1
|
Meyiah A, Al-Harrasi A, Ur Rehman N, Elkord E. Effect of boswellic acids on the expression of PD-1 and TIGIT immune checkpoints on activated human T cells. Fitoterapia 2025; 181:106401. [PMID: 39909360 DOI: 10.1016/j.fitote.2025.106401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Boswellic acids (BAs) have been documented as anti-inflammatory agents with the potential to regulate immune responses. However, their impacts on the expression level of immune checkpoint (IC) molecules in T cells have never been reported. By using flow cytometric assays, we investigated whether BAs extracted from Boswellia sacra (B. sacra) have any potential effects on the expression of PD-1 and TIGIT immune checkpoints (ICs) on activated T cells in vitro. Interestingly β-BA at a concentration of 50 μM significantly reduced the expression of PD-1 and TIGIT on both activated CD4+ and CD8+ T cells without any cytotoxicity. Additionally, β-KBA significantly reduced the percentages of CD4+PD-1+ and CD8+TIGIT+ T cells at 50 μM concentration. Furthermore, a significant reduction in CD4+PD-1+ T cells was observed following treatment with a lower concentration (25 μM) of β-AKBA. These findings show that BA compounds have the ability to reduce the expression of PD-1 and TIGIT in stimulated human T cells, which might play critical roles in reinvigorating exhausted T cells, indicating their potentials in immunosuppressed disease settings such as cancers and infections. This study is the first to investigate the effects of these compounds on the expression of immune checkpoints in human T cells. Clearly, further investigations are required to assess the mechanism of action of these compounds on ICs, and their efficacy as therapeutic agents in different diseases.
Collapse
Affiliation(s)
- Abdo Meyiah
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates; Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom.
| |
Collapse
|
2
|
Efentakis P, Choustoulaki A, Kwiatkowski G, Varela A, Kostopoulos IV, Tsekenis G, Ntanasis-Stathopoulos I, Georgoulis A, Vorgias CE, Gakiopoulou H, Briasoulis A, Davos CH, Kostomitsopoulos N, Tsitsilonis O, Dimopoulos MA, Terpos E, Chłopicki S, Gavriatopoulou M, Andreadou I. Early microvascular coronary endothelial dysfunction precedes pembrolizumab-induced cardiotoxicity. Preventive role of high dose of atorvastatin. Basic Res Cardiol 2025; 120:263-286. [PMID: 38520533 PMCID: PMC11790778 DOI: 10.1007/s00395-024-01046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
Immune checkpoint inhibitors (ICIs) exhibit remarkable antitumor activity and immune-related cardiotoxicity of unknown pathomechanism. The aim of the study was to investigate the ICI class-dependent cardiotoxicity in vitro and pembrolizumab's (Pem's) cardiotoxicity in vivo, seeking for translational prevention means. Cytotoxicity was investigated in primary cardiomyocytes and splenocytes, incubated with ipilimumab, Pem and avelumab. Pem's cross-reactivity was assessed by circular dichroism (CD) on biotechnologically produced human and murine PD-1 and in silico. C57BL6/J male mice received IgG4 or Pem for 2 and 5 weeks. Echocardiography, histology, and molecular analyses were performed. Coronary blood flow velocity mapping and cardiac magnetic resonance imaging were conducted at 2 weeks. Human EA.hy926 endothelial cells were incubated with Pem-conditioned media from human mononuclear cells, in presence and absence of statins and viability and molecular signaling were assessed. Atorvastatin (20 mg/kg, daily) was administered in vivo, as prophylaxis. Only Pem exerted immune-related cytotoxicity in vitro. Pem's cross-reactivity with the murine PD-1 was confirmed by CD and docking. In vivo, Pem initiated coronary endothelial and diastolic dysfunction at 2 weeks and systolic dysfunction at 5 weeks. At 2 weeks, Pem induced ICAM-1 and iNOS expression and intracardiac leukocyte infiltration. At 5 weeks, Pem exacerbated endothelial activation and triggered cardiac inflammation. Pem led to immune-related cytotoxicity in EA.hy926 cells, which was prevented by atorvastatin. Atorvastatin mitigated functional deficits, by inhibiting endothelial dysfunction in vivo. We established for the first time an in vivo model of Pem-induced cardiotoxicity. Coronary endothelial dysfunction precedes Pem-induced cardiotoxicity, whereas atorvastatin emerges as a novel prophylactic therapy.
Collapse
MESH Headings
- Animals
- Atorvastatin/administration & dosage
- Atorvastatin/pharmacology
- Mice, Inbred C57BL
- Humans
- Male
- Cardiotoxicity/prevention & control
- Antibodies, Monoclonal, Humanized/toxicity
- Mice
- Immune Checkpoint Inhibitors/toxicity
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiopathology
- Endothelium, Vascular/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Coronary Vessels/drug effects
- Coronary Vessels/physiopathology
- Coronary Vessels/metabolism
- Disease Models, Animal
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Antineoplastic Agents, Immunological/toxicity
Collapse
Affiliation(s)
- Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Angeliki Choustoulaki
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| | - Aimilia Varela
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ioannis V Kostopoulos
- Flow Cytometry Unit, Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - George Tsekenis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Georgoulis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Constantinos E Vorgias
- Department of Biochemistry & Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Harikleia Gakiopoulou
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Briasoulis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Ourania Tsitsilonis
- Flow Cytometry Unit, Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stefan Chłopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
- Medical College, Jagiellonian University, Krakow, Poland
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece.
| |
Collapse
|
3
|
Jumaniyazova E, Lokhonina A, Dzhalilova D, Kosyreva A, Fatkhudinov T. Immune Cells in the Tumor Microenvironment of Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:5760. [PMID: 38136307 PMCID: PMC10741982 DOI: 10.3390/cancers15245760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Soft tissue sarcomas (STSs) are a rare heterogeneous group of malignant neoplasms characterized by their aggressive course and poor response to treatment. This determines the relevance of research aimed at studying the pathogenesis of STSs. By now, it is known that STSs is characterized by complex relationships between the tumor cells and immune cells of the microenvironment. Dynamic interactions between tumor cells and components of the microenvironment enhance adaptation to changing environmental conditions, which provides the high aggressive potential of STSs and resistance to antitumor therapy. Today, active research is being conducted to find effective antitumor drugs and to evaluate the possibility of using therapy with immune cells of STS. The difficulty in assessing the efficacy of new antitumor options is primarily due to the high heterogeneity of this group of malignant neoplasms. Studying the role of immune cells in the microenvironment in the progression STSs and resistance to antitumor therapies will provide the discovery of new biomarkers of the disease and the prediction of response to immunotherapy. In addition, it will help to initially divide patients into subgroups of good and poor response to immunotherapy, thus avoiding wasting precious time in selecting the appropriate antitumor agent.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Dzhuliia Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Anna Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
4
|
Recruitment and Expansion of Tregs Cells in the Tumor Environment-How to Target Them? Cancers (Basel) 2021; 13:cancers13081850. [PMID: 33924428 PMCID: PMC8069615 DOI: 10.3390/cancers13081850] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The immune response against cancer is generated by effector T cells, among them cytotoxic CD8+ T cells that destroy cancer cells and helper CD4+ T cells that mediate and support the immune response. This antitumor function of T cells is tightly regulated by a particular subset of CD4+ T cells, named regulatory T cells (Tregs), through different mechanisms. Even if the complete inhibition of Tregs would be extremely harmful due to their tolerogenic role in impeding autoimmune diseases in the periphery, the targeted blockade of their accumulation at tumor sites or their targeted depletion represent a major therapeutic challenge. This review focuses on the mechanisms favoring Treg recruitment, expansion and stabilization in the tumor microenvironment and the therapeutic strategies developed to block these mechanisms. Abstract Regulatory T cells (Tregs) are present in a large majority of solid tumors and are mainly associated with a poor prognosis, as their major function is to inhibit the antitumor immune response contributing to immunosuppression. In this review, we will investigate the mechanisms involved in the recruitment, amplification and stability of Tregs in the tumor microenvironment (TME). We will also review the strategies currently developed to inhibit Tregs’ deleterious impact in the TME by either inhibiting their recruitment, blocking their expansion, favoring their plastic transformation into other CD4+ T-cell subsets, blocking their suppressive function or depleting them specifically in the TME to avoid severe deleterious effects associated with Treg neutralization/depletion in the periphery and normal tissues.
Collapse
|
5
|
Toor SM, Sasidharan Nair V, Saleh R, Taha RZ, Murshed K, Al-Dhaheri M, Khawar M, Ahmed AA, Kurer MA, Abu Nada M, Elkord E. Transcriptome of Tumor-Infiltrating T Cells in Colorectal Cancer Patients Uncovered a Unique Gene Signature in CD4 + T Cells Associated with Poor Disease-Specific Survival. Vaccines (Basel) 2021; 9:vaccines9040334. [PMID: 33916009 PMCID: PMC8065799 DOI: 10.3390/vaccines9040334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is influenced by infiltration of immune cell populations in the tumor microenvironment. While elevated levels of cytotoxic T cells are associated with improved prognosis, limited studies have reported associations between CD4+ T cells and disease outcomes. We recently performed transcriptomic profiling and comparative analyses of sorted CD4+ and CD8+ tumor-infiltrating lymphocytes (TILs) from bulk tumors of CRC patients with varying disease stages. In this study, we compared the transcriptomes of CD4+ with CD8+ TILs. Functional annotation pathway analyses revealed the downregulation of inflammatory response-related genes, while T cell activation and angiogenesis-related genes were upregulated in CD4+ TILs. The top 200 deregulated genes in CD4+ TILs were aligned with the cancer genome atlas (TCGA) CRC dataset to identify a unique gene signature associated with poor prognosis. Moreover, 69 upregulated and 20 downregulated genes showed similar trends of up/downregulation in the TCGA dataset and were used to calculate "poor prognosis score" (ppScore), which was significantly associated with disease-specific survival. High ppScore patients showed lower expression of Treg-, Th1-, and Th17-related genes, and higher expression of Th2-related genes. Our data highlight the significance of T cells within the TME and identify a unique candidate prognostic gene signature for CD4+ TILs in CRC patients.
Collapse
Affiliation(s)
- Salman M. Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar; (S.M.T.); (V.S.N.); (R.S.); (R.Z.T.)
| | - Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar; (S.M.T.); (V.S.N.); (R.S.); (R.Z.T.)
| | - Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar; (S.M.T.); (V.S.N.); (R.S.); (R.Z.T.)
| | - Rowaida Z. Taha
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar; (S.M.T.); (V.S.N.); (R.S.); (R.Z.T.)
| | - Khaled Murshed
- Department of Pathology, Hamad Medical Corporation, P.O. Box 3050 Doha, Qatar;
| | - Mahmood Al-Dhaheri
- Department of Surgery, Hamad Medical Corporation, P.O. Box 3050 Doha, Qatar; (M.A.-D.); (M.K.); (A.A.A.); (M.A.K.); (M.A.N.)
| | - Mahwish Khawar
- Department of Surgery, Hamad Medical Corporation, P.O. Box 3050 Doha, Qatar; (M.A.-D.); (M.K.); (A.A.A.); (M.A.K.); (M.A.N.)
| | - Ayman A. Ahmed
- Department of Surgery, Hamad Medical Corporation, P.O. Box 3050 Doha, Qatar; (M.A.-D.); (M.K.); (A.A.A.); (M.A.K.); (M.A.N.)
| | - Mohamed A. Kurer
- Department of Surgery, Hamad Medical Corporation, P.O. Box 3050 Doha, Qatar; (M.A.-D.); (M.K.); (A.A.A.); (M.A.K.); (M.A.N.)
| | - Mohamed Abu Nada
- Department of Surgery, Hamad Medical Corporation, P.O. Box 3050 Doha, Qatar; (M.A.-D.); (M.K.); (A.A.A.); (M.A.K.); (M.A.N.)
| | - Eyad Elkord
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
- Correspondence: ; Tel.: +44-161-295-5736
| |
Collapse
|
6
|
Inhibition of T-cell-mediated immune response via the PD-1/ PD-L1 axis in cholangiocarcinoma cells. Eur J Pharmacol 2021; 897:173960. [PMID: 33617828 DOI: 10.1016/j.ejphar.2021.173960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022]
Abstract
Cholangiocarcinoma (CCA) is a malignant biliary tract epithelium tumor. The programmed death-1 (PD-1)/programmed receptor-ligand 1 (PD-L1) signaling pathway has been implicated as an immune escape mechanism in several cancers. The present study aimed to assess the expression of PD-L1 on human CCA cell lines and its potential role in suppressing CD8+ T- cell function. A panel of intrahepatic CCA cell lines was evaluated for immune regulatory checkpoint ligands and inflammation markers. Effects of pro-inflammatory cytokine, interferon gamma (IFN-γ), on the expression of immune regulatory checkpoint ligands and inflammation markers were determined. The PD-L1 function was measured by co-culturing CCA cells with lymphocytes. Most of the selected Thai CCA cell lines, including HuCCA-1, RMCCA-1, KKU-100, and KKU-213, expressed higher PD-L1 than normal cholangiocyte MMNK-1 and ANK-1 cells. Both PD-L1 and cyclooxygenase-2 (COX-2) expressions were highest in HuCCA-1 cells. A 48 h treatment with IFN-γ increased the expression of PD-L1 and COX-2 in CCA cells. The expression of CTLA-4 ligands, including H7-1 and H7-2, did not change after IFN-γ treatment. Rofecoxib, a specific COX-2 inhibitor, mitigated IFN-γ-induced PD-L1 expression. After 48 h co-incubation, CD8+ T-cell apoptosis was increased as compared to the control group. Pretreatment of CCA cells with IFN-γ further increased CD8+ T-cell apoptosis. Pembrolizumab, an anti-PD-1 antibody, mitigated CCA cell escape phenomenon. The inhibition of T-cell-mediated immune response via the PD-L1/PD-1 axis are evidenced in intrahepatic CCA. Immunotherapy with checkpoint inhibitor offers a potentially therapeutic strategy for CCA patients; however, further in vivo and clinical studies are required.
Collapse
|
7
|
Molecular Classification and Tumor Microenvironment Characterization of Gallbladder Cancer by Comprehensive Genomic and Transcriptomic Analysis. Cancers (Basel) 2021; 13:cancers13040733. [PMID: 33578820 PMCID: PMC7916565 DOI: 10.3390/cancers13040733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Gallbladder cancer (GBC) is a rare but lethal cancer. Molecular characterization of GBC is insufficient so far, and a comprehensive molecular portrait is warranted to uncover new targets and classify GBC. Clustering analysis of RNA expression revealed two subclasses of 36 GBCs, which reflects the status of the tumor microenvironment (TME) and poor prognosis of GBC, including epithelial–mesenchymal transition (EMT), immune suppression, and the TGF-β signaling pathway. The knockout of miR125B1 in GBC cell lines decreased its invasion ability and altered the EMT pathway. Mutations of the genes related to the TGF-β signaling pathway were enriched in the poor-prognosis/TME-rich cluster of GBCs. This comprehensive molecular analysis provides a new classification of GBCs based on the TME activity, which is involved with EMT and immune suppression for poor prognosis of GBC. This information may be useful for GBC prognosis and therapeutic decision-making. Abstract Gallbladder cancer (GBC), a rare but lethal disease, is often diagnosed at advanced stages. So far, molecular characterization of GBC is insufficient, and a comprehensive molecular portrait is warranted to uncover new targets and classify GBC. We performed a transcriptome analysis of both coding and non-coding RNAs from 36 GBC fresh-frozen samples. The results were integrated with those of comprehensive mutation profiling based on whole-genome or exome sequencing. The clustering analysis of RNA-seq data facilitated the classification of GBCs into two subclasses, characterized by high or low expression levels of TME (tumor microenvironment) genes. A correlation was observed between gene expression and pathological immunostaining. TME-rich tumors showed significantly poor prognosis and higher recurrence rate than TME-poor tumors. TME-rich tumors showed overexpression of genes involved in epithelial-to-mesenchymal transition (EMT) and inflammation or immune suppression, which was validated by immunostaining. One non-coding RNA, miR125B1, exhibited elevated expression in stroma-rich tumors, and miR125B1 knockout in GBC cell lines decreased its invasion ability and altered the EMT pathway. Mutation profiles revealed TP53 (47%) as the most commonly mutated gene, followed by ELF3 (13%) and ARID1A (11%). Mutations of ARID1A, ERBB3, and the genes related to the TGF-β signaling pathway were enriched in TME-rich tumors. This comprehensive analysis demonstrated that TME, EMT, and TGF-β pathway alterations are the main drivers of GBC and provides a new classification of GBCs that may be useful for therapeutic decision-making.
Collapse
|
8
|
Pfister G, Toor SM, Sasidharan Nair V, Elkord E. An evaluation of sorter induced cell stress (SICS) on peripheral blood mononuclear cells (PBMCs) after different sort conditions - Are your sorted cells getting SICS? J Immunol Methods 2020; 487:112902. [DOI: 10.1016/j.jim.2020.112902] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/10/2020] [Accepted: 10/13/2020] [Indexed: 01/02/2023]
|
9
|
Differential gene expression of tumor-infiltrating CD33 + myeloid cells in advanced- versus early-stage colorectal cancer. Cancer Immunol Immunother 2020; 70:803-815. [PMID: 33000418 PMCID: PMC7906947 DOI: 10.1007/s00262-020-02727-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/13/2020] [Indexed: 12/31/2022]
Abstract
Colorectal cancer (CRC) has high mortality rates, especially in patients with advanced disease stages, who often do not respond to therapy. The cellular components of the tumor microenvironment are essentially responsible for dictating disease progression and response to therapy. Expansion of different myeloid cell subsets in CRC tumors has been reported previously. However, tumor-infiltrating myeloid cells have both pro- and anti-tumor roles in disease progression. In this study, we performed transcriptomic profiling of cells of myeloid lineage (CD33+) from bulk CRC tumors at varying disease stages. We identified differentially expressed genes and pathways between CRC patients with advanced stage and early stages. We found that pro-angiogenic and hypoxia-related genes were upregulated, while genes related to immune and inflammatory responses were downregulated in CD33+ myeloid cells from patients with advanced stages, implying that immune cell recruitment and activation could be compromised in advanced disease stages. Moreover, we identified a unique “poor prognosis CD33+ gene signature” by aligning top upregulated and downregulated genes in tumor-infiltrating myeloid cells from our analyses with data from The Cancer Genome Atlas. Our results showed that this gene signature is an independent prognostic indicator for disease-specific survival in CRC patients, potentially reflecting its clinical importance.
Collapse
|
10
|
Sasidharan Nair V, Saleh R, Toor SM, Alajez NM, Elkord E. Transcriptomic Analyses of Myeloid-Derived Suppressor Cell Subsets in the Circulation of Colorectal Cancer Patients. Front Oncol 2020; 10:1530. [PMID: 32984004 PMCID: PMC7492613 DOI: 10.3389/fonc.2020.01530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) promote tumor immune evasion and favor tumorigenesis by activating various tumor-promoting downstream signals. MDSC expansion is evident in the circulation and tumor microenvironment of many solid tumors including colorectal cancer (CRC). We have recently reported the transcriptomic profiles of tumor-infiltrating MDSCs in CRC patients and uncovered pathways, which could potentially assist tumor progression. In this study, we sorted different subsets of circulating MDSCs in CRC patients and investigated their transcriptomic profiles in order to disclose pathways, which could potentially contribute to disease progression. The sorted subsets included polymorphonuclear/granulocytic MDSCs (PMN-MDSCs), immature MDSCs (I-MDSCs), and monocytic MDSCs (M-MDSCs). Our functional annotation analyses revealed that multiple pathways including DNA damage-, chemotaxis-, apoptosis-, mitogen-activated protein kinase-, transforming growth factor β-, and myeloid differentiation–related transcripts were higher in PMN-MDSCs, compared with monocytic antigen-presenting cells (APCs) or I-MDSCs. Furthermore, genes related to Janus kinase (JAK)–signal transducer and activator of transcription (STAT) were also elevated in PMN-MDSCs. These data suggest that upregulation of JAK-STAT pathway could trigger multiple downstream targets in PMN-MDSCs, which favor tumor progression. Additionally, we found that pathways including phosphatidyl inositol 3-kinase (PI3K), interleukin 6, and TGF-β in M-MDSCs and cell cycle–related pathways in I-MDSCs were upregulated, compared with monocytic APCs. Moreover, acetylation-related genes were upregulated in both PMN-MDSCs and M-MDSCs. This latter finding implicates that epigenetic modifications could also play a role in the regulation of multiple tumor-promoting genes in PMN-MDSCs and M-MDSCs. Taken together, this study reveals various signaling pathways, which regulate the function of MDSC subsets in the circulation of CRC patients. However, functional studies are warranted to support these findings.
Collapse
Affiliation(s)
- Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Nehad M Alajez
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
11
|
Geva R, Voskoboynik M, Dobrenkov K, Mayawala K, Gwo J, Wnek R, Chartash E, Long GV. First-in-human phase 1 study of MK-1248, an anti-glucocorticoid-induced tumor necrosis factor receptor agonist monoclonal antibody, as monotherapy or with pembrolizumab in patients with advanced solid tumors. Cancer 2020; 126:4926-4935. [PMID: 32809217 DOI: 10.1002/cncr.33133] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Ligation of glucocorticoid-induced tumor necrosis factor receptor (GITR) decreases regulatory T cell-mediated suppression and enhances T-cell proliferation, effector function, and survival. MK-1248 is a humanized immunoglobulin G4 anti-GITR monoclonal antibody agonist. METHODS In patients with advanced solid tumors, MK-1248 (starting dose, 0.12 mg) was tested alone and with pembrolizumab (200 mg) according to a 3 + 3 dose escalation design (ClinicalTrials.gov identifier NCT02553499); both treatments were administered intravenously every 3 weeks for ≤4 and ≤35 cycles, respectively. The safety and tolerability, maximum tolerated dose, and pharmacokinetics/pharmacodynamics were explored. RESULTS Twenty patients received MK-1248 monotherapy; 17 received combination therapy. The most frequent tumor types were colorectal cancer (n = 8), melanoma (n = 6), and renal cell carcinoma (n = 4). MK-1248 was generally well tolerated at the maximum tested doses of 170 (monotherapy) and 60 mg (combination). No dose-limiting toxicities (DLTs) or treatment-related deaths occurred. Adverse events (AEs) occurred in 36 of the 37 patients (97%); the most common were vomiting (n = 13 [35%]), anemia (n = 10 [27%]), and decreased appetite (n = 10 [27%]). Grade 3 to 5 AEs occurred in 19 of the 37 patients (51%). Treatment-related AEs occurred in 18 of the 37 patients (49%): 9 of the 20 patients (45%) on monotherapy and 9 of the 17 patients (53%) on combination therapy. Among the 17 patients receiving combination therapy, 1 achieved a complete response and 2 achieved a partial response, for an objective response rate of 18%; no patients achieved an objective response with monotherapy. The disease control rate (stable disease or better) was 15% with monotherapy and 41% with combination therapy. CONCLUSIONS MK-1248 was generally well tolerated at doses up to 170 (monotherapy) and 60 mg (combination), with no DLTs or treatment-related deaths. Combination therapy provided limited antitumor responses.
Collapse
Affiliation(s)
- Ravit Geva
- Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Mark Voskoboynik
- Nucleus Network, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | | | | | | | | | | | - Georgina V Long
- Royal North Shore Hospital, St. Leonards, New South Wales, Australia.,Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Lipson EJ, Naqvi FF, Loss MJ, Schollenberger MD, Pardoll DM, Moore J, Brennan DC. Kidney retransplantation after anti-programmed cell death-1 (PD-1)-related allograft rejection. Am J Transplant 2020; 20:2264-2268. [PMID: 32185872 PMCID: PMC7395855 DOI: 10.1111/ajt.15856] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 01/25/2023]
Abstract
In this report, we describe the first kidney retransplantation performed after anti-programmed cell death-1 (PD-1)-related allograft rejection. In 2014, we administered pembrolizumab (anti-PD-1) for ~9 months to a 57-year-old kidney transplant recipient with metastatic cutaneous squamous cell carcinoma (CSCC). The patient experienced both a complete antitumor response and T cell-mediated allograft rejection requiring reinitiation of hemodialysis. Four-and-a-half years after initiating pembrolizumab, the patient remained without evidence of CSCC relapse and received a kidney transplant from a living-unrelated donor. Ten-and-a-half months after kidney retransplantation, the allograft is functioning well and the patient's CSCC remains in remission. This case illustrates the potential for PD-1 blockade to bring about durable immune-mediated tumor control in chronically immunosuppressed patients, and begins to address the feasibility of kidney retransplantation in patients who have previously received immune checkpoint inhibitor therapy for cancer. Results from this and future cases may help elucidate mechanisms of antitumor immunity and allograft tolerance, and inform updates to transplant decision models. Our report also underscores the need for clinical trials testing novel immunotherapy combinations in solid organ transplant recipients designed to uncouple antitumor and anti-allograft immunity.
Collapse
Affiliation(s)
- Evan J. Lipson
- Department of Oncology and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Fizza F. Naqvi
- Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Manisha J. Loss
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Megan D. Schollenberger
- Department of Oncology and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Drew M. Pardoll
- Department of Oncology and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jack Moore
- MedStar Georgetown Transplant Institute at Washington Hospital Center, Washington, DC
| | - Daniel C. Brennan
- Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
13
|
de Wolf ACMT, Herberts CA, Hoefnagel MHN. Dawn of Monitoring Regulatory T Cells in (Pre-)clinical Studies: Their Relevance Is Slowly Recognised. Front Med (Lausanne) 2020; 7:91. [PMID: 32300597 PMCID: PMC7142310 DOI: 10.3389/fmed.2020.00091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells (Tregs) have a prominent role in the control of immune homeostasis. Pharmacological impact on their activity or balance with effector T cells could contribute to (impaired) clinical responses or adverse events. Monitoring treatment-related effects on T cell subsets may therefore be part of (pre-)clinical studies for medicinal products. However, the extent of immune monitoring performed in studies for marketing authorisation and the degree of correspondence with data available in the public domain is not known. We evaluated the presence of T cell immunomonitoring in 46 registration dossiers of monoclonal antibodies indicated for immune-related disorders and published scientific papers. We found that the depth of Treg analysis in registration dossiers was rather small. Nevertheless, data on treatment-related Treg effects are available in public academia-driven studies (post-registration) and suggest that Tregs may act as a biomarker for clinical responses. However, public data are fragmented and obtained with heterogeneity of experimental approaches from a diversity of species and tissues. To reveal the potential added value of T cell (and particular Treg) evaluation in (pre-)clinical studies, more cell-specific data should be acquired, at least for medicinal products with an immunomodulatory mechanism. Therefore, extensive analysis of T cell subset contribution to clinical responses and the relevance of treatment-induced changes in their levels is needed. Preferably, industry and academia should work together to obtain these data in a standardised manner and to enrich our knowledge about T cell activity in disease pathogenesis and therapies. This will ultimately elucidate the necessity of T cell subset monitoring in the therapeutic benefit-risk assessment.
Collapse
|
14
|
Sasidharan Nair V, M Toor S, Z Taha R, Ahmed AA, Kurer MA, Murshed K, Soofi ME, Ouararhni K, M. Alajez N, Abu Nada M, Elkord E. Transcriptomic Profiling of Tumor-Infiltrating CD4 +TIM-3 + T Cells Reveals Their Suppressive, Exhausted, and Metastatic Characteristics in Colorectal Cancer Patients. Vaccines (Basel) 2020; 8:vaccines8010071. [PMID: 32041340 PMCID: PMC7157206 DOI: 10.3390/vaccines8010071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/29/2022] Open
Abstract
T cell immunoglobulin mucin-3 (TIM-3) is an immune checkpoint identified as one of the key players in regulating T-cell responses. Studies have shown that TIM-3 is upregulated in the tumor microenvironment (TME). However, the precise role of TIM-3 in colorectal cancer (CRC) TME is yet to be elucidated. We performed phenotypic and molecular characterization of TIM-3+ T cells in the TME and circulation of CRC patients by analyzing tumor tissues (TT, TILs), normal tissues (NT, NILs), and peripheral blood mononuclear cells (PBMC). TIM-3 was upregulated on both CD4+ and CD3+CD4− (CD8+) TILs. CD4+TIM-3+ TILs expressed higher levels of T regulatory cell (Tregs)-signature genes, including FoxP3 and Helios, compared with their TIM-3− counterparts. Transcriptomic and ingenuity pathway analyses showed that TIM-3 potentially activates inflammatory and tumor metastatic pathways. Moreover, NF-κB-mediated transcription factors were upregulated in CD4+TIM-3+ TILs, which could favor proliferation/invasion and induce inflammatory and T-cell exhaustion pathways. In addition, we found that CD4+TIM-3+ TILs potentially support tumor invasion and metastasis, compared with conventional CD4+CD25+ Tregs in the CRC TME. However, functional studies are warranted to support these findings. In conclusion, this study discloses some of the functional pathways of TIM-3+ TILs, which could improve their targeting in more specific therapeutic approaches in CRC patients.
Collapse
Affiliation(s)
- Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar; (V.S.N.); (S.M.T.); (R.Z.T.); (K.O.); (N.M.A.)
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar; (V.S.N.); (S.M.T.); (R.Z.T.); (K.O.); (N.M.A.)
| | - Rowaida Z Taha
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar; (V.S.N.); (S.M.T.); (R.Z.T.); (K.O.); (N.M.A.)
| | - Ayman A Ahmed
- Department of Surgery, Hamad Medical Corporation, P.O. Box 34110, Doha, Qatar; (A.A.A.); (M.A.K.); (M.A.N.)
| | - Mohamed A Kurer
- Department of Surgery, Hamad Medical Corporation, P.O. Box 34110, Doha, Qatar; (A.A.A.); (M.A.K.); (M.A.N.)
| | - Khaled Murshed
- Department of Pathology, Hamad Medical Corporation, P.O. Box 34110, Doha, Qatar; (K.M.); (M.E.S.)
| | - Madiha E Soofi
- Department of Pathology, Hamad Medical Corporation, P.O. Box 34110, Doha, Qatar; (K.M.); (M.E.S.)
| | - Khalid Ouararhni
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar; (V.S.N.); (S.M.T.); (R.Z.T.); (K.O.); (N.M.A.)
| | - Nehad M. Alajez
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar; (V.S.N.); (S.M.T.); (R.Z.T.); (K.O.); (N.M.A.)
| | - Mohamed Abu Nada
- Department of Surgery, Hamad Medical Corporation, P.O. Box 34110, Doha, Qatar; (A.A.A.); (M.A.K.); (M.A.N.)
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar; (V.S.N.); (S.M.T.); (R.Z.T.); (K.O.); (N.M.A.)
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
- Correspondence: or ; Tel.: +974-4454-2367; Fax: +974-4454-1770
| |
Collapse
|
15
|
Sasidharan Nair V, Toor SM, Taouk G, Pfister G, Ouararhni K, Alajez NM, Elkord E. Pembrolizumab Interferes with the Differentiation of Human FOXP3+–Induced T Regulatory Cells, but Not with FOXP3 Stability, through Activation of mTOR. THE JOURNAL OF IMMUNOLOGY 2019; 204:199-211. [DOI: 10.4049/jimmunol.1900575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/27/2019] [Indexed: 12/16/2022]
|
16
|
Han S, Toker A, Liu ZQ, Ohashi PS. Turning the Tide Against Regulatory T Cells. Front Oncol 2019; 9:279. [PMID: 31058083 PMCID: PMC6477083 DOI: 10.3389/fonc.2019.00279] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Regulatory T (Treg) cells play crucial roles in health and disease through their immunosuppressive properties against various immune cells. In this review we will focus on the inhibitory role of Treg cells in anti-tumor immunity. We outline how Treg cells restrict T cell function based on our understanding of T cell biology, and how we can shift the equilibrium against regulatory T cells. To date, numerous strategies have been proposed to limit the suppressive effects of Treg cells, including Treg cell neutralization, destabilizing Treg cells and rendering T cells resistant to Treg cells. Here, we focus on key mechanisms which render T cells resistant to the suppressive effects of Treg cells. Lastly, we also examine current limitations and caveats of overcoming the inhibitory activity of Treg cells, and briefly discuss the potential to target Treg cell resistance in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- SeongJun Han
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aras Toker
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
| | - Zhe Qi Liu
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|