1
|
Chiloiro S, Costanza F, Giampietro A, Infante A, Mattogno PP, Angelini F, Gullì C, Lauretti L, Rigante M, Olivi A, De Marinis L, Doglietto F, Bianchi A, Pontecorvi A. GH receptor polymorphisms guide second-line therapies to prevent acromegaly skeletal fragility: preliminary results of a pilot study. Front Endocrinol (Lausanne) 2024; 15:1414101. [PMID: 39280003 PMCID: PMC11395836 DOI: 10.3389/fendo.2024.1414101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024] Open
Abstract
Background Skeletal fragility is characterized by increased frequency of vertebral fractures (VFs) in acromegaly. Several trials were conducted to identify modifiable risk factors and predictors of VFs, with limited data on the prognostic role of GH receptor (GHR) isoforms. In this study, we investigated the potential role of GHR polymorphism on the occurrence of incidental VFs (i-VFs), in patients treated with second-line medical therapies. Methods A longitudinal, retrospective, observational study was conducted on a cohort of 45 acromegalic patients not-responsive to first-generation somatostatin receptor ligands (fg-SRLs) and treated with GHR antagonist (Pegvisomant) or with the second-generation SRLs (Pasireotide long-acting release). Results Second line treatments were Pegvisomant plus fg-SRLs in 26 patients and Pasireotide LAR in 19 patients. From the group treated with fg-SRLs+Peg-V, the fl-GHR isoform was identified in 18 patients (69.2%) and the d3-GHR isoform in 8 patients (30.8%). I-VFs arose exclusively in fl-GHR isoform carriers (p=0.039). From the group treated with Pasireotide LAR, the fl-GHR isoform was identified in 11 patients (57.9%), and the d3-GHR isoform in 8 patients (42.1%). I-VFs arose exclusively in d3-GHR isoform carriers (p=0.018). Patients with fl-GHR isoform had a higher risk for i-VFs if treated with fg-SRL+Peg-V (OR: 1.6 95%IC: 1.1-2.3, p=0.04), and a lower risk if treated with Pasi-LAR (OR: 0.26 IC95%: 0.11-0.66, p=0.038). Conclusions Our data support a predictive role of the GHR isoforms for the occurrence of i-VFs in acromegalic patients treated with second-line drugs, tailored to the individual patient. The knowledge of the GHR polymorphism may facilitate the choice of second-line therapies, improving the therapeutic approach, in the context of personalized medicine.
Collapse
Affiliation(s)
- Sabrina Chiloiro
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Flavia Costanza
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Antonella Giampietro
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Amato Infante
- Dipartimento di Diagnostica per Immagini e radioterapia oncologica, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Pier Paolo Mattogno
- Dipartimento di Neurochirugia, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
- Dipartimento di Science dell’invecchiamento, neuroscienze, delle scienze del capo-collo, ed ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Flavia Angelini
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Consolato Gullì
- Dipartimento di Diagnostica per Immagini e radioterapia oncologica, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Liverana Lauretti
- Dipartimento di Neurochirugia, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
- Dipartimento di Science dell’invecchiamento, neuroscienze, delle scienze del capo-collo, ed ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mario Rigante
- Unità di Otorinologingoiatria, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Alessandro Olivi
- Dipartimento di Neurochirugia, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
- Dipartimento di Science dell’invecchiamento, neuroscienze, delle scienze del capo-collo, ed ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Laura De Marinis
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Francesco Doglietto
- Dipartimento di Neurochirugia, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
- Dipartimento di Science dell’invecchiamento, neuroscienze, delle scienze del capo-collo, ed ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Bianchi
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Alfredo Pontecorvi
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| |
Collapse
|
2
|
Frara S, Loli P, Allora A, Santini C, di Filippo L, Mortini P, Fleseriu M, Giustina A. COVID-19 and hypopituitarism. Rev Endocr Metab Disord 2022; 23:215-231. [PMID: 34387832 PMCID: PMC8363093 DOI: 10.1007/s11154-021-09672-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Besides the pulmonary manifestations caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), an emerging endocrine phenotype, which can heavily impact on the severity of the syndrome, has been recently associated with coronavirus disease 2019 (COVID-19). Patients with pituitary diseases or the pituitary gland itself may also be involved in COVID-19 clinical presentation and/or severity, causing pituitary apoplexy.Moreover, hypopituitarism is frequently burdened by several metabolic complications, including arterial hypertension, hyperglycemia, obesity and vertebral fractures, which have all been associated with poor outcomes and increased mortality in patients infected by SARS-CoV-2.This review will discuss hypopituitarism as a condition that might have a bidirectional relationship with COVID-19 due to the frequent presence of metabolic comorbidities, to the direct or indirect pituitary damage or being per se a potential risk factor for COVID-19. Finally, we will address the current recommendations for the clinical management of vaccines in patients with hypopituitarism and adrenal insufficiency.
Collapse
Affiliation(s)
- Stefano Frara
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Paola Loli
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Agnese Allora
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara Santini
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luigi di Filippo
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Pietro Mortini
- Neurosurgery Department and Radiosurgery Unit, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Maria Fleseriu
- Pituitary Center, Departments of Medicine and Neurological Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
3
|
Carrone F, Ariano S, Piccini S, Milani D, Mirani M, Balzarini L, Lania AG, Mazziotti G. Update on vertebral fractures in pituitary diseases: from research to clinical practice. Hormones (Athens) 2021; 20:423-437. [PMID: 33606197 DOI: 10.1007/s42000-021-00275-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/26/2021] [Indexed: 12/20/2022]
Abstract
Derangement of pituitary hormone axes can induce changes in bone remodeling and metabolism with possible alterations in bone microarchitectural structure and increased susceptibility to fractures. Vertebral fractures (VFs), which are a hallmark of skeletal fragility, have been described in a very large number of patients with pituitary diseases. These fractures are clinically relevant, since they predispose to further fractures and may negatively impact on patients' quality of life. However, the management of skeletal fragility and VFs in the specific setting of pituitary diseases is a challenge, since the awareness for this disease is still low, prediction of VFs is uncertain, the diagnosis of VFs cannot be solely based on a clinical approach and also needs a radiological and morphometric approach, the risk of fractures may not be decreased via treatment of pituitary hormone disorders, and the effectiveness of bone-active drugs in this setting is not always evidence-based. This review is an update on skeletal fragility in patients with pituitary diseases, with a focus on clinical and therapeutic aspects concerning the management of VFs.
Collapse
Affiliation(s)
- Flaminia Carrone
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Salvatore Ariano
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Sara Piccini
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Davide Milani
- Neurosurgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, MI, Italy
| | - Marco Mirani
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Luca Balzarini
- Department of Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, MI, Italy
| | - Andrea Gerardo Lania
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, MI, Italy.
| | - Gherardo Mazziotti
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, MI, Italy.
| |
Collapse
|
4
|
Abstract
BACKGROUND Despite COVID-19 being identified as severe respiratory viral infection, progressively many relevant endocrine manifestations have been reported greatly contributing to the severity of the clinical presentation. Systemic involvement in COVID-19 is due to the ubiquitous expression of angiotensin-converting enzyme 2 (ACE2) receptor, responsible for the entry in the cells of SARS-CoV-2, Several reports in humans and animal models showed a significant ACE2 mRNA expression in hypothalamus and pituitary cells. Moreover, higher mortality and poorer outcomes have been widely described in COVID-19 patients with obesity, diabetes and vertebral fractures, which are all highly prevalent in subjects with pituitary dysfunctions. AIM To review the main endocrine manifestations of COVID-19 with their possible implications for pituitary diseases, the possible direct and indirect involvement of the pituitary gland in COVID-19, the impact of COVID-19 on the management of established pituitary diseases which can be already at increased risk for worse outcomes and on neurosurgical activities as well as vaccination. CONCLUSIONS Our review underlines that there could be a specific involvement of the pituitary gland which fits into a progressively shaping endocrine phenotype of COVID-19. Moreover, the care for pituitary diseases need to continue despite the restrictions due to the emergency. Several pituitary diseases, such as hypopituitarism and Cushing disease, or due to frequent comorbidities such as diabetes may be a risk factor for severe COVID-19 in affected patients. There is the urgent need to collect in international multicentric efforts data on all these aspects of the pituitary involvement in the pandemic in order to issue evidence driven recommendations for the management of pituitary patients in the persistent COVID-19 emergency.
Collapse
Affiliation(s)
- Stefano Frara
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and IRCC Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Agnese Allora
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and IRCC Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Laura Castellino
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and IRCC Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Luigi di Filippo
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and IRCC Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Paola Loli
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and IRCC Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and IRCC Hospital, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
5
|
Kesavan C, Bajwa NM, Watt H, Mohan S. Growth Hormone Effects on Bone Loss-Induced by Mild Traumatic Brain Injury and/or Hind Limb Unloading. Sci Rep 2019; 9:18995. [PMID: 31831786 PMCID: PMC6908685 DOI: 10.1038/s41598-019-55258-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/12/2019] [Indexed: 01/06/2023] Open
Abstract
Growth hormone (GH) deficiency and loss of physical activity are common features in traumatic brain injury (TBI) patients that may contribute to bone loss. Therefore, we tested the hypothesis that GH treatment will rescue the hind limb unloading (UL)-induced skeletal deficit in TBI mice. Mild TBI was induced once per day for four consecutive days. UL (right hind limb) and treatment (3 mg/day GH or vehicle) began two weeks after the first TBI episode and lasted for four weeks. GH treatment increased femur BMD and lean body mass but decreased the % fat measured by DXA in the Control group. Micro-CT analysis revealed that the TBI, UL and TBI-UL groups showed reduced tibia trabecular (Tb) bone mass by 15%, 70%, and 75%, respectively compared to Control mice and that GH treatment significantly increased Tb. bone mass in all four groups. Vertebra also showed reduced Tb. bone mass in TBI, UL and TBI-UL groups. GH treatment increased vertebral Tb. bone mass in Control and UL groups but not in the TBI or TBI-UL group. GH treatment increased serum IGF-I levels similarly in TBI, UL and TBI-UL groups at day 14, suggesting the GH effect on liver IGF-I production was unaffected by skeletal UL. In contrast, GH effect on expression of ALP, IGFBP5 and axin2 in bone were compromised by UL. In conclusion, skeletal UL caused a greater Tb. bone deficit than mild TBI alone and that GH anabolic effects in the TBI and UL groups vary depending on the skeletal site.
Collapse
Affiliation(s)
- Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA.,Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Nikita M Bajwa
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA
| | - Heather Watt
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA. .,Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA. .,Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA. .,Department of Orthopedics, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA.
| |
Collapse
|
6
|
Lutsenko AS, Nagaeva EV, Belaya ZE, Chukhacheva OS, Zenkova TS, Melnichenko GA. [Current aspects of diagnosis and treatment of adult GH-deficiency]. ACTA ACUST UNITED AC 2019; 65:373-388. [PMID: 32202742 DOI: 10.14341/probl10322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 11/06/2022]
Abstract
Adult growth hormone (GH) deficiency (AGHD) is a condition characterized by alterations in body composition, lipid and carbohydrate metabolism, bone mineral density and poor quality of life; however, clinical presentations of AGHD are mostly non-specific. Untreated AGHD is associated with increased cardiovascular morbidity and mortality. Stimulation tests are used for the diagnosis: insulin tolerance test, glucagon stimulation test, growth-hormone releasing hormone and arginine stimulation test. Moreover, in 2017 FDA approved the use of macimorelin (oral GH secretagogue) for the diagnosis of AGHD. In childhood GH-deficiency, apolipoprotein A-IV, CFHR4 (complement factor H-related protein 4) and PBP (platelet basic protein) were identified as potential biomarkers of the disease, however, this was not investigated in AGHD. GH treatment starts from the minimal dose, which allows minimizing the adverse effects. According to published meta-analyses, AGHD treatment generally does not lead to increased risk of malignancy and recurrence of sellar neoplasms in adult patients. Published data on GH receptor polymorphism associations with treatment efficacy remains controversial. Development of long-acting GH formulations is a currect perspective for the increase of treatment compliance.
Collapse
|
7
|
Espinosa E, Salame L, Marrero-Rodriguez D, Romero-Nieves AM, Cuenca D, Castelan-Martínez OD, Mendoza V, Ponce-Navarrete G, Salcedo M, Luque-Leòn E, Rodriguez-Gonzalez A, Mercado M. Expression of the growth hormone receptor isoforms and its correlation with the metabolic profile in morbidly obese subjects. Endocrine 2019; 63:573-581. [PMID: 30361972 DOI: 10.1007/s12020-018-1794-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/15/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIM OF THE STUDY Given the lipolytic effect of GH and its potential role in determining adipose tissue distribution, we evaluated the expression of the GH hormone receptor (GHR) isoforms in patients with morbid obesity seeking associations with metabolic parameters. METHODS 262 morbidly obese subjects (mean age 42.5 ± 11 years, 75% women) underwent PCR-genotyping of the exon 3 GHR polymorphism. In 17 of these subjects, who proved to be heterozygous for the exon 3 genotype (+3/-3), subcutaneous and visceral adipose tissue was obtained during bariatric surgery; total RNA was extracted, reversely transcribed, and the different isoforms of the GHR (exon 3 containing and lacking flGHR as well as the trGHR) were PCR-amplified using specific primers. RESULTS 27% were +3/+3 homozygous, 20% -3/-3 homozygous and 53% were +3/-3 heterozygous. Compared to subjects homozygous for the +3 genotype, homozygous and heterozygous carriers of the -3 genotype were significantly heavier and tended to have a higher HOMA 2-IR. Expression of the flGHR and trGHR mRNA was demonstrated in all evaluated samples of subcutaneous and visceral adipose tissue from the 17 patients. The exon 3+ isoform was expressed in all adipose tissue samples, whereas only six subjects expressed the 3- isoform as well. The only distinctive feature of these six patients was a higher HbA1c. CONCLUSIONS The heterozygous GHR +3/-3 genotype is more prevalent in subjects with morbid obesity. Patients expressing the exon +3 and exon -3 isoforms in adipose tissue had a higher HbA1c, than those expressing only the exon -3 isoform.
Collapse
Affiliation(s)
- Etual Espinosa
- Endocrinology Service/Experimental Endocrinology Unit and Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Juárez, Mexico
| | - Latife Salame
- Endocrinology Service/Experimental Endocrinology Unit and Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Juárez, Mexico
| | - Daniel Marrero-Rodriguez
- Obesity Clinic Hospital de Especialidades and Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Juárez, Mexico
| | - Andy-Michel Romero-Nieves
- Oncology Research Unit, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Juárez, Mexico
| | - Dalia Cuenca
- Endocrinology Service/Experimental Endocrinology Unit and Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Juárez, Mexico
| | | | - Victoria Mendoza
- Endocrinology Service/Experimental Endocrinology Unit and Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Juárez, Mexico
| | - Gustavo Ponce-Navarrete
- Obesity Clinic Hospital de Especialidades and Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Juárez, Mexico
| | - Mauricio Salcedo
- Obesity Clinic Hospital de Especialidades and Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Juárez, Mexico
| | | | | | - Moisés Mercado
- Endocrinology Service/Experimental Endocrinology Unit and Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Juárez, Mexico.
| |
Collapse
|
8
|
Chiarella E, Aloisio A, Scicchitano S, Lucchino V, Montalcini Y, Galasso O, Greco M, Gasparini G, Mesuraca M, Bond HM, Morrone G. ZNF521 Represses Osteoblastic Differentiation in Human Adipose-Derived Stem Cells. Int J Mol Sci 2018; 19:ijms19124095. [PMID: 30567301 PMCID: PMC6321315 DOI: 10.3390/ijms19124095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 01/02/2023] Open
Abstract
Human adipose-derived stem cells (hADSCs) are multipotent mesenchymal cells that can differentiate into adipocytes, chondrocytes, and osteocytes. During osteoblastogenesis, the osteoprogenitor cells differentiate into mature osteoblasts and synthesize bone matrix components. Zinc finger protein 521 (ZNF521/Zfp521) is a transcription co-factor implicated in the regulation of hematopoietic, neural, and mesenchymal stem cells, where it has been shown to inhibit adipogenic differentiation. The present study is aimed at determining the effects of ZNF521 on the osteoblastic differentiation of hADSCs to clarify whether it can influence their osteogenic commitment. The enforced expression or silencing of ZNF521 in hADSCs was achieved by lentiviral vector transduction. Cells were cultured in a commercial osteogenic medium for up to 20 days. The ZNF521 enforced expression significantly reduced osteoblast development as assessed by the morphological and molecular criteria, resulting in reduced levels of collagen I, alkaline phosphatase, osterix, osteopontin, and calcium deposits. Conversely, ZNF521 silencing, in response to osteoblastic stimuli, induced a significant increase in early molecular markers of osteogenesis and, at later stages, a remarkable enhancement of matrix mineralization. Together with our previous findings, these results show that ZNF521 inhibits both adipocytic and osteoblastic maturation in hADSCs and suggest that its expression may contribute to maintaining the immature properties of hADSCs.
Collapse
Affiliation(s)
- Emanuela Chiarella
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Annamaria Aloisio
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Stefania Scicchitano
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Valeria Lucchino
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany.
| | - Ylenia Montalcini
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Olimpio Galasso
- Department of Orthopedic & Trauma Surgery, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Manfredi Greco
- Department of Plastic Surgery, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Giorgio Gasparini
- Department of Orthopedic & Trauma Surgery, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Maria Mesuraca
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Heather M Bond
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Giovanni Morrone
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| |
Collapse
|
9
|
Mazziotti G, Frara S, Giustina A. Pituitary Diseases and Bone. Endocr Rev 2018; 39:440-488. [PMID: 29684108 DOI: 10.1210/er.2018-00005] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
Neuroendocrinology of bone is a new area of research based on the evidence that pituitary hormones may directly modulate bone remodeling and metabolism. Skeletal fragility associated with high risk of fractures is a common complication of several pituitary diseases such as hypopituitarism, Cushing disease, acromegaly, and hyperprolactinemia. As in other forms of secondary osteoporosis, pituitary diseases generally affect bone quality more than bone quantity, and fractures may occur even in the presence of normal or low-normal bone mineral density as measured by dual-energy X-ray absorptiometry, making difficult the prediction of fractures in these clinical settings. Treatment of pituitary hormone excess and deficiency generally improves skeletal health, although some patients remain at high risk of fractures, and treatment with bone-active drugs may become mandatory. The aim of this review is to discuss the physiological, pathophysiological, and clinical insights of bone involvement in pituitary diseases.
Collapse
Affiliation(s)
| | - Stefano Frara
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Giustina
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
10
|
Treatment with Growth Hormone for Adults with Growth Hormone Deficiency Syndrome: Benefits and Risks. Int J Mol Sci 2018; 19:ijms19030893. [PMID: 29562611 PMCID: PMC5877754 DOI: 10.3390/ijms19030893] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022] Open
Abstract
Pharmacological treatment of growth hormone deficiency (GHD) in adults began in clinical practice more than 20 years ago. Since then, a great volume of experience has been accumulated on its effects on the symptoms and biochemical alterations that characterize this hormonal deficiency. The effects on body composition, muscle mass and strength, exercise capacity, glucose and lipid profile, bone metabolism, and quality of life have been fully demonstrated. The advance of knowledge has also taken place in the biological and molecular aspects of the action of this hormone in patients who have completed longitudinal growth. In recent years, several epidemiological studies have reported interesting information about the long-term effects of GH replacement therapy in regard to the possible induction of neoplasms and the potential development of diabetes. In addition, GH hormone receptor polymorphism could potentially influence GH therapy. Long-acting GH are under development to create a more convenient GH dosing profile, while retaining the excellent safety, efficacy, and tolerability of daily GH. In this article we compile the most recent data of GH replacement therapy in adults, as well as the molecular aspects that may condition a different sensitivity to this treatment.
Collapse
|
11
|
Bajwa NM, Kesavan C, Mohan S. Long-term Consequences of Traumatic Brain Injury in Bone Metabolism. Front Neurol 2018; 9:115. [PMID: 29556212 PMCID: PMC5845384 DOI: 10.3389/fneur.2018.00115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/15/2018] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) leads to long-term cognitive, behavioral, affective deficits, and increase neurodegenerative diseases. It is only in recent years that there is growing awareness that TBI even in its milder form poses long-term health consequences to not only the brain but to other organ systems. Also, the concept that hormonal signals and neural circuits that originate in the hypothalamus play key roles in regulating skeletal system is gaining recognition based on recent mouse genetic studies. Accordingly, many TBI patients have also presented with hormonal dysfunction, increased skeletal fragility, and increased risk of skeletal diseases. Research from animal models suggests that TBI may exacerbate the activation and inactivation of molecular pathways leading to changes in both osteogenesis and bone destruction. TBI has also been found to induce the formation of heterotopic ossification and increased callus formation at sites of muscle or fracture injury through increased vascularization and activation of systemic factors. Recent studies also suggest that the disruption of endocrine factors and neuropeptides caused by TBI may induce adverse skeletal effects. This review will discuss the long-term consequences of TBI on the skeletal system and TBI-induced signaling pathways that contribute to the formation of ectopic bone, altered fracture healing, and reduced bone mass.
Collapse
Affiliation(s)
- Nikita M Bajwa
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States.,Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States.,Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Department of Orthopedic Surgery, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
12
|
Experimental repetitive mild traumatic brain injury induces deficits in trabecular bone microarchitecture and strength in mice. Bone Res 2017; 5:17042. [PMID: 29263937 PMCID: PMC5735530 DOI: 10.1038/boneres.2017.42] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/30/2017] [Accepted: 07/04/2017] [Indexed: 01/21/2023] Open
Abstract
To evaluate the long-term consequence of repetitive mild traumatic brain injury (mTBI) on bone, mTBI was induced in 10-week-old female C57BL/6J mice using a weight drop model, once per day for 4 consecutive days at different drop heights (0.5, 1 and 1.5 m) and the skeletal phenotype was evaluated at different time points after the impact. In vivo micro-CT (μ-CT) analysis of the tibial metaphysis at 2, 8 and 12 weeks after the impact revealed a 5%-32% reduction in trabecular bone mass. Histomorphometric analyses showed a reduced bone formation rate in the secondary spongiosa of 1.5 m impacted mice at 12 weeks post impact. Apparent modulus (bone strength), was reduced by 30% (P<0.05) at the proximal tibial metaphysis in the 1.5 m drop height group at 2 and 8 weeks post impact. Ex vivo μ-CT analysis of the fifth lumbar vertebra revealed a significant reduction in trabecular bone mass at 12 weeks of age in all three drop height groups. Serum levels of osteocalcin were decreased by 22%, 15%, and 19% in the 0.5, 1.0 and 1.5 m drop height groups, respectively, at 2 weeks post impact. Serum IGF-I levels were reduced by 18%-32% in mTBI mice compared to contro1 mice at 2 weeks post impact. Serum osteocalcin and IGF-I levels correlated with trabecular BV/TV (r2 =0.14 and 0.16, P<0.05). In conclusion, repetitive mTBI exerts significant negative effects on the trabecular bone microarchitecture and bone mechanical properties by influencing osteoblast function via reduced endocrine IGF-I actions.
Collapse
|