner L, Idaghdour Y, Yule DI, Feske S, Lacruz RS. Loss of STIM1 and STIM2 in salivary glands disrupts ANO1 function but does not induce Sjogren's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574702. [PMID: 38260625 PMCID: PMC10802497 DOI: 10.1101/2024.01.08.574702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Sjogren's disease (SjD) is an autoimmune disease characterized by xerostomia (dry mouth), lymphocytic infiltration into salivary glands and the presence of SSA and SSB autoantibodies. Xerostomia is caused by hypofunction of the salivary glands and has been involved in the development of SjD. Saliva production is regulated by parasympathetic input into the glands initiating intracellular Ca 2+ signals that activate the store operated Ca 2+ entry (SOCE) pathway eliciting sustained Ca 2+ influx. SOCE is mediated by the STIM1 and STIM2 proteins and the ORAI1 Ca 2+ channel. However, there are no studies on the effects of lack of STIM1/2 function in salivary acini in animal models and its impact on SjD. Here we report that male and female mice lacking Stim1 and Stim2 ( Stim1/2 K14Cre ) in salivary glands showed reduced intracellular Ca 2+ levels via SOCE in parotid acini and hyposalivate upon pilocarpine stimulation. Bulk RNASeq of the parotid glands of Stim1/2 K14Cre mice showed a decrease in the expression of Stim1/2 but no other Ca 2+ associated genes mediating saliva fluid secretion. SOCE was however functionally required for the activation of the Ca 2+ activated chloride channel ANO1. Despite hyposalivation, ageing Stim1/2 K14Cre mice showed no evidence of lymphocytic infiltration in the glands or elevated levels of SSA or SSB autoantibodies in the serum, which may be linked to the downregulation of the toll-like receptor 8 ( Tlr8 ). By contrast, salivary gland biopsies of SjD patients showed increased STIM1 and TLR8 expression, and induction of SOCE in a salivary gland cell line increased the expression of TLR8 . Our data demonstrate that SOCE is an important activator of ANO1 function and saliva fluid secretion in salivary glands. They also provide a novel link between SOCE and TLR8 signaling which may explain why loss of SOCE does not result in SjD.
Collapse
|
8
|
Tang Y, Zhou Y, Wang X, Che N, Tian J, Man K, Rui K, Peng N, Lu L. The role of epithelial cells in the immunopathogenesis of Sjögren's syndrome. J Leukoc Biol 2024; 115:57-67. [PMID: 37134025 DOI: 10.1093/jleuko/qiad049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Sjögren's syndrome is a systemic autoimmune disease characterized by dysfunction of the affected exocrine glands. Lymphocytic infiltration within the inflamed glands and aberrant B-cell hyperactivation are the two salient pathologic features in Sjögren's syndrome. Increasing evidence indicates that salivary gland epithelial cells act as a key regulator in the pathogenesis of Sjögren's syndrome, as revealed by the dysregulated innate immune signaling pathways in salivary gland epithelium and increased expression of various proinflammatory molecules as well as their interaction with immune cells. In addition, salivary gland epithelial cells can regulate adaptive immune responses as nonprofessional antigen-presenting cells and promote the activation and differentiation of infiltrated immune cells. Moreover, the local inflammatory milieu can modulate the survival of salivary gland epithelial cells, leading to enhanced apoptosis and pyroptosis with the release of intracellular autoantigens, which further contributes to SG autoimmune inflammation and tissue destruction in Sjögren's syndrome. Herein, we reviewed recent advances in elucidating the role of salivary gland epithelial cells in the pathogenesis of Sjögren's syndrome, which may provide rationales for potential therapeutic targeting of salivary gland epithelial cells to alleviate salivary gland dysfunction alongside treatments with immunosuppressive reagents in Sjögren's syndrome.
Collapse
Affiliation(s)
- Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Yingbo Zhou
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Xiaoran Wang
- Department of Rheumatology, The Second People's Hospital of Three Gorges University, College street, Xiling District, Yichang, China
| | - Nan Che
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Gulou District, Nanjing, China
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Jiefang Road, Jingkou District, Zhenjiang, China
| | - Kwan Man
- Department of Surgery, School of Clinical Medicine, Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Jiefang Road, Jingkou District, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology, The Second People's Hospital of Three Gorges University, College street, Xiling District, Yichang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Sha Tin, New Territories, Hong Kong, China
| |
Collapse
|
9
|
Horai Y, Shimizu T, Umeda M, Nishihata SY, Nakamura H, Kawakami A. Current Views on Pathophysiology and Potential Therapeutic Targets in Sjögren's Syndrome: A Review from the Perspective of Viral Infections, Toll-like Receptors, and Long-Noncoding RNAs. J Clin Med 2023; 12:5873. [PMID: 37762814 PMCID: PMC10531551 DOI: 10.3390/jcm12185873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Sjögren's syndrome (SS) is a rheumatic disease characterized by sicca and extraglandular symptoms, such as interstitial lung disease and renal tubular acidosis. SS potentially affects the prognosis of patients, especially in cases of complicated extraglandular symptoms; however, only symptomatic therapies against xerophthalmia and xerostomia are currently included in the practice guidelines as recommended therapies for SS. Considering that SS is presumed to be a multifactorial entity caused by genetic and environmental factors, a multidisciplinary approach is necessary to clarify the whole picture of its pathogenesis and to develop disease-specific therapies for SS. This review discusses past achievements and future prospects for pursuing the pathophysiology and therapeutic targets for SS, especially from the perspectives of viral infections, toll-like receptors (TLRs), long-noncoding RNAs (lncRNAs), and related signals. Based on the emerging roles of viral infections, TLRs, long-noncoding RNAs and related signals, antiviral therapy, hydroxychloroquine, and vitamin D may lower the risk of or mitigate SS. Janus-kinase (JAK) inhibitors are also potential novel therapeutic options for several rheumatic diseases involving the JAK-signal transducer and activator of transcription pathways, which are yet to be ascertained in a randomized controlled study targeting SS.
Collapse
Affiliation(s)
- Yoshiro Horai
- Department of Rheumatology, Sasebo City General Hospital, Sasebo 857-8511, Japan
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (T.S.); (M.U.); (A.K.)
| | - Toshimasa Shimizu
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (T.S.); (M.U.); (A.K.)
- Clinical Research Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Masataka Umeda
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (T.S.); (M.U.); (A.K.)
| | - Shin-Ya Nishihata
- Department of Rheumatology, National Hospital Organization Ureshino Medical Center, Ureshino 843-0393, Japan;
| | - Hideki Nakamura
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (T.S.); (M.U.); (A.K.)
| |
Collapse
|
10
|
Nishihata SY, Shimizu T, Umeda M, Furukawa K, Ohyama K, Kawakami A, Nakamura H. The Toll-like Receptor 7-Mediated Ro52 Antigen-Presenting Pathway in the Salivary Gland Epithelial Cells of Sjögren's Syndrome. J Clin Med 2023; 12:4423. [PMID: 37445456 DOI: 10.3390/jcm12134423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVE To investigate whether stimulation with toll-like receptor (TLR) 7 leads to pathways that proceed to tripartite motif-containing protein 21 (TRIM21) or Ro52/SS-A antigen presentation through major histocompatibility complex (MHC) class I in salivary gland epithelial cells (SGECs) from Sjögren's syndrome (SS) patients. DESIGN AND METHODS Cultured SGECs from SS patients were stimulated with TLR7 agonist, loxoribine, and interferon-β. Cell lysates immunoprecipitated by anti-MHC class I antibody were analyzed by Western blotting. The immunofluorescence of salivary gland tissue from SS and non-SS subjects and cultured TLR7-stimulated SGECs was examined. RESULTS Significantly increased MHC class I expression was observed in SS patients' ducts versus non-SS ducts; no significant difference was detected for ubiquitin. Upregulated MHC class I in the cell membrane and cytoplasm and augmented Ro52 expression were observed in SGECs stimulated with TLR7. The formation of peptide-loading complex (PLC), including tapasin, calreticulin, transporter associated with antigen processing 1, and endoplasmic reticulum-resident protein 57 in labial salivary glands (LSGs) from SS patients, was dominantly observed and colocalized with MHC class I, which was confirmed in TLR7-stimulated SGEC samples. CONCLUSION These findings suggest that the TLR7 stimulation of SS patients' SGECs advances the process toward the antigen presentation of TRIM21/Ro52-SS-A via MHC class I.
Collapse
Affiliation(s)
- Shin-Ya Nishihata
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Toshimasa Shimizu
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Masataka Umeda
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Kaori Furukawa
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Kaname Ohyama
- Department of Molecular Pathochemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hideki Nakamura
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 113-8602, Japan
| |
Collapse
|
11
|
Punnanitinont A, Kramer JM. Sex-specific differences in primary Sjögren's disease. FRONTIERS IN DENTAL MEDICINE 2023; 4:1168645. [PMID: 39916928 PMCID: PMC11797869 DOI: 10.3389/fdmed.2023.1168645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/28/2023] [Indexed: 02/09/2025] Open
Abstract
Many autoimmune diseases show a striking female sex predilection, including primary Sjögren's disease (pSD). Patients with pSD display exocrine gland pathology, such as salivary hypofunction and salivary and lacrimal gland inflammation. Moreover, many serious systemic disease manifestations are well-documented, including interstitial nephritis, hypergammaglobulinemia and neuropathies. Of note, women and men with pSD display distinct clinical phenotypes. While the underlying reasons for these clinical observations were poorly understood for many years, recent studies provide mechanistic insights into the specific regulatory landscapes that mediate female susceptibility to autoimmunity. We will review factors that contribute to the female sex bias, with an emphasis on those that are most relevant to pSD pathogenesis. Specifically, we will focus on sex hormones in disease, genetic alterations that likely contribute to the significant disease prevalence in females, and studies that provide evidence for the role of the gut microbiota in disease. Lastly, we will discuss therapeutics that are in clinical trials for pSD that may be particularly efficacious in targeting signaling networks that mediate inflammation in a sex-specific manner.
Collapse
Affiliation(s)
| | - Jill M. Kramer
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
12
|
Zeng L, Chen K, Xiao F, Zhu CY, Bai JY, Tan S, Long L, Wang Y, Zhou Q. Potential common molecular mechanisms between Sjögren syndrome and inclusion body myositis: a bioinformatic analysis and in vivo validation. Front Immunol 2023; 14:1161476. [PMID: 37153570 PMCID: PMC10160489 DOI: 10.3389/fimmu.2023.1161476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Background Inclusion body myositis (IBM) is a slowly progressive inflammatory myopathy that typically affects the quadriceps and finger flexors. Sjögren's syndrome (SS), an autoimmune disorder characterized by lymphocytic infiltration of exocrine glands has been reported to share common genetic and autoimmune pathways with IBM. However, the exact mechanism underlying their commonality remains unclear. In this study, we investigated the common pathological mechanisms involved in both SS and IBM using a bioinformatic approach. Methods IBM and SS gene expression profiles were obtained from the Gene Expression Omnibus (GEO). SS and IBM coexpression modules were identified using weighted gene coexpression network analysis (WGCNA), and differentially expressed gene (DEG) analysis was applied to identify their shared DEGs. The hidden biological pathways were revealed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Furthermore, protein-protein interaction (PPI) networks, cluster analyses, and hub shared gene identification were conducted. The expression of hub genes was validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). We then analyzed immune cell abundance patterns in SS and IBM using single-sample gene set enrichment analysis (ssGSEA) and investigated their association with hub genes. Finally, NetworkAnalyst was used to construct a common transcription factor (TF)-gene network. Results Using WGCNA, we found that 172 intersecting genes were closely related to viral infection and antigen processing/presentation. Based on DEG analysis, 29 shared genes were found to be upregulated and enriched in similar biological pathways. By intersecting the top 20 potential hub genes from the WGCNA and DEG sets, three shared hub genes (PSMB9, CD74, and HLA-F) were derived and validated to be active transcripts, which all exhibited diagnostic values for SS and IBM. Furthermore, ssGSEA showed similar infiltration profiles in IBM and SS, and the hub genes were positively correlated with the abundance of immune cells. Ultimately, two TFs (HDGF and WRNIP1) were identified as possible key TFs. Conclusion Our study identified that IBM shares common immunologic and transcriptional pathways with SS, such as viral infection and antigen processing/presentation. Furthermore, both IBM and SS have almost identical immune infiltration microenvironments, indicating similar immune responses may contribute to their association.
Collapse
Affiliation(s)
- Li Zeng
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kai Chen
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Xiao
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chun-yan Zhu
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia-ying Bai
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Song Tan
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Long
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Qiao Zhou, ; Yi Wang, ; Li Long,
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Qiao Zhou, ; Yi Wang, ; Li Long,
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Qiao Zhou, ; Yi Wang, ; Li Long,
| |
Collapse
|
13
|
Punnanitinont A, Kasperek EM, Kiripolsky J, Zhu C, Miecznikowski JC, Kramer JM. TLR7 agonism accelerates disease in a mouse model of primary Sjögren's syndrome and drives expansion of T-bet + B cells. Front Immunol 2022; 13:1034336. [PMID: 36591307 PMCID: PMC9799719 DOI: 10.3389/fimmu.2022.1034336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterized by chronic inflammation of exocrine tissue, resulting in loss of tears and saliva. Patients also experience many extra-glandular disease manifestations. Treatment for pSS is palliative, and there are currently no treatments available that target disease etiology. Previous studies in our lab demonstrated that MyD88 is crucial for pSS pathogenesis in the NOD.B10Sn-H2b (NOD.B10) pSS mouse model, although the way in which MyD88-dependent pathways become activated in disease remains unknown. Based on its importance in other autoimmune diseases, we hypothesized that TLR7 activation accelerates pSS pathogenesis. We administered the TLR7 agonist Imiquimod (Imq) or sham treatment to pre-disease NOD.B10 females for 6 weeks. Parallel experiments were performed in age and sex-matched C57BL/10 controls. Imq-treated pSS animals exhibited cervical lymphadenopathy, splenomegaly, and expansion of TLR7-expressing B cells. Robust lymphocytic infiltration of exocrine tissues, kidney and lung was observed in pSS mice following treatment with Imq. TLR7 agonism also induced salivary hypofunction in pSS mice, which is a hallmark of disease. Anti-nuclear autoantibodies, including Ro (SSA) and La (SSB) were increased in pSS mice following Imq administration. Cervical lymph nodes from Imq-treated NOD.B10 animals demonstrated an increase in the percentage of activated/memory CD4+ T cells. Finally, T-bet+ B cells were expanded in the spleens of Imq-treated pSS mice. Thus, activation of TLR7 accelerates local and systemic disease and promotes expansion of T-bet-expressing B cells in pSS.
Collapse
Affiliation(s)
- Achamaporn Punnanitinont
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Eileen M. Kasperek
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jeremy Kiripolsky
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Chengsong Zhu
- Department of Immunology, Microarray & Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jeffrey C. Miecznikowski
- Department of Biostatistics, School of Public Health and Health Professions, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jill M. Kramer
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States,*Correspondence: Jill M. Kramer,
| |
Collapse
|
14
|
Alexopoulou L. Nucleic acid-sensing toll-like receptors: Important players in Sjögren’s syndrome. Front Immunol 2022; 13:980400. [PMID: 36389822 PMCID: PMC9659959 DOI: 10.3389/fimmu.2022.980400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Sjögren’s syndrome (SS) is a chronic systemic autoimmune disease that affects the salivary and lacrimal glands, as well as other organ systems like the lungs, kidneys and nervous system. SS can occur alone or in combination with another autoimmune disease, such as systemic lupus erythematosus (SLE) or rheumatoid arthritis. The etiology of SS is unknown but recent studies have revealed the implication of the activation of innate immune receptors, including Toll-like receptors (TLRs), mainly through the detection of endogenous nucleic acids, in the pathogenesis of systemic autoimmune diseases. Studies on SS mouse models suggest that TLRs and especially TLR7 that detects single-stranded RNA of microbial or endogenous origin can drive the development of SS and findings in SS patients corroborate those in mouse models. In this review, we will give an overview of the function and signaling of nucleic acid-sensing TLRs, the interplay of TLR7 with TLR8 and TLR9 in the context of autoimmunity, summarize the evidence for the critical role of TLR7 in the pathogenesis of SS and present a possible connection between SARS-CoV-2 and SS.
Collapse
|
15
|
Ji J, Zhang X, Ling Y, Tian J, Wang Y, Luo Y, Zhu R, Zhou Y, Zhu T, Wang L, Zhu H. Hsa_circ_0008301 as a potential biomarker of disease activity for primary Sjogren's syndrome: Increased expression in peripheral blood of patients with primary Sjogren's syndrome. Int Immunopharmacol 2022; 112:109231. [PMID: 36113315 DOI: 10.1016/j.intimp.2022.109231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To explore the expression level, association with disease activity and clinical significance of hsa_circ_0008301 in the peripheral blood of patients with primary Sjögren's syndrome (pSS). METHODS We selected 70 pSS patients hospitalized under the Rheumatology service line at the General Hospital of Ningxia Medical University from September 2018 to June 2021 as the disease group, in which general data and clinical indicators were collected. Fifty-three patients with healthy physical examinations for the same period were selected as the healthy control group, and 32 patients with non-pSS rheumatic diseases were selected as the disease control group. We collected peripheral blood samples and used fluorescence quantitative PCR to detect the expression level of hsa_circ_0008301. In addition, we analyzed the association of the expression level of hsa_circ_0008301 with the clinical characteristics and disease activity of pSS patients. A receiver operating characteristic curve was used to evaluate the diagnosis and the disease activity value of hsa_circ_0008301 in patients with pSS. Meanwhile, we analyzed the differential expression of hsa_circ_0008301 in 24 pSS patients selected from the disease group before and after treatment. RESULTS The relative expression of hsa_circ_0008301 in the peripheral blood of pSS patients was significantly higher than that in the control groups including healthy control group and disease control group. The expression level of hsa_circ_0008301 was high in pSS patients with a course of disease ≥ 10 years, fatigue symptoms, platelets < 100*10^9/L, erythrocyte sedimentation rate ≥ 50 mm/h, immunoglobulin IgG > 16 g/L, complement C3 < 0.9 g/L, ESSDAI score ≥ 5 and positively correlated with the above groups. Furthermore, ROC analysis showed that hsa_circ_0008301 was statistically significant between pSS patients and healthy controls. We selected patients from the disease group before and after treatment and showed that the expression level of hsa_circ_0008301 decreased significantly after treatment, compared with before. The area under the curve (AUC) was 0.825 (95% CI: 0.754 ∼ 0.897; P < 0.0001). The AUC of hsa_circ_0008301 in pSS patients and the disease control group was 0.673 (95% CI: 0.563 ∼ 0.782; P = 0.005), the sensitivity was 40.00%, the specificity was 93.70%, the optimal truncation value was > 0.0420, and the maximum Youden index was 0.337. In addition, ROC analysis revealed that hsa_circ_0008301 was statistically significant between disease-active patients and stable patients. The AUC value was 0.681 (95% CI: 0.553 ∼ 0.809; P = 0.010), the sensitivity was 65.90%, the specificity was 72.40%, the optimal truncation value was > 0.0285, and the maximum Youden index was 0.383. ROC analysis indicated that hsa_circ_0008301 has some value in the diagnosis and disease activity of patients with pSS. Comparison of 24 pSS patients selected from the disease group before and after treatment showed that the expression level of hsa_circ_0008301 decreased significantly after treatment compared with before treatment (Z = - 4.257, P < 0.0001). ROC analysis indicated that hsa_circ_0008301 has some value in the diagnosis and disease activity of patients with pSS. CONCLUSIONS Hsa_circ_0008301 is expressed in higher levels in the peripheral blood of patients with pSS, which is related to the disease activity. It may be involved in the occurrence and development of pSS and may have a potential biomarker for the disease.
Collapse
Affiliation(s)
- Jinghui Ji
- Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Xiaoyu Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, Guangdong, China; Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, Guangdong, China
| | - Yitong Ling
- Department of Neurology, Rizhao People's Hospital, Rizhao 276826, Shandong, China
| | - Jinhai Tian
- Biochip Center, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yi Wang
- Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yunxia Luo
- Department of Internal medicine 2, Changdu People's Hospital, Changdu 854000, Xizang, China
| | - Rong Zhu
- Department of Rheumatology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yan Zhou
- Department of Rheumatology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Tiantian Zhu
- Yinchuan Yiyang Geriatric Hospital, Yinchuan 750004, Ningxia, China
| | - Libin Wang
- Biochip Center, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Hong Zhu
- Department of Rheumatology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
16
|
Luo H, Zhou X. Bioinformatics analysis of potential common pathogenic mechanisms for COVID-19 infection and primary Sjogren’s syndrome. Front Immunol 2022; 13:938837. [PMID: 35958619 PMCID: PMC9360424 DOI: 10.3389/fimmu.2022.938837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
BackgroundAccumulating evidence has revealed that the prevalence of Coronavirus 2019 (COVID-19) was significantly higher in patients with primary Sjogren’s syndrome (pSS) compared to the general population. However, the mechanism remains incompletely elucidated. This study aimed to further investigate the molecular mechanisms underlying the development of this complication.MethodsThe gene expression profiles of COVID-19 (GSE157103) and pSS (GSE40611) were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the common differentially expressed genes (DEGs) for pSS and COVID-19, functional annotation, protein-protein interaction (PPI) network, module construction and hub gene identification were performed. Finally, we constructed transcription factor (TF)-gene regulatory network and TF-miRNA regulatory network for hub genes.ResultsA total of 40 common DEGs were selected for subsequent analyses. Functional analyses showed that cellular components and metabolic pathways collectively participated in the development and progression of pSS and COVID-19. Finally, 12 significant hub genes were identified using the cytoHubba plugin, including CMPK2, TYMS, RRM2, HERC5, IFI44L, IFI44, IFIT2, IFIT1, IFIT3, MX1, CDCA2 and TOP2A, which had preferable values as diagnostic markers for COVID-19 and pSS.ConclusionsOur study reveals common pathogenesis of pSS and COVID-19. These common pathways and pivotal genes may provide new ideas for further mechanistic studies.
Collapse
Affiliation(s)
- Hong Luo
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Zhou
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Xia Zhou,
| |
Collapse
|
17
|
The Yin and Yang of toll-like receptors in endothelial dysfunction. Int Immunopharmacol 2022; 108:108768. [DOI: 10.1016/j.intimp.2022.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
|
18
|
Witas R, Shen Y, Nguyen CQ. Bone marrow-derived macrophages from a murine model of Sjögren's syndrome demonstrate an aberrant, inflammatory response to apoptotic cells. Sci Rep 2022; 12:8593. [PMID: 35597820 PMCID: PMC9124194 DOI: 10.1038/s41598-022-12608-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Sjögren's syndrome (SjS) is a female-dominated autoimmune disease involving lymphocytic infiltration of the exocrine glands. We have previously demonstrated cleavage of the TAM (Tyro3, Axl, Mer) receptor Mer is enhanced in SjS, leading to defective efferocytosis. Mer also plays a role in modulating phagocyte inflammatory response to apoptotic cells. Here we investigated the SjS macrophage response to apoptotic cells (AC). Bone marrow-derived macrophages (BMDMs) from SjS-susceptible (SjSs) C57BL/6.NOD-Aec1Aec2 mice and C57BL/6 (B6) controls were treated with either AC or CpG-oligodeoxynucleotides. RNA was collected from macrophages and bulk sequencing was performed to analyze transcripts. Cytokine expression was confirmed by Bio-plex. RT-qPCR was used to determine toll-like receptor (TLR) 7 and 9 involvement in BMDM inflammatory response to apoptotic cells. SjSS BMDMs exhibited a distinct transcriptional profile involving upregulation of a broad array of inflammatory genes that were not elevated in B6 BMDMs by AC. Inhibition of TLR 7 and 9 was found to limit the inflammatory response of SjSS BMDMs to ACs. ACs elicit an inflammatory reaction in SjSS BMDMs distinct from that observed in B6 BMDMs. This discovery of aberrant macrophage behavior in SjS in conjunction with previously described efferocytosis defects suggests an expanded role for macrophages in SjS, where uncleared dead cells stimulate an inflammatory response through macrophage TLRs recruiting lymphocytes, participating in co-stimulation and establishing an environment conducive to autoimmunity.
Collapse
Affiliation(s)
- Richard Witas
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, PO Box 110880, Gainesville, FL, 32611-0880, USA.,Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Yiran Shen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, PO Box 110880, Gainesville, FL, 32611-0880, USA
| | - Cuong Q Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, PO Box 110880, Gainesville, FL, 32611-0880, USA. .,Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA. .,Center of Orphaned Autoimmune Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
19
|
Cui J, Li H, Wang T, Shen Q, Yang Y, Yu X, Hu H. Novel Immune-Related Genetic Expression for Primary Sjögren's Syndrome. Front Med (Lausanne) 2022; 8:719958. [PMID: 35047519 PMCID: PMC8761677 DOI: 10.3389/fmed.2021.719958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To identify novel immune-related genes expressed in primary Sjögren's syndrome (pSS). Methods: Gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were screened. The differences in immune cell proportion between normal and diseased tissues were compared, weighted gene co-expression network analysis was conducted to identify key modules, followed by a protein–protein interaction (PPI) network generation and enrichment analysis. The feature genes were screened and verified using the GEO datasets and quantitative real-time PCR (RT-qPCR). Results: A total of 345 DEGs were identified, and the proportions of gamma delta T cells, memory B cells, regulatory T cells (Tregs), and activated dendritic cells differed significantly between the control and pSS groups. The turquoise module indicated the highest correlation with pSS, and 252 key genes were identified. The PPI network of key genes showed that RPL9, RBX1, and RPL31 had a relatively higher degree. In addition, the key genes were mainly enriched in coronavirus disease-COVID-2019, hepatitis C, and influenza A. Fourteen feature genes were obtained using the support vector machine model, and two subtypes were identified. The genes in the two subtypes were mainly enriched in the JAK-STAT, p53, and toll-like receptor signaling pathways. The majority of the feature genes were upregulated in the pSS group, verified using the GEO datasets and RT-qPCR analysis. Conclusions: Memory B cells, gamma delta T cells, Tregs, activated dendritic cells, RPL9, RBX1, RPL31, and the feature genes possible play vital roles in the development of pSS.
Collapse
Affiliation(s)
- Jiajia Cui
- Department of Rheumatology and Immunology, East Hospital of the Second People's Hospital of Lianyungang City, Lianyungang, China
| | - Hui Li
- Department of Rheumatology and Immunology, East Hospital of the Second People's Hospital of Lianyungang City, Lianyungang, China
| | - Tianling Wang
- Department of Rheumatology and Immunology, East Hospital of the Second People's Hospital of Lianyungang City, Lianyungang, China
| | - Qin Shen
- Department of Rheumatology and Immunology, East Hospital of the Second People's Hospital of Lianyungang City, Lianyungang, China
| | - Yuanhao Yang
- Department of Rheumatology and Immunology, East Hospital of the Second People's Hospital of Lianyungang City, Lianyungang, China
| | - Xiujuan Yu
- Department of Rheumatology and Immunology, East Hospital of the Second People's Hospital of Lianyungang City, Lianyungang, China
| | - Huaixia Hu
- Department of Rheumatology and Immunology, East Hospital of the Second People's Hospital of Lianyungang City, Lianyungang, China
| |
Collapse
|
20
|
Chang SH, Park SH, Cho ML, Choi Y. Why Should We Consider Potential Roles of Oral Bacteria in the Pathogenesis of Sjögren Syndrome? Immune Netw 2022; 22:e32. [PMID: 36081525 PMCID: PMC9433196 DOI: 10.4110/in.2022.22.e32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 12/01/2022] Open
Abstract
Sjögren syndrome (SS) is a chronic autoimmune disorder that primarily targets the salivary and lacrimal glands. The pathology of these exocrine glands is characterized by periductal focal lymphocytic infiltrates, and both T cell-mediated tissue injury and autoantibodies that interfere with the secretion process underlie glandular hypofunction. In addition to these adaptive mechanisms, multiple innate immune pathways are dysregulated, particularly in the salivary gland epithelium. Our understanding of the pathogenetic mechanisms of SS has substantially improved during the past decade. In contrast to viral infection, bacterial infection has never been considered in the pathogenesis of SS. In this review, oral dysbiosis associated with SS and evidence for bacterial infection of the salivary glands in SS were reviewed. In addition, the potential contributions of bacterial infection to innate activation of ductal epithelial cells, plasmacytoid dendritic cells, and B cells and to the breach of tolerance via bystander activation of autoreactive T cells and molecular mimicry were discussed. The added roles of bacteria may extend our understanding of the pathogenetic mechanisms and therapeutic approaches for this autoimmune exocrinopathy.
Collapse
Affiliation(s)
- Sung-Ho Chang
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Sung-Hwan Park
- Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mi-La Cho
- Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Youngnim Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
21
|
Wilson NR, Bover L, Konopleva M, Han L, Neelapu S, Pemmaraju N. CD303 (BDCA-2) - a potential novel target for therapy in hematologic malignancies. Leuk Lymphoma 2021; 63:19-30. [PMID: 34486917 DOI: 10.1080/10428194.2021.1975192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) serve as immunoregulatory antigen-presenting cells that play a role in various inflammatory, viral, and malignant conditions. Malignant proliferation of pDCs is implicated in the pathogenesis of certain hematologic cancers, specifically blastic plasmacytoid dendritic cell neoplasm (BPDCN) and acute myelogenous leukemia with clonal expansion of pDC (pDC-AML). In recent years, BPDCN and pDC-AML have been successfully treated with targeted therapy of pDC-specific surface marker, CD123. However, relapsed and refractory BPDCN remains an elusive cancer, with limited therapeutic options. CD303 is another specific surface marker of human pDCs, centrally involved in antigen presentation and immune tolerance. Monoclonal antibodies directed against CD303 have been studied in preclinical models and have achieved disease control in patients with cutaneous lupus erythematosus. We performed a comprehensive review of benign and malignant disorders in which CD303 have been studied, as there may be a potential future CD303-directed therapy for many of these conditions.
Collapse
Affiliation(s)
- Nathaniel R Wilson
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura Bover
- Departments of Genomic Medicine and Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Lina Han
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sattva Neelapu
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Role of the Innate Immunity Signaling Pathway in the Pathogenesis of Sjögren's Syndrome. Int J Mol Sci 2021; 22:ijms22063090. [PMID: 33803026 PMCID: PMC8002742 DOI: 10.3390/ijms22063090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Sjögren’s syndrome (SS) is a systemic autoimmune disease characterized by chronic inflammation of the salivary and lacrimal glands and extra-glandular lesions. Adaptive immune response including T- and B-cell activation contributes to the development of SS. However, its pathogenesis has not yet been elucidated. In addition, several patients with SS present with the type I interferon (IFN) signature, which is the upregulation of the IFN-stimulated genes induced by type I IFN. Thus, innate immune responses including type I IFN activity are associated with SS pathogenesis. Recent studies have revealed the presence of activation pattern recognition receptors (PRRs) including Toll-like receptors, RNA sensor retinoic acid-inducible gene I and melanoma differentiation-associated gene 5, and inflammasomes in infiltrating and epithelial cells of the salivary glands among patients with SS. In addition, the activation of PRRs via the downstream pathway such as the type I IFN signature and nuclear factor kappa B can directly cause organ inflammation, and it is correlated with the activation of adaptive immune responses. Therefore, this study assessed the role of the innate immune signal pathway in the development of inflammation and immune abnormalities in SS.
Collapse
|
23
|
Zhang S, Qu J, Wang L, Li M, Xu D, Zhao Y, Zhang F, Zeng X. Activation of Toll-Like Receptor 7 Signaling Pathway in Primary Sjögren's Syndrome-Associated Thrombocytopenia. Front Immunol 2021; 12:637659. [PMID: 33767707 PMCID: PMC7986855 DOI: 10.3389/fimmu.2021.637659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Objectives: To identify the importance of the Toll-like receptor (TLR) pathway using B cell high-throughput sequencing and to explore the participation of the TLR7 signaling pathway in primary Sjogren's syndrome (pSS)-associated thrombocytopenia in patient and mouse models. Methods: High-throughput gene sequencing and bioinformatic analyses were performed for 9 patients: 3 patients with pSS and normal platelet counts, 3 patients with pSS-associated thrombocytopenia, and 3 healthy controls. Twenty-four patients with pSS were recruited for validation. Twenty-four non-obese diabetic (NOD) mice were divided into the TLR7 pathway inhibition (CA-4948), activation (Resiquimod), and control groups. Serum, peripheral blood, bone marrow, and submandibular glands were collected for thrombocytopenia and TLR7 pathway analysis. Results: Seven hub genes enriched in the TLR pathway were identified. Compared to that in control patients, the expression of interleukin (IL)-8 and TLR7 pathway molecules in B-cells was higher in patients with pSS-associated thrombocytopenia. Platelet counts exhibited a negative correlation with serum IL-1β and IL-8 levels. In NOD mice, CA-4948/Resiquimod treatment induced the downregulation/upregulation of the TLR7 pathway, leading to consistent elevation/reduction of platelet counts. Megakaryocyte counts in the bone marrow showed an increasing trend in the Resiquimod group, with more naked nuclei. The levels of IL-1β and IL-8 in the serum and submandibular gland tissue increased in the Resiquimod group compared with that in CA-4948 and control groups. Conclusion: pSS-associated thrombocytopenia may be a subset of the systemic inflammatory state as the TLR7 signaling pathway was upregulated in B cells of patients with pSS-associated thrombocytopenia, and activation of the TLR7 pathway led to a thrombocytopenia phenotype in NOD mice.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jingge Qu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
24
|
Huijser E, Versnel MA. Making Sense of Intracellular Nucleic Acid Sensing in Type I Interferon Activation in Sjögren's Syndrome. J Clin Med 2021; 10:532. [PMID: 33540529 PMCID: PMC7867173 DOI: 10.3390/jcm10030532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic autoimmune rheumatic disease characterized by dryness of the eyes and mucous membranes, which can be accompanied by various extraglandular autoimmune manifestations. The majority of patients exhibit persistent systemic activation of the type I interferon (IFN) system, a feature that is shared with other systemic autoimmune diseases. Type I IFNs are integral to anti-viral immunity and are produced in response to stimulation of pattern recognition receptors, among which nucleic acid (NA) receptors. Dysregulated detection of endogenous NAs has been widely implicated in the pathogenesis of systemic autoimmune diseases. Stimulation of endosomal Toll-like receptors by NA-containing immune complexes are considered to contribute to the systemic type I IFN activation. Accumulating evidence suggest additional roles for cytosolic NA-sensing pathways in the pathogenesis of systemic autoimmune rheumatic diseases. In this review, we will provide an overview of the functions and signaling of intracellular RNA- and DNA-sensing receptors and summarize the evidence for a potential role of these receptors in the pathogenesis of pSS and the sustained systemic type I IFN activation.
Collapse
Affiliation(s)
| | - Marjan A. Versnel
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| |
Collapse
|
25
|
Debreceni IL, Chimenti MS, Serreze DV, Geurts AM, Chen YG, Lieberman SM. Toll-Like Receptor 7 Is Required for Lacrimal Gland Autoimmunity and Type 1 Diabetes Development in Male Nonobese Diabetic Mice. Int J Mol Sci 2020; 21:E9478. [PMID: 33322152 PMCID: PMC7764018 DOI: 10.3390/ijms21249478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022] Open
Abstract
Sjögren syndrome (SS) is an immunologically complex, chronic autoimmune disease targeting lacrimal and salivary glands. Nonobese diabetic (NOD) mice spontaneously develop inflammation of lacrimal and salivary glands with histopathological features similar to SS in humans including focal lymphocytic infiltrates in the affected glands. The innate immune signals driving lymphocytic infiltration of these glands are not well-defined. Here we evaluate the role of Toll-like receptor (TLR) 7 in the development of SS-like manifestations in NOD mice. We created a Tlr7 knockout NOD mouse strain and performed histological and gene expression studies to characterize the effects of TLR7 on autoimmunity development. TLR7 was required for male-specific lacrimal gland inflammation but not for female-specific salivary gland inflammation. Moreover, TLR7 was required for type 1 diabetes development in male but not female NOD mice. RNA sequencing demonstrated that TLR7 was associated with a type I interferon (IFN) response and a type I IFN-independent B cell response in the lacrimal glands. Together these studies identify a previously unappreciated pathogenic role for TLR7 in lacrimal gland autoimmunity and T1D development in male NOD mice adding to the growing body of evidence supporting sex differences in mechanisms of autoimmune disease in NOD mice.
Collapse
Affiliation(s)
- Ivy L. Debreceni
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Immunology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | - Michael S. Chimenti
- Iowa Institute of Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | | | - Aron M. Geurts
- Department of Physiology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Yi-Guang Chen
- Department of Pediatrics, Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Scott M. Lieberman
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Immunology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
26
|
Wang B, Chen S, Zheng Q, Li Y, Zhang X, Xuan J, Liu Y, Shi G. Early diagnosis and treatment for Sjögren's syndrome: current challenges, redefined disease stages and future prospects. J Autoimmun 2020; 117:102590. [PMID: 33310686 DOI: 10.1016/j.jaut.2020.102590] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
There are some challenges and unmet needs in the early diagnosis and management of Sjögren's syndrome (SjS) such as prominent glandular dysfunction at diagnosis and long diagnostic delay. Those challenges are partly attributed to the lack of a good knowledge of the early stages of SjS, which is a major obstacle to delivering appropriate care to SjS patients. Findings from both clinical and experimental studies suggest the plausibility of a redefined SjS course consisting of 4 stages, which includes initiation stage, preclinical stage, asymptomatic SjS stage and overt SjS stage. More studies focusing on the pathological processes and changes during the early stages of SjS are needed. To enable early diagnosis and treatment for SjS, more useful biomarkers of the early stages of SjS need to be identified, and individuals at high risk of SjS development need to be identified. Appropriate screening can be performed to facilitate the early diagnosis of SjS among those high-risk individuals.
Collapse
Affiliation(s)
- Bin Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Shiju Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Qing Zheng
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Yan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Xinwei Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Jingxiu Xuan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China.
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China; Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, 361003, China.
| |
Collapse
|
27
|
Contributions of Major Cell Populations to Sjögren's Syndrome. J Clin Med 2020; 9:jcm9093057. [PMID: 32971904 PMCID: PMC7564211 DOI: 10.3390/jcm9093057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Sjögren’s syndrome (SS) is a female dominated autoimmune disease characterized by lymphocytic infiltration into salivary and lacrimal glands and subsequent exocrine glandular dysfunction. SS also may exhibit a broad array of extraglandular manifestations including an elevated incidence of non-Hodgkin’s B cell lymphoma. The etiology of SS remains poorly understood, yet progress has been made in identifying progressive stages of disease using preclinical mouse models. The roles played by immune cell subtypes within these stages of disease are becoming increasingly well understood, though significant gaps in knowledge still remain. There is evidence for distinct involvement from both innate and adaptive immune cells, where cells of the innate immune system establish a proinflammatory environment characterized by a type I interferon (IFN) signature that facilitates propagation of the disease by further activating T and B cell subsets to generate autoantibodies and participate in glandular destruction. This review will discuss the evidence for participation in disease pathogenesis by various classes of immune cells and glandular epithelial cells based upon data from both preclinical mouse models and human patients. Further examination of the contributions of glandular and immune cell subtypes to SS will be necessary to identify additional therapeutic targets that may lead to better management of the disease.
Collapse
|
28
|
Sisto M, Ribatti D, Lisi S. Understanding the Complexity of Sjögren's Syndrome: Remarkable Progress in Elucidating NF-κB Mechanisms. J Clin Med 2020; 9:jcm9092821. [PMID: 32878252 PMCID: PMC7563658 DOI: 10.3390/jcm9092821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Sjögren’s syndrome (SS) is a systemic autoimmune inflammatory disease with a poorly defined aetiology, which targets exocrine glands (particularly salivary and lachrymal glands), affecting the secretory function. Patients suffering from SS exhibit persistent xerostomia and keratoconjunctivitis sicca. It is now widely acknowledged that a chronic grade of inflammation plays a central role in the initiation, progression, and development of SS. Consistent with its key role in organizing inflammatory responses, numerous recent studies have shown involvement of the transcription factor nuclear factor κ (kappa)-light-chain-enhancer of activated B cells (NF-κB) in the development of this disease. Therefore, chronic inflammation is considered as a critical factor in the disease aetiology, offering hope for the development of new drugs for treatment. The purpose of this review is to describe the current knowledge about the NF-κB-mediated molecular events implicated in the pathogenesis of SS.
Collapse
|
29
|
Rizzo C, Grasso G, Destro Castaniti GM, Ciccia F, Guggino G. Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation. Vaccines (Basel) 2020; 8:vaccines8020272. [PMID: 32503132 PMCID: PMC7349953 DOI: 10.3390/vaccines8020272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Primary Sjogren Syndrome (pSS) is a complex, multifactorial rheumatic disease that mainly targets salivary and lacrimal glands, inducing epithelitis. The cause behind the autoimmunity outbreak in pSS is still elusive; however, it seems related to an aberrant reaction to exogenous triggers such as viruses, combined with individual genetic pre-disposition. For a long time, autoantibodies were considered as the hallmarks of this disease; however, more recently the complex interplay between innate and adaptive immunity as well as the consequent inflammatory process have emerged as the main mechanisms of pSS pathogenesis. The present review will focus on innate cells and on the principal mechanisms of inflammation connected. In the first part, an overview of innate cells involved in pSS pathogenesis is provided, stressing in particular the role of Innate Lymphoid Cells (ILCs). Subsequently we have highlighted the main inflammatory pathways, including intra- and extra-cellular players. A better knowledge of such processes could determine the detection of new therapeutic targets that are a major need for pSS.
Collapse
Affiliation(s)
- Chiara Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (C.R.); (G.G.); (G.M.D.C.)
| | - Giulia Grasso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (C.R.); (G.G.); (G.M.D.C.)
| | - Giulia Maria Destro Castaniti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (C.R.); (G.G.); (G.M.D.C.)
| | - Francesco Ciccia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy;
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (C.R.); (G.G.); (G.M.D.C.)
- Correspondence: ; Tel.: +39-091-6552260
| |
Collapse
|
30
|
Nakamura H, Shimizu T, Kawakami A. Role of Viral Infections in the Pathogenesis of Sjögren's Syndrome: Different Characteristics of Epstein-Barr Virus and HTLV-1. J Clin Med 2020; 9:jcm9051459. [PMID: 32414149 PMCID: PMC7290771 DOI: 10.3390/jcm9051459] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses are possible pathogenic agents in several autoimmune diseases. Sjögren’s syndrome (SS), which involves exocrine dysfunction and the appearance of autoantibodies, shows salivary gland- and lacrimal gland-oriented clinical features. Epstein-Barr virus (EBV) is the most investigated pathogen as a candidate that directly induces the phenotype found in SS. The reactivation of the virus with various stimuli induced a dysregulated form of EBV that has the potential to infect SS-specific B cells and plasma cells that are closely associated with the function of an ectopic lymphoid structure that contains a germinal center (GC) in the salivary glands of individuals with SS. The involvement of human T-cell leukemia virus type 1 (HTLV-1) in SS has been epidemiologically established, but the disease concept of HTLV-1-associated SS remains unexplained due to limited evidence from basic research. Unlike the cell-to-cell contact between lymphocytes, biofilm-like structures are candidates as the mode of HTLV-1 infection of salivary gland epithelial cells (SGECs). HTLV-1 can infect SGECs with enhanced levels of inflammatory cytokines and chemokines that are secreted from SGECs. Regardless of the different targets that viruses have with respect to affinitive lymphocytes, viruses are involved in the formation of pathological alterations with immunological modifications in SS.
Collapse
|