1
|
Raji S, Thirunavukarasu AJ, Taylor LJ, MacLaren RE. Functional vision tests as clinical trial outcome measures in ophthalmology: a scoping review. BMJ Open 2025; 15:e097970. [PMID: 40436455 PMCID: PMC12121612 DOI: 10.1136/bmjopen-2024-097970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/30/2025] [Indexed: 06/01/2025] Open
Abstract
OBJECTIVES To identify currently available functional vision tests and evaluate their use as clinical trial outcome measures in ophthalmology. DESIGN Scoping review using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-analysis Extension for Scoping Reviews) guidelines. METHODS A literature search was conducted in MEDLINE and Embase (via Ovid) for articles published between 1 January 2003 and 1 August 2024. Additional grey literature was sourced from institutional repositories, conference proceedings and a manual citation search. Article screening was conducted against a predefined inclusion criteria by two independent, masked reviewers, with a third reviewer acting as arbiter. The inclusion criteria were English language articles which feature a test assessing functional vision in patients with an ophthalmological disease. Details of source characteristics, test methodology and accessibility and evidence of test validation were collected. RESULTS Of 2665 articles returned by the search, 73 were included and 45 unique tests of functional vision were identified. Diseases affecting the peripheral retina were mainly affected, accounting for 77% (56 out of 73) of the diseases featured in all included studies. Overall, 82% (37 out of 45) functional vision tests reported evidence of statistical validation with varying robustness. Functional vision tests were mapped to domains of orientation and mobility, facial recognition, observer-rated task performance, visual search and driving. Obstacle courses assess vision-guided orientation and mobility, correlate highly with clinical measures of visual function in severe peripheral retinal disease and have been validated for use in clinical trials. Their requirement of physical space and time limits utility in multicentre trials; equivalent tests leveraging virtual reality and eye tracking technologies are in development. Early iterations of visual search tests to simulated realistic scenes have demonstrated discriminative ability, even in paediatric patients. CONCLUSIONS Functional vision tests can facilitate research into future novel ophthalmological treatments that prioritise patients in terms of how clinical benefit is defined. The principal barriers to the uptake of these tests are lack of accessibility, low quality validation and that many tests remain early in their development stage. This review captures the current landscape of functional vision tests and serves as a reference for investigators and regulatory bodies to evaluate the suitability of these tests for ophthalmic clinical trials.
Collapse
Affiliation(s)
- Shabnam Raji
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Arun James Thirunavukarasu
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford University Clinical Academic Graduate School, University of Oxford, Oxford, UK
| | - Laura Jayne Taylor
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert Edward MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
2
|
Lorenz B. Long-term experience with gene augmentation therapy in patients with inherited retinal disease associated with biallelic mutations in RPE65. MED GENET-BERLIN 2025; 37:47-56. [PMID: 39943983 PMCID: PMC11812477 DOI: 10.1515/medgen-2024-2067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
RPE65 biallelic mutation-associated inherited retinal degeneration (IRD) is currently the only IRD for which gene therapy is approved. This narrative review provides a brief overview of the disease and an update of the current literature on outcomes following the approval of treatment with voretigene neparvovec (LuxturnaTM) in 2017 (USA) and Europe (2018). Post-marketing results confirm a significant therapeutic effect of this gene augmentation on rod function similar to that seen in the phase 1 to 3 clinical trials. The full-field chromatic light sensitivity test is an appropriate test to demonstrate early and sustained effects of treatment. Visual acuity and visual fields may improve in less advanced disease. Accelerated chorioretinal atrophy (CRA) is a previously unrecognised adverse effect that is now reported in 13 % to 50 % of treated eyes. If central, visual acuity loss and paracentral visual field defects may occur. Further studies are needed to identify patients at risk of CRA in order to maximize patient benefit from a costly intervention.
Collapse
Affiliation(s)
- Birgit Lorenz
- c/o Justus-Liebig-University GiessenTransMIT Centre of Translational OphthalmologyAm Galgenberg 3735321LaubachGermany
| |
Collapse
|
3
|
Audo I, Barale PO, Devisme C, Mohand-Said S, Meunier I, Smirnov VM, Dhaenens CM, Andrieu C, Zeitz C, Pagot C, Barbier P, Tindel M, Chapon P, Sahel JA. Voretigene neparvovec in RPE65-related inherited retinal dystrophy: the 1-year real-world study LIGHT. Eye (Lond) 2025:10.1038/s41433-025-03691-8. [PMID: 40087508 DOI: 10.1038/s41433-025-03691-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND This retrospective real-world study evaluated the effectiveness and safety of subretinal voretigene neparvovec (VN) in French patients (six children, six adults) with inherited retinal dystrophies. METHODS Data were collected from medical records for the year following bilateral treatment with subretinal VN. Functional vision was assessed using the Streetlab mobility course with obstacles. The main outcome was Percentage of Preferred Walking Speed (PPWS) 1 month after treatment (the average speed to navigate the obstacle course as a percentage of the speed to walk straight for 4 m without obstacles at 500 lux). RESULTS PPWS median relative improvement to month 1 was 63.9% (interquartile range 47.8%; 88.5%) at 2 lux. Gains were sustained to month 6, were comparable in children and adults, with similar patterns at 7.5 and 50 lux. Course completion time and the number of collisions improved at month 1 at 2 lux. Median full-field stimulus test (FST) improved at month 1 (-33.2 [interquartile range -33.7; -19.8] dB), with improvements sustained to month 24. Over the study, best corrected visual acuity (BCVA) appeared stable, and kinetic visual field had no discernible pattern. All patients experienced at least one ocular AE related to surgery, VN, or both. One serious AE occurred (retinal detachment in a child), and was considered related to surgery. Chorioretinal atrophies occurred in four adults and one child, with no impact on FST. CONCLUSIONS Functional vision, measured in the Streetlab mobility course, demonstrated rapid, sustainable improvements in lower light intensities. Safety data were in line with current knowledge for VN.
Collapse
Affiliation(s)
- Isabelle Audo
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, F-75012 Paris, France.
- Sorbonne Université, INSERM, CNRS, Institut de la Vision Paris France, Paris, France.
| | - Pierre-Olivier Barale
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, F-75012 Paris, France
| | - Céline Devisme
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, F-75012 Paris, France
| | - Saddek Mohand-Said
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, F-75012 Paris, France
| | - Isabelle Meunier
- National centre for rare diseases, Sensory inherited diseases, University hospital of Montpellier and Institut des Neurosciences de Montpellier, INSERM, Université de Montpellier, Montpellier, France
| | - Vasily M Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision Paris France, Paris, France
- Université de Lille, Faculté de Medicine, Lille, France
- Exploration de la vision et Neuro-Ophtalmologie CHU de Lille, Lille, France
| | - Claire-Marie Dhaenens
- University of Lille, INSERM, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, Lille, France
| | - Camille Andrieu
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, F-75012 Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision Paris France, Paris, France
| | - Chloé Pagot
- Streetlab, Institut de la Vision, Paris, France
| | | | | | | | - Jose-Alain Sahel
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, F-75012 Paris, France
- Sorbonne Université, INSERM, CNRS, Institut de la Vision Paris France, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Kwok E, Alam K, Lim J, Niyazmand H, Tang V, Trinh H, Chen FK, Charng J. Evaluating ocular health in retinal gene therapies. Clin Exp Optom 2025:1-12. [PMID: 39956654 DOI: 10.1080/08164622.2025.2457429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
Inherited retinal disease (IRD) refers to a heterogeneous group of genetic eye disease that causes progressive vision loss and was once regarded untreatable. However, regulatory approval for Luxturna (voretigene neparvovec-rzyl) for patients with biallelic mutation in the RPE65 gene has heralded new optimism for patients with the disease. One critical question in designing clinical trial in patients with IRD is choosing appropriate outcome measures to assess the retina, taking into consideration the slow disease progression and the inherent low vision associated with the disease. In this review, the functional and structural endpoints that have been utilised in human retinal gene therapy clinical trials in patient selection as well as measures of safety and efficacy are described. For clinicians, an appreciation of these specialised measures of eye health in a patient with IRD will enhance understanding of retinal health assessments, disease prognosis as well as facilitating discussions with patients potentially eligible for retinal gene therapy clinical trial.
Collapse
Affiliation(s)
- Eden Kwok
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Khyber Alam
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jeremiah Lim
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Hamed Niyazmand
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Vanessa Tang
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Han Trinh
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Fred K Chen
- Centre of Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
| | - Jason Charng
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Daich Varela M, Sanders Villa A, Pontikos N, Crossland MD, Michaelides M. Digital health and wearable devices for retinal disease monitoring. Graefes Arch Clin Exp Ophthalmol 2025; 263:279-289. [PMID: 39297890 PMCID: PMC11868318 DOI: 10.1007/s00417-024-06634-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Digital health is wielding a growing influence across all areas of healthcare, encompassing various facets such as telemedicine, artificial intelligence (AI), and electronic healthcare records. In Ophthalmology, digital health innovations can be broadly divided into four categories: (i) self-monitoring home devices and apps, (ii) virtual and augmented reality visual aids, (iii) AI software, and (iv) wearables. Wearable devices can work in the background, collecting large amounts of objective data while we do our day-to-day activities, which may be ecologically more valid and meaningful to patients than that acquired in traditional hospital settings. They can be a watch, wristband, piece of clothing, glasses, cane, smartphone in our pocket, earphones, or any other device with a sensor that we carry with us. Focusing on retinal diseases, a key challenge in developing novel therapeutics has been to prove a meaningful benefit in patients' lives and the creation of objective patient-centred endpoints in clinical trials. In this review, we will discuss wearable devices collecting different aspects of visual behaviour, visual field, central vision, and functional vision, as well as their potential implementation as outcome measures in research/clinical trial settings. The healthcare landscape is facing a paradigm shift. Clinicians have a key role of collaborating with the development and fine-tuning of digital health innovations, as well as identifying opportunities where they can be leveraged to enhance our understanding of retinal diseases and improve patient outcomes.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Alejandro Sanders Villa
- Facultad de Enfermería y Obstetricia, Universidad Nacional Autónoma de México, Mexico City, México
- Primero Salud, Mexico City, México
| | - Nikolas Pontikos
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Michael D Crossland
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Michel Michaelides
- Moorfields Eye Hospital, London, UK.
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
6
|
Simunovic MP, Moore AT, Grigg J, Sergouniotis P, Mahroo OA, Vincent A, Singh M, Fischer MD, Edwards T, Mack H, Hogden M, Chen FK, Hewitt A, Ayton L, Leroy B, Jamieson R, Gillies MC, Barthelmes D. THE FIGHT INHERITED RETINAL BLINDNESS! PROJECT: A New Treatment Outcome and Natural History Registry for Inherited Retinal Disease. Retina 2025; 45:286-295. [PMID: 39418576 PMCID: PMC11753432 DOI: 10.1097/iae.0000000000004296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
PURPOSE To design and build a new disease registry to track the natural history and outcomes of approved gene therapy in patients with inherited retinal diseases. METHODS A core committee of six members was convened to oversee the construction of the Fight Inherited Retinal Blindness! module. A further 11 experts formed a steering committee, which discussed disease classification and variables to form minimum datasets using a consensus approach. RESULTS The web-based Fight Inherited Retinal Blindness! registry records baseline demographic, clinical, and genetic data together with follow-up data. The Human Phenotype Ontology and Monarch Disease Ontology nomenclature were incorporated within the Fight Inherited Retinal Blindness! architecture to standardize nomenclature. The registry software assigns individual diagnoses to one of seven broad phenotypic groups, with minimum datasets dependent on the broad phenotypic group. In addition, minimum datasets were agreed on for patients undergoing approved gene therapy with voretigene neparvovec (Luxturna). New patient entries can be completed in 5 minutes, and follow-up data can be entered in 2 minutes. CONCLUSION Fight Inherited Retinal Blindness! is an organized, web-based system that uses observational study methods to collect uniform data from patients with inherited retinal disease to track natural history and (uniquely) treatment outcomes. It is free to users who have control over their data.
Collapse
Affiliation(s)
- Matthew P. Simunovic
- Save Sight Institute, Sydney Eye Hospital Campus, Sydney, NSW, Australia;
- Sydney Eye Hospital, Sydney, NSW, Australia;
| | - Anthony T. Moore
- University of California at San Francisco Medical Center, San Francisco, California;
- NIHR Biomedical Research Centre at Moorfields Eye Hospital, United Kingdom;
- The University College London, Institute of Ophthalmology, United Kingdom;
| | - John Grigg
- Save Sight Institute, Sydney Eye Hospital Campus, Sydney, NSW, Australia;
- Sydney Eye Hospital, Sydney, NSW, Australia;
| | - Panagiotis Sergouniotis
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Omar A. Mahroo
- NIHR Biomedical Research Centre at Moorfields Eye Hospital, United Kingdom;
- The University College London, Institute of Ophthalmology, United Kingdom;
| | - Andrea Vincent
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand;
| | - Mandeep Singh
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand;
| | | | - Thomas Edwards
- Centre for Eye Research Australia, East Melbourne, VIC, Australia;
| | - Heather Mack
- Centre for Eye Research Australia, East Melbourne, VIC, Australia;
| | - Michael Hogden
- Department of Ophthalmology, Princess Alexandra Hospital, Brisbane, QLD, Australia;
| | - Fred K. Chen
- Centre for Ophthalmology and Vision Sciences, The University of Western Australia, Perth, Washington, Australia;
| | - Alex Hewitt
- Centre for Eye Research Australia, East Melbourne, VIC, Australia;
| | - Lauren Ayton
- Centre for Eye Research Australia, East Melbourne, VIC, Australia;
| | - Bart Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium;
| | - Robyn Jamieson
- Save Sight Institute, Sydney Eye Hospital Campus, Sydney, NSW, Australia;
- Department of Clinical Genetics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia; and
| | - Mark C. Gillies
- Save Sight Institute, Sydney Eye Hospital Campus, Sydney, NSW, Australia;
- Sydney Eye Hospital, Sydney, NSW, Australia;
| | - Daniel Barthelmes
- Save Sight Institute, Sydney Eye Hospital Campus, Sydney, NSW, Australia;
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Satish T, Hong KN, Kaski JP, Greenberg BH. Challenges in Cardiomyopathy Gene Therapy Clinical Trial Design. JACC. HEART FAILURE 2025; 13:154-166. [PMID: 39545889 DOI: 10.1016/j.jchf.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 11/17/2024]
Abstract
Gene therapy has emerged as a possible treatment for progressive, debilitating Mendelian cardiomyopathies with limited therapeutic options. This paper arises from discussions at the 2023 Cardiovascular Clinical Trialists Forum and highlights several challenges relevant to gene therapy clinical trials, including low prevalence and high phenotypic heterogeneity of Mendelian cardiomyopathies, outcome selection complexities and resulting regulatory uncertainty, and immune responses to the adeno-associated viral vectors that are being used in ongoing studies. Avenues to address these challenges such as natural history studies, external controls, novel regulatory pathways, and immunosuppression are discussed. Relevant cases of recent therapy approvals are highlighted. Ultimately, this work aims to broadly frame discussions on and provide potential future avenues for clinical trial design for rare cardiomyopathy gene therapies.
Collapse
Affiliation(s)
- Tejus Satish
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kimberly N Hong
- University of California San Diego Health, San Diego, California, USA
| | - Juan Pablo Kaski
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Barry H Greenberg
- University of California San Diego Health, San Diego, California, USA.
| |
Collapse
|
8
|
Di Minno G, Miesbach W, Castaman G, Peyvandi F. Next-generation strategies to improve safety and efficacy of adeno-associated virus-based gene therapy for hemophilia: lessons from clinical trials in other gene therapies. Haematologica 2024; 109:3879-3891. [PMID: 38450517 PMCID: PMC11609791 DOI: 10.3324/haematol.2023.284622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Three major directions for the global progress of adeno-associated virus (AAV) vectors for gene therapies (GT) are analyzed: 1) engineering vectors to increase transgene expression; 2) aligning interests of the health system with costs and challenges for the pharmaceutical industry; and 3) refining patient eligibility criteria and endpoint definition. Currently employed AAV vectors may cause toxicity and adverse events. Furthermore, studies in animals do not fully predict risks and clinical benefits of AAV-based GT, and animal models reflecting the heterogeneity of certain clinical settings (e.g., congestive heart failure) are not widely available for improving AAV-based GT. Finally, antisense and gene editing approaches will soon complement gene augmentation strategies for the stable solution of unsolved issues of AAV-based GT. While minimizing toxicity, next-generation AAV vectors should decrease the viral load needed to achieve therapeutic efficacy, be functional in a restricted cellular subset, avoid transgene expression in unwanted cells (e.g., hepatocytes), and escape immune oversight in AAV-based GT. The role of stress-induced apoptosis in the loss of transgene expression in GT should also be explored. Aligning the interests and obligations of the pharmaceutical industry with those of the health system is critical for the success of AAV-based GT. Costs and challenges for the pharmaceutical industry include: a) removing impurities from AAV; b) validating tests to measure treatment efficacy; c) promoting training programs to standardize vector genome delivery; d) collecting long-term follow-up data; and e) maintaining sustainability and cost-effectiveness of AAV-based GT. In rare disorders with small patient numbers (e.g., hemophilia), clear-cut outcomes are mandatory as endpoints of unequivocal efficacy data.
Collapse
Affiliation(s)
- Giovanni Di Minno
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, School of Medicine, Napoli.
| | - Wolfgang Miesbach
- The Haemophilia Center of the Medical Clinic, University Hospital Frankfurt/Main
| | - Giancarlo Castaman
- Center for Bleeding Disorders and Coagulation, Department of Oncology, Careggi University Hospital, Florence
| | - Flora Peyvandi
- Angelo Bianchi Bonomi Haemophilia and Thrombosis Center, Fondazione Luigi Villa, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan
| |
Collapse
|
9
|
Wang H, Zheng J, Zhang Q, Tian Z, Sun Y, Zhu T, Bi Y, Zhang L. Efficacy and safety of complement inhibitors in patients with geographic atrophy associated with age-related macular degeneration: a network meta-analysis of randomized controlled trials. Front Pharmacol 2024; 15:1410172. [PMID: 39600369 PMCID: PMC11589381 DOI: 10.3389/fphar.2024.1410172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Importance Clinical trials in recent years have shown significant effectiveness of complement inhibitors for geographic atrophy (GA) treatment. Two complement inhibitor drugs have been approved by the Food and Drug Administration (FDA). Objective to compare and rank the different complement inhibitors in the treatment of GA secondary to age-related macular degeneration (AMD). Data sources A systematic literature search was conducted in the Cochrane Central, Web of Science Core Collection, PubMed, LWW Medical Journals, ClinicalTrials.gov, and WHO ICTRP from inception to October 2023. Study selection All randomized clinical trials evaluating the effectiveness of complement inhibitors in patients diagnosed with secondary GA in AMD were identified. Data extraction and synthesis This study followed Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) network meta-analysis Checklist of Items and the Cochrane Risk of Bias Assessment Tool for assessing the study quality. Multiple authors independently coded all titles and abstracts, reviewed full-text articles against the inclusion and exclusion criteria, and resolved all discrepancies by consensus. Random-effects network meta-analyses were applied. Bayesian network meta-analysis was performed using the BUGSnet package in R (4.2.0). Main outcomes and measures The primary efficacy outcome was the change in GA lesion size (mm2) from baseline to month 12. The secondary efficacy outcome was the mean change in best-corrected visual acuity (BCVA) from baseline to month 12. Safety outcome measures included the number of subjects with serious adverse events (SAEs) and macular neovascularization (MNV). Results Ten randomized controlled trials including 4,405 participants and five complement inhibitors were identified. Comparison with sham and SUCRA analysis showed that avacincaptad pegol 2 mg (MD: -0.58, 95% CrI: -0.97 to -0.18, SUCRA: 93.55), pegcetacoplan monthly (MD: -0.38, 95% CrI: -0.57 to -0.20, SUCRA: 81.37), and pegcetacoplan every other month (MD: -0.30, 95% CrI: -0.49 to -0.11, SUCRA: 70.16) have significant changes in GA lesion reduction. No treatments showed significant changes in BCVA and SAE compared with sham. Pegcetacoplan monthly (OR: 4.30, 95% CrI: 1.48-16.72) increased the risk of MNV. Avacincaptad pegol 2 mg demonstrated favorable outcomes in terms of SAE and MNV. Conclusion and relevance Avacincaptad pegol 2 mg is the most effective complement inhibitor with better safety for the treatment of GA secondary to AMD. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022351515, Identifier PROSPERO CRD42022351515.
Collapse
Affiliation(s)
- Huan Wang
- Clinical Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiaqi Zheng
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Qing Zhang
- Clinical Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongping Tian
- Department of Ophthalmology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuhang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianyi Zhu
- Clinical Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanlong Bi
- Department of Ophthalmology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Li Zhang
- Clinical Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Ophthalmology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Michaelides M, Besirli CG, Yang Y, DE Guimaraes TAC, Wong SC, Huckfeldt RM, Comander JI, Sahel JA, Shah SM, Tee JJL, Kumaran N, Georgiadis A, Minnick P, Zeldin R, Naylor S, Xu J, Clark M, Anglade E, Wong P, Fleck PR, Fung A, Peluso C, Kalitzeos A, Georgiou M, Ripamonti C, Smith AJ, Ali RR, Forbes A, Bainbridge J. Phase 1/2 AAV5-hRKp.RPGR (Botaretigene Sparoparvovec) Gene Therapy: Safety and Efficacy in RPGR-Associated X-Linked Retinitis Pigmentosa. Am J Ophthalmol 2024; 267:122-134. [PMID: 38871269 DOI: 10.1016/j.ajo.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE To assess the safety and efficacy of AAV5-hRKp.RPGR in participants with retinitis pigmentosa GTPase regulator (RPGR)-associated X-linked retinitis pigmentosa (XLRP). DESIGN Open-label, phase 1/2 dose escalation/expansion study (ClinicalTrials.gov Identifier: NCT03252847). METHODS Males (≥5 years old) with XLRP-RPGR were evaluated. In the dose escalation phase, subretinal AAV5-hRKp.RPGR (low: 1.0 × 1011 vg/ml; intermediate: 2.0 × 1011 vg/ml; high: 4.0 × 1011 vg/ml) was administered to the poorer-seeing eye (n = 10). Dose confirmation (intermediate dose) was carried out in 3 pediatric participants. In the dose expansion phase, 36 participants were randomized 1:1:1 to immediate (low or intermediate dose) or deferred (control) treatment. The primary outcome was safety. Secondary efficacy outcomes included static perimetry, microperimetry, vision-guided mobility, best corrected visual acuity, and contrast sensitivity. Safety and efficacy outcomes were assessed for 52 weeks for immediate treatment participants and 26 weeks for control participants. RESULTS AAV5-hRKp.RPGR was safe and well tolerated, with no reported dose-limiting events. Most adverse events (AEs) were transient and related to the surgical procedure, resolving without intervention. Two serious AEs were reported with immediate treatment (retinal detachment, uveitis). A third serious AE (increased intraocular pressure) was reported outside the reporting period. All ocular inflammation-related AEs responded to corticosteroids. Treatment with AAV5-hRKp.RPGR resulted in improvements in retinal sensitivity and functional vision compared with the deferred group at Week 26; similar trends were observed at Week 52. CONCLUSIONS AAV5-hRKp.RPGR demonstrated an anticipated and manageable AE profile through 52 weeks. Safety and efficacy findings support investigation in a phase 3 trial.
Collapse
Affiliation(s)
- Michel Michaelides
- From the UCL Institute of Ophthalmology (M.M., Y.Y., T.A.C.G., S.C.W., J.J.L.T., A.K., M.G., A.J.S., R.R.A., J.B.), London, UK; Moorfields Eye Hospital NHS Foundation Trust (M.M., Y.Y., T.A.C.G., S.C.W., J.J.L.T., N.K., A.K., M.G., J.B.), London, UK.
| | - Cagri G Besirli
- Kellogg Eye Center (C.G.B.), Ann Arbor, Michigan, USA; Janssen Pharmaceuticals (C.G.B.), Raritan, New Jersey, USA
| | - Yesa Yang
- From the UCL Institute of Ophthalmology (M.M., Y.Y., T.A.C.G., S.C.W., J.J.L.T., A.K., M.G., A.J.S., R.R.A., J.B.), London, UK; Moorfields Eye Hospital NHS Foundation Trust (M.M., Y.Y., T.A.C.G., S.C.W., J.J.L.T., N.K., A.K., M.G., J.B.), London, UK
| | - Thales A C DE Guimaraes
- From the UCL Institute of Ophthalmology (M.M., Y.Y., T.A.C.G., S.C.W., J.J.L.T., A.K., M.G., A.J.S., R.R.A., J.B.), London, UK; Moorfields Eye Hospital NHS Foundation Trust (M.M., Y.Y., T.A.C.G., S.C.W., J.J.L.T., N.K., A.K., M.G., J.B.), London, UK
| | - Sui Chien Wong
- From the UCL Institute of Ophthalmology (M.M., Y.Y., T.A.C.G., S.C.W., J.J.L.T., A.K., M.G., A.J.S., R.R.A., J.B.), London, UK; Moorfields Eye Hospital NHS Foundation Trust (M.M., Y.Y., T.A.C.G., S.C.W., J.J.L.T., N.K., A.K., M.G., J.B.), London, UK; Great Ormond Street Hospital for Children NHS Foundation Trust (S.C.W.), London, UK
| | - Rachel M Huckfeldt
- Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School (R.M.H., J.I.C.), Boston, Massachusetts, USA
| | - Jason I Comander
- Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School (R.M.H., J.I.C.), Boston, Massachusetts, USA
| | - José-Alain Sahel
- UPMC Eye Center, University of Pittsburgh School of Medicine (J.-A.S., S.M.S.), Pittsburgh, Pennsylvania, USA
| | - Syed Mahmood Shah
- UPMC Eye Center, University of Pittsburgh School of Medicine (J.-A.S., S.M.S.), Pittsburgh, Pennsylvania, USA; Gundersen Health System (S.M.S., R.R.A.), La Crosse, Wisconsin, USA
| | - James J L Tee
- From the UCL Institute of Ophthalmology (M.M., Y.Y., T.A.C.G., S.C.W., J.J.L.T., A.K., M.G., A.J.S., R.R.A., J.B.), London, UK; Moorfields Eye Hospital NHS Foundation Trust (M.M., Y.Y., T.A.C.G., S.C.W., J.J.L.T., N.K., A.K., M.G., J.B.), London, UK
| | - Neruban Kumaran
- Moorfields Eye Hospital NHS Foundation Trust (M.M., Y.Y., T.A.C.G., S.C.W., J.J.L.T., N.K., A.K., M.G., J.B.), London, UK; Guy's and St. Thomas' NHS Foundation Trust (N.K.), London, UK
| | | | - Pansy Minnick
- Janssen Pharmaceuticals (P.M., J.X., M.C., E.A., P.W., P.R.F., A.F., C.P.), Raritan, New Jersey, USA
| | - Robert Zeldin
- MeiraGTx (A.G., R.Z., S.N., A.F.), New York, New York, USA
| | - Stuart Naylor
- MeiraGTx (A.G., R.Z., S.N., A.F.), New York, New York, USA
| | - Jialin Xu
- Janssen Pharmaceuticals (P.M., J.X., M.C., E.A., P.W., P.R.F., A.F., C.P.), Raritan, New Jersey, USA
| | - Michael Clark
- Janssen Pharmaceuticals (P.M., J.X., M.C., E.A., P.W., P.R.F., A.F., C.P.), Raritan, New Jersey, USA
| | - Eddy Anglade
- Janssen Pharmaceuticals (P.M., J.X., M.C., E.A., P.W., P.R.F., A.F., C.P.), Raritan, New Jersey, USA
| | - Peggy Wong
- Janssen Pharmaceuticals (P.M., J.X., M.C., E.A., P.W., P.R.F., A.F., C.P.), Raritan, New Jersey, USA
| | - Penny R Fleck
- Janssen Pharmaceuticals (P.M., J.X., M.C., E.A., P.W., P.R.F., A.F., C.P.), Raritan, New Jersey, USA
| | - Albert Fung
- Janssen Pharmaceuticals (P.M., J.X., M.C., E.A., P.W., P.R.F., A.F., C.P.), Raritan, New Jersey, USA
| | - Colleen Peluso
- Janssen Pharmaceuticals (P.M., J.X., M.C., E.A., P.W., P.R.F., A.F., C.P.), Raritan, New Jersey, USA
| | - Angelos Kalitzeos
- From the UCL Institute of Ophthalmology (M.M., Y.Y., T.A.C.G., S.C.W., J.J.L.T., A.K., M.G., A.J.S., R.R.A., J.B.), London, UK; Moorfields Eye Hospital NHS Foundation Trust (M.M., Y.Y., T.A.C.G., S.C.W., J.J.L.T., N.K., A.K., M.G., J.B.), London, UK
| | - Michalis Georgiou
- From the UCL Institute of Ophthalmology (M.M., Y.Y., T.A.C.G., S.C.W., J.J.L.T., A.K., M.G., A.J.S., R.R.A., J.B.), London, UK; Moorfields Eye Hospital NHS Foundation Trust (M.M., Y.Y., T.A.C.G., S.C.W., J.J.L.T., N.K., A.K., M.G., J.B.), London, UK; Jones Eye Institute, University of Arkansas for Medical Sciences (M.G.), Little Rock, Arkansas, USA
| | | | - Alexander J Smith
- From the UCL Institute of Ophthalmology (M.M., Y.Y., T.A.C.G., S.C.W., J.J.L.T., A.K., M.G., A.J.S., R.R.A., J.B.), London, UK; Centre for Gene Therapy and Regenerative Medicine, King's College London (A.J.S.), London, UK
| | - Robin R Ali
- From the UCL Institute of Ophthalmology (M.M., Y.Y., T.A.C.G., S.C.W., J.J.L.T., A.K., M.G., A.J.S., R.R.A., J.B.), London, UK; Gundersen Health System (S.M.S., R.R.A.), La Crosse, Wisconsin, USA
| | | | - James Bainbridge
- From the UCL Institute of Ophthalmology (M.M., Y.Y., T.A.C.G., S.C.W., J.J.L.T., A.K., M.G., A.J.S., R.R.A., J.B.), London, UK; Moorfields Eye Hospital NHS Foundation Trust (M.M., Y.Y., T.A.C.G., S.C.W., J.J.L.T., N.K., A.K., M.G., J.B.), London, UK
| |
Collapse
|
11
|
Igoe JM, Lam BL, Gregori NZ. Update on Clinical Trial Endpoints in Gene Therapy Trials for Inherited Retinal Diseases. J Clin Med 2024; 13:5512. [PMID: 39336999 PMCID: PMC11431936 DOI: 10.3390/jcm13185512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Inherited retinal diseases (IRDs) encompass a wide spectrum of rare conditions characterized by diverse phenotypes associated with hundreds of genetic variations, often leading to progressive visual impairment and profound vision loss. Multiple natural history studies and clinical trials exploring gene therapy for various IRDs are ongoing. Outcomes for ophthalmic trials measure visual changes in three main categories-structural, functional, and patient-focused outcomes. Since IRDs may range from congenital with poor central vision from birth to affecting the peripheral retina initially and progressing insidiously with visual acuity affected late in the disease course, typical outcome measures such as central visual acuity and ocular coherence tomography (OCT) imaging of the macula may not provide adequate representation of therapeutic outcomes including alterations in disease course. Thus, alternative unique outcome measures are necessary to assess loss of peripheral vision, color vision, night vision, and contrast sensitivity in IRDs. These differences have complicated the assessment of clinical outcomes for IRD therapies, and the clinical trials for IRDs have had to design novel specialized endpoints to demonstrate treatment efficacy. As genetic engineering and gene therapy techniques continue to advance with growing investment from industry and accelerated approval tracks for orphan conditions, the clinical trials must continue to improve their assessments to demonstrate safety and efficacy of new gene therapies that aim to come to market. Here, we will provide an overview of the current gene therapy approaches, review various endpoints for measuring visual function, highlight those that are utilized in recent gene therapy trials, and provide an overview of stage 2 and 3 IRD trials through the second quarter of 2024.
Collapse
Affiliation(s)
- Jane M Igoe
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Byron L Lam
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ninel Z Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Miami Veterans Administration Medical Center, Miami, FL 33125, USA
| |
Collapse
|
12
|
Kvanta A, Rangaswamy N, Holopigian K, Watters C, Jennings N, Liew MSH, Bigelow C, Grosskreutz C, Burstedt M, Venkataraman A, Westman S, Geirsdottir A, Stasi K, André H. Interim safety and efficacy of gene therapy for RLBP1-associated retinal dystrophy: a phase 1/2 trial. Nat Commun 2024; 15:7438. [PMID: 39256350 PMCID: PMC11387776 DOI: 10.1038/s41467-024-51575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Gene therapy holds promise for treatment of inherited retinal dystrophies, a group of rare genetic disorders characterized by severe loss of vision. Here, we report up to 3-year pre-specified interim safety and efficacy results of an open-label first-in-human dose-escalation phase 1/2 gene therapy clinical trial in 12 patients with retinal dystrophy caused by biallelic mutations in the retinaldehyde-binding protein 1 (RLBP1) gene of the visual cycle. The primary endpoints were systemic and ocular safety and recovery of dark adaptation. Secondary endpoints included microperimetry, visual field sensitivity, dominant eye test and patient-reported outcomes. Subretinal delivery of an adeno-associated viral vector (AAV8-RLBP1) was well tolerated with dose-dependent intraocular inflammation which responded to corticosteroid treatment, and focal atrophy of the retinal pigment epithelium as the dose limiting toxicity. Dark adaptation kinetics, the primary efficacy endpoint, improved significantly in all dose-cohorts. Treatment with AAV8-RLBP1 resulted in the resolution of disease-related retinal deposits, suggestive of successful restoration of the visual cycle. In conclusion, to date, AAV8-RLBP1 has shown preliminary safety and efficacy in patients with RLBP1-associated retinal dystrophy. Trial number: NCT03374657.
Collapse
Affiliation(s)
- Anders Kvanta
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | | | - Karen Holopigian
- Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| | | | - Nicki Jennings
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Chad Bigelow
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Marie Burstedt
- Department of Clinical Sciences/Ophthalmology, University of Umeå, Umeå, Sweden
| | - Abinaya Venkataraman
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Sofie Westman
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Asbjörg Geirsdottir
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Kalliopi Stasi
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Yang P, Pardon LP, Ho AC, Lauer AK, Yoon D, Boye SE, Boye SL, Roman AJ, Wu V, Garafalo AV, Sumaroka A, Swider M, Viarbitskaya I, Aleman TS, Pennesi ME, Kay CN, Fujita KP, Cideciyan AV. Safety and efficacy of ATSN-101 in patients with Leber congenital amaurosis caused by biallelic mutations in GUCY2D: a phase 1/2, multicentre, open-label, unilateral dose escalation study. Lancet 2024; 404:962-970. [PMID: 39244273 DOI: 10.1016/s0140-6736(24)01447-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Leber congenital amaurosis 1 (LCA1), caused by mutations in GUCY2D, is a rare inherited retinal disease that typically causes blindness in early childhood. The aim of this study was to evaluate the safety and preliminary efficacy of ascending doses of ATSN-101, a subretinal AAV5 gene therapy for LCA1. METHODS 15 patients with genetically confirmed biallelic mutations in GUCY2D were included in this phase 1/2 study. All patients received unilateral subretinal injections of ATSN-101. In the dose-escalation phase, three adult cohorts (n=3 each) were treated with three ascending doses: 1·0 × 1010 vg/eye (low dose), 3·0 × 1010 vg/eye (middle dose), and 1·0 × 1011 vg/eye (high dose). In the dose-expansion phase, one adult cohort (n=3) and one paediatric cohort (n=3) were treated at the high dose. The primary endpoint was the incidence of treatment-emergent adverse events (TEAEs), and secondary endpoints included full-field stimulus test (FST) and best-corrected visual acuity (BCVA). A multi-luminance mobility test (MLMT) was also done. Data through the 12-month main study period are reported. FINDINGS Patients were enrolled between Sept 12, 2019, and May 5, 2022. A total of 68 TEAEs were observed, 56 of which were related to the surgical procedure. No serious TEAE was related to the study drug. Ocular inflammation was mild and reversible with steroid treatment. For patients who received the high dose, mean change in dark-adapted FST was 20·3 decibels (dB; 95% CI 6·6 to 34·0) for treated eyes and 1·1 dB (-3·7 to 5·9) for untreated eyes at month 12 (white stimulus); improvements were first observed at day 28 and persisted over 12 months (p=0·012). Modest improvements in BCVA were also observed (p=0·10). Three of six patients who received the high dose and did the MLMT achieved the maximum score in the treated eye. INTERPRETATION ATSN-101 is well tolerated 12 months after treatment, with no drug-related serious adverse events. Clinically significant improvements in retinal sensitivity were sustained in patients receiving the high dose. FUNDING Atsena Therapeutics.
Collapse
Affiliation(s)
- Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA.
| | | | - Allen C Ho
- Wills Eye Hospital, Philadelphia, PA, USA
| | - Andreas K Lauer
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Dan Yoon
- Atsena Therapeutics, Durham, NC, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Sanford L Boye
- Powell Gene Therapy Center, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Alejandro J Roman
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivian Wu
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra V Garafalo
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Sumaroka
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malgorzata Swider
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Iryna Viarbitskaya
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomas S Aleman
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Retina Foundation of the Southwest, Dallas, TX, USA
| | | | | | - Artur V Cideciyan
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Leroy BP, Daly A, Héon E, Sahel JA, Dollfus H. Therapies for Inherited Retinal Dystrophies: What is Enough? Drug Discov Today 2024; 29:104095. [PMID: 38992419 DOI: 10.1016/j.drudis.2024.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital & Department of Head & Skin, Ghent University, ERN-EYE, Ghent, Belgium; Division of Ophthalmology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - José-Alain Sahel
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, ERN-EYE and Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hélène Dollfus
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CRMR CARGO), Institut de Génétique Médicale d'Alsace (IGMA), FSMR SENSGENE, ERN-EYE, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, UMRS_1112, Strasbourg, France.
| |
Collapse
|
15
|
McClements ME, Elsayed MEAA, Major L, de la Camara CMF, MacLaren RE. Gene Therapies in Clinical Development to Treat Retinal Disorders. Mol Diagn Ther 2024; 28:575-591. [PMID: 38955952 PMCID: PMC11349810 DOI: 10.1007/s40291-024-00722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Gene therapies have emerged as promising treatments in clinical development for various retinal disorders, offering hope to patients with inherited degenerative eye conditions. Several gene therapies have already shown remarkable success in clinical trials, with significant improvements observed in visual acuity and the preservation of retinal function. A multitude of gene therapies have now been delivered safely in human clinical trials for a wide range of inherited retinal disorders but there are some gaps in the reported trial data. Some of the most exciting treatment options are not under peer review and information is only available in press release form. Whilst many trials appear to have delivered good outcomes of safety, others have failed to meet primary endpoints and therefore not proceeded to phase III. Despite this, such trials have enabled researchers to learn how best to assess and monitor patient outcomes, which will guide future trials to greater success. In this review, we consider recent and ongoing clinical trials for a variety of potential retinal gene therapy treatments and discuss the positive and negative issues related to these trials. We discuss the treatment potential following clinical trials as well as the potential risks of some treatments under investigation. As these therapies continue to advance through rigorous testing and regulatory approval processes, they hold the potential to revolutionise the landscape of retinal disorder treatments, providing renewed vision and enhancing the quality of life for countless individuals worldwide.
Collapse
Affiliation(s)
- Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Wellington Square, Oxford, OX1 2JD, UK.
- Oxford University Hospital NIHR Biomedical Research Centre, Oxford, UK.
| | - Maram E A Abdalla Elsayed
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Wellington Square, Oxford, OX1 2JD, UK
- Oxford University Hospital NIHR Biomedical Research Centre, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Lauren Major
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Wellington Square, Oxford, OX1 2JD, UK
- Oxford University Hospital NIHR Biomedical Research Centre, Oxford, UK
| | - Cristina Martinez-Fernandez de la Camara
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Wellington Square, Oxford, OX1 2JD, UK
- Oxford University Hospital NIHR Biomedical Research Centre, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Wellington Square, Oxford, OX1 2JD, UK
- Oxford University Hospital NIHR Biomedical Research Centre, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
16
|
Weinfurt KP. Comment on "PRISMA-COSMIN guidance for reporting systematic reviews of outcome measurement instruments". Qual Life Res 2024; 33:2049-2050. [PMID: 38980637 DOI: 10.1007/s11136-024-03671-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 07/10/2024]
Affiliation(s)
- Kevin P Weinfurt
- Center for Health Measurement, Department of Population Health Sciences, Duke University Medical Center, 215 Morris Street, Suite 210, Durham, NC, 27701, USA.
| |
Collapse
|
17
|
Rosin B, Banin E, Sahel JA. Current Status of Clinical Trials Design and Outcomes in Retinal Gene Therapy. Cold Spring Harb Perspect Med 2024; 14:a041301. [PMID: 37696658 PMCID: PMC11216172 DOI: 10.1101/cshperspect.a041301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
With the rapid expansion of methods encompassed by the term gene therapy, new trials exploring the safety and efficacy of these methods are initiated more frequently. As a result, important questions arise pertaining the design of these trials and patient participation. One of the most important aspects of any clinical trial is the ability to measure the trial's outcome in a manner that will reflect the effect of the treatment and allow its quantification, whether the trial is aimed at preservation or restoration of retinal cells (photoreceptors and others), vision, or both. Here we will review the existing methods for quantification of trial outcomes, stressing the importance of assessing the participant's visual function and not just visual acuity. We will also describe the key considerations in trial design. Finally, as patient safety remains the primary concern in any trial participation, we will outline the key principles in that regard.
Collapse
Affiliation(s)
- Boris Rosin
- The UPMC Vision Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Eyal Banin
- Division of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Jose-Alain Sahel
- The UPMC Vision Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
- Division of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
- Institut Hospitalo-Universitaire FOReSIGHT, Paris 75012, France
| |
Collapse
|
18
|
Hassan S, Hsu Y, Thompson JM, Kalmanek E, VandeLune JA, Stanley S, Drack AV. The dose-response relationship of subretinal gene therapy with rAAV2tYF-CB-h RS1 in a mouse model of X-linked retinoschisis. Front Med (Lausanne) 2024; 11:1304819. [PMID: 38414621 PMCID: PMC10898246 DOI: 10.3389/fmed.2024.1304819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
Purpose X-linked retinoschisis (XLRS), due to loss-of-function mutations in the retinoschisin (RS1) gene, is characterized by a modest to severe decrease in visual acuity. Clinical trials for XLRS utilizing intravitreal (IVT) gene therapy showed ocular inflammation. We conducted a subretinal dose-response preclinical study using rAAV2tYF-CB-hRS1 utilizing the Rs1 knockout (Rs1-KO) mouse to investigate short- and long-term retinal rescue after subretinal gene delivery. Methods Rs1-KO mice were subretinally injected with 2 μL of rAAV2tYF-CB-hRS1 vector with 8E9 viral genomes (vg)/eye, 8E8 vg/eye, 8E7 vg/eye, or sham injection, and compared to untreated eyes. Reconstitution of human RS1 protein was detected using western blotting. Analysis of retinal function by electroretinography (ERG) and structural analysis by optical coherence tomography (OCT) were performed at 1, 2, 3, 5, 7, and 12 months post injection (MPI). Immunohistochemistry (IHC) was performed to evaluate cone rescue on the cellular level. Functional vision was evaluated using a visually guided swim assay (VGSA). Results Western blotting analysis showed human RS1 protein expression in a dose-dependent manner. Quantification of western blotting showed that the RS1 protein expression in mice treated with the 8E8 vg dose was near the wild-type (WT) expression levels. ERG demonstrated dose-dependent effects: At 1 MPI the 8E8 vg dose treated eyes had higher light-adapted (LA) ERG amplitudes in 3.0 flash and 5 Hz flicker compared to untreated (p < 0.0001) and sham-treated eyes (p < 0.0001) which persisted until the 12 MPI endpoint, consistent with improved cone function. ERG b-wave amplitudes were higher in response to dark-adapted (DA) 0.01 dim flash and 3.0 standard combined response (SCR) compared to sham-treated (p < 0.01) and untreated eyes (p < 0.001) which persisted until 3 MPI, suggesting short-term improvement of the rod photoreceptors. All injections, including sham-treated, resulted in a cyst severity score of 1 (no cavities), with significant reductions compared to untreated eyes up to 3 MPI (p < 0.05). The high and low dose groups showed inconsistent ERG improvements, despite reduced cyst severity, emphasizing the dose-dependent nature of gene augmentation's efficacy and the tenuous connection between cyst reduction and ERG improvement. IHC data showed a significant cone rescue in eyes treated with the 8E8 vg dose compared to sham-treated and untreated eyes. VGSA showed better functional vision in 8E8 vg dose treated mice. Eyes treated with the highest dose showed occasional localized degeneration in the outer nuclear layer. Conclusion Our data suggest that a dose of 8E8 vg/eye subretinally improves retinal function and structure in the Rs1-KO mouse. It improves cone function, rod function, and reduces cyst severity. Sham treatment resolves schisis cysts, but 8E8 vg/eye is needed for optimal retinal electrical function rescue. These findings offer a promising path for clinical translation to human trials.
Collapse
Affiliation(s)
- Salma Hassan
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Biomedical Science-Cell and Developmental Biology Graduate Program, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Jacob M Thompson
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Emily Kalmanek
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Joel A VandeLune
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Sarah Stanley
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Arlene V Drack
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Biomedical Science-Cell and Developmental Biology Graduate Program, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
19
|
Jung R, Kempf M, Holocher S, Kortüm FC, Stingl K, Stingl K. Multi-luminance mobility testing after gene therapy in the context of retinal functional diagnostics. Graefes Arch Clin Exp Ophthalmol 2024; 262:601-607. [PMID: 37768368 PMCID: PMC10844143 DOI: 10.1007/s00417-023-06237-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Voretigene neparvovec (Luxturna®) is the first approved gene therapy for RPE65-linked Leber congenital amaurosis (LCA). Though individual effects are highly variable, most recipients report improved vision in everyday life. To describe such effects, visual navigation tests are now frequently used in clinical trials. However, it is still unclear how their results should be interpreted compared to conventional parameters of visual function. METHODS Seven LCA patients underwent a multi-luminance visual navigation test (Ora-VNCTM) before and 3 months after receiving Luxturna gene therapy. Their performance was rated based on the luminance level at which they passed the course. Differences between the first and second test were correlated to changes in visual acuity, full-field stimulus thresholds, chromatic pupil campimetry, and dark-adapted perimetry. RESULTS A few patients displayed notable improvements in conventional measures of visual function whereas patients with advanced retinal degeneration showed no relevant changes. Independent of these results, almost all participants improved in the visual navigation task by one or more levels. The improvement in the mobility test was best correlated to the change in full-field stimulus thresholds. Other measures of visual functions showed no clear correlation with visual navigation. DISCUSSION In patients who passed the test's more difficult levels, improved visual navigation can be attributed to the reactivation of rods. However, the performance of patients with low vision seemed to depend much more on confounding factors in the easier levels. In sum, such tests might only be meaningful for patients with better preserved visual functions.
Collapse
Affiliation(s)
- Ronja Jung
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Str.7, Tübingen, Germany.
| | - Melanie Kempf
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Str.7, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany
| | - Saskia Holocher
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Str.7, Tübingen, Germany
| | - Friederike C Kortüm
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Str.7, Tübingen, Germany
| | - Krunoslav Stingl
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Str.7, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany
| | - Katarina Stingl
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Str.7, Tübingen, Germany.
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
20
|
Lorenz B, Künzel SH, Preising MN, Scholz JP, Chang P, Holz FG, Herrmann P. Single Center Experience with Voretigene Neparvovec Gene Augmentation Therapy in RPE65 Mutation-Associated Inherited Retinal Degeneration in a Clinical Setting. Ophthalmology 2024; 131:161-178. [PMID: 37704110 DOI: 10.1016/j.ophtha.2023.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
PURPOSE To assess the impact of baseline data on psychophysical and morphological outcomes of subretinal voretigene neparvovec (VN) (Luxturna, Spark Therapeutics, Inc.) treatment. DESIGN Single-center, retrospective, longitudinal, consecutive case series. PARTICIPANTS Patients with RPE65-biallelic mutation-associated inherited retinal degeneration (RPE65-IRD) treated between February 2020 and March 2022 with VN and oral immunosuppression according to the manufacturer's recommendation by one surgeon (F.G.H.). METHODS Retrospective analysis of surgical and clinical records, ancillary testing, and retinal imaging after VN therapy for RPE65-IRD. Descriptive statistics compared data at baseline up to 32 months post-treatment. MAIN OUTCOME MEASURES Best-corrected visual acuity (BCVA), low-luminance VA (LLVA), Goldmann visual fields (GVFs), chromatic full-field stimulus threshold (FST) testing (FST), scotopic and photopic 2-color threshold perimetry (2CTP), and multimodal retinal imaging. RESULTS Thirty eyes of 19 patients were analyzed (10 pediatric patients < 20 years; 20 adult patients > 20 years of age; overall range: 8-40 years) with a median follow-up of 15 months (range, 1-32). The fovea was completely or partially detached in 16 eyes, attached in 12 eyes, and not assessable in 2 eyes on intraoperative imaging. Median BCVA at baseline was better in the pediatric group (P < 0.05) and did not change significantly independent of age. Meaningful loss of BCVA (≥ 0.3 logarithm of the minimal angle of resolution [logMAR]) occurred in 5 of 18 adult eyes, and a meaningful gain (≥-0.3 logMAR) occurred in 2 of 18 adult and 2 of 8 pediatric eyes. The LLVA and scotopic 2CTP improved considerably in pediatric patients. Scotopic blue FST improved at all ages but more in pediatric patients (8/8 eyes gained ≥ 10 decibels [dB]; P < 0.05). In pediatric patients, median GVF improved by 20% for target V4e and by 50% for target III4e (target I4e not detected). Novel atrophy developed in 13 of 26 eyes at the site of the bleb or peripheral of vascular arcades. Improvements in FST did not correlate with development of chorioretinal atrophy at 12 months. Mean central retinal thickness was 165.87 μm (± 26.26) at baseline (30 eyes) and 157.69 μm (± 30.3) at 12 months (26 eyes). Eight adult patients were treated unilaterally. The untreated eyes did not show meaningful changes during follow-up. CONCLUSIONS These data in a clinical setting show the effectiveness of VN therapy with stable median BCVA and mean retinal thickness and improvements of LLVA, FST, and 2CTP up to 32 months. Treatment effects were superior in the pediatric group. We observed new chorioretinal atrophy in 50% of the treated eyes. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Birgit Lorenz
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany; Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany.
| | - Sandrine H Künzel
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Markus N Preising
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Johanna P Scholz
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Petrus Chang
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany; Grade Reading Center, University Hospital Bonn, Bonn, Germany
| | - Frank G Holz
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany; Center for Rare Diseases, University Hospital Bonn, Bonn, Germany; Grade Reading Center, University Hospital Bonn, Bonn, Germany
| | - Philipp Herrmann
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany; Center for Rare Diseases, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
21
|
Authié CN, Poujade M, Talebi A, Defer A, Zenouda A, Coen C, Mohand-Said S, Chaumet-Riffaud P, Audo I, Sahel JA. Development and Validation of a Novel Mobility Test for Rod-Cone Dystrophies: From Reality to Virtual Reality. Am J Ophthalmol 2024; 258:43-54. [PMID: 37437832 DOI: 10.1016/j.ajo.2023.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE To validate a novel mobility test (MOST, MObility Standardized Test) and performance outcomes in real (RL) and virtual (VR) environments to be used for interventional clinical studies in order to characterize vision impairment in rod-cone dystrophies, also known as retinitis pigmentosa (RP). DESIGN Prospective, interventional, noninvasive, reliability and validity analysis. METHODS We designed MOST to be used in both VR and RL and conducted 3 experimental studies with 89 participants to (1) validate the difficulty of the mobility courses (15 controls), (2) determine the optimal number of light levels and training trials (14 participants with RP), and (3) validate the reproducibility (test-retest), reliability (VR/RL), sensitivity, and construct/content validity of the test (30 participants with RP and 30 controls). A comprehensive ophthalmologic examination was performed in all subjects. Outcomes of interest included MOST performance score, visual acuity, contrast sensitivity, dark adaptation thresholds, visual field parameters, and correlation between the performance score and visual function. RESULTS The mobility courses exhibited statistically similar difficulty, and 5 trials are sufficient to control for the learning effect. MOST is highly reproducible (test-retest correlations >0.98) and reliable (correlations VR/RL = 0.98). MOST achieved a discrimination between participants with RP and controls (accuracy >95%) and between early and late stages of the disease (82.3% accuracy). The performance score is correlated with visual function parameter (0.57-0.94). CONCLUSION MOST is a validated mobility test, with the controlled learning effect, excellent reproducibility, and high agreement between RL and VR conditions, as well as sensitivity and specificity to measure disease progression and therapeutic benefit in rod-cone dystrophies.
Collapse
Affiliation(s)
- Colas Nils Authié
- From the Streetlab (C.N.A., M.P., A.T., A.D., A.Z., C.C.), Paris, France.
| | - Mylène Poujade
- From the Streetlab (C.N.A., M.P., A.T., A.D., A.Z., C.C.), Paris, France
| | - Alireza Talebi
- From the Streetlab (C.N.A., M.P., A.T., A.D., A.Z., C.C.), Paris, France; Institut de la Vision, Sorbonne Universités, INSERM, CNRS (A.T., I.A., J.-A.S.), Paris, France
| | - Alexis Defer
- From the Streetlab (C.N.A., M.P., A.T., A.D., A.Z., C.C.), Paris, France
| | - Ariel Zenouda
- From the Streetlab (C.N.A., M.P., A.T., A.D., A.Z., C.C.), Paris, France
| | - Cécilia Coen
- From the Streetlab (C.N.A., M.P., A.T., A.D., A.Z., C.C.), Paris, France
| | - Saddek Mohand-Said
- Hôpital National de la Vision des Quinze-Vingts, DHU Sight Restore, Centre de Référence Maladies Rares REFERET, INSERM-DHOS CIC 1423 (S.M.-S., P.C.-R., I.A., J.-A.S.), Paris, France
| | - Philippe Chaumet-Riffaud
- Hôpital National de la Vision des Quinze-Vingts, DHU Sight Restore, Centre de Référence Maladies Rares REFERET, INSERM-DHOS CIC 1423 (S.M.-S., P.C.-R., I.A., J.-A.S.), Paris, France
| | - Isabelle Audo
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS (A.T., I.A., J.-A.S.), Paris, France; Hôpital National de la Vision des Quinze-Vingts, DHU Sight Restore, Centre de Référence Maladies Rares REFERET, INSERM-DHOS CIC 1423 (S.M.-S., P.C.-R., I.A., J.-A.S.), Paris, France
| | - José-Alain Sahel
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS (A.T., I.A., J.-A.S.), Paris, France; Hôpital National de la Vision des Quinze-Vingts, DHU Sight Restore, Centre de Référence Maladies Rares REFERET, INSERM-DHOS CIC 1423 (S.M.-S., P.C.-R., I.A., J.-A.S.), Paris, France; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA (J.-A.S.)
| |
Collapse
|
22
|
Brar AS, Parameswarappa DC, Takkar B, Narayanan R, Jalali S, Mandal S, Fujinami K, Padhy SK. Gene Therapy for Inherited Retinal Diseases: From Laboratory Bench to Patient Bedside and Beyond. Ophthalmol Ther 2024; 13:21-50. [PMID: 38113023 PMCID: PMC10776519 DOI: 10.1007/s40123-023-00862-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
This comprehensive review provides a thorough examination of inherited retinal diseases (IRDs), encompassing their classification, genetic underpinnings, and the promising landscape of gene therapy trials. IRDs, a diverse group of genetic conditions causing vision loss through photoreceptor cell death, are explored through various angles, including inheritance patterns, gene involvement, and associated systemic disorders. The focal point is gene therapy, which offers hope for halting or even reversing the progression of IRDs. The review highlights ongoing clinical trials spanning retinal cell replacement, neuroprotection, pharmacological interventions, and optogenetics. While these therapies hold tremendous potential, they face challenges like timing optimization, standardized assessment criteria, inflammation management, vector refinement, and raising awareness among vision scientists. Additionally, translating gene therapy success into widespread adoption and addressing cost-effectiveness are crucial challenges to address. Continued research and clinical trials are essential to fully harness gene therapy's potential in treating IRDs and enhancing the lives of affected individuals.
Collapse
Affiliation(s)
- Anand Singh Brar
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, 751024, India
| | - Deepika C Parameswarappa
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Brijesh Takkar
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Raja Narayanan
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Subhadra Jalali
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Sohini Mandal
- Dr Rajendra Prasad Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, 152-8902, Japan
| | - Srikanta Kumar Padhy
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, 751024, India.
| |
Collapse
|
23
|
Schmetterer L, Scholl H, Garhöfer G, Janeschitz-Kriegl L, Corvi F, Sadda SR, Medeiros FA. Endpoints for clinical trials in ophthalmology. Prog Retin Eye Res 2023; 97:101160. [PMID: 36599784 DOI: 10.1016/j.preteyeres.2022.101160] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
With the identification of novel targets, the number of interventional clinical trials in ophthalmology has increased. Visual acuity has for a long time been considered the gold standard endpoint for clinical trials, but in the recent years it became evident that other endpoints are required for many indications including geographic atrophy and inherited retinal disease. In glaucoma the currently available drugs were approved based on their IOP lowering capacity. Some recent findings do, however, indicate that at the same level of IOP reduction, not all drugs have the same effect on visual field progression. For neuroprotection trials in glaucoma, novel surrogate endpoints are required, which may either include functional or structural parameters or a combination of both. A number of potential surrogate endpoints for ophthalmology clinical trials have been identified, but their validation is complicated and requires solid scientific evidence. In this article we summarize candidates for clinical endpoints in ophthalmology with a focus on retinal disease and glaucoma. Functional and structural biomarkers, as well as quality of life measures are discussed, and their potential to serve as endpoints in pivotal trials is critically evaluated.
Collapse
Affiliation(s)
- Leopold Schmetterer
- Singapore Eye Research Institute, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore; Academic Clinical Program, Duke-NUS Medical School, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland.
| | - Hendrik Scholl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Lucas Janeschitz-Kriegl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Federico Corvi
- Eye Clinic, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Italy
| | - SriniVas R Sadda
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Felipe A Medeiros
- Vision, Imaging and Performance Laboratory, Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| |
Collapse
|
24
|
Hassan S, Hsu Y, Mayer SK, Thomas J, Kothapalli A, Helms M, Baker SA, Laird JG, Bhattarai S, Drack AV. A visually guided swim assay for mouse models of human retinal disease recapitulates the multi-luminance mobility test in humans. Saudi J Ophthalmol 2023; 37:313-320. [PMID: 38155679 PMCID: PMC10752274 DOI: 10.4103/sjopt.sjopt_155_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 12/30/2023] Open
Abstract
PURPOSE The purpose of this study was to develop a visually guided swim assay (VGSA) for measuring vision in mouse retinal disease models comparable to the multi-luminance mobility test (MLMT) utilized in human clinical trials. METHODS Three mouse retinal disease models were studied: Bardet-Biedl syndrome type 1 (Bbs1M390R/M390R), n = 5; Bardet-Biedl syndrome type 10 (Bbs10-/-), n = 11; and X linked retinoschisis (retinoschisin knockout; Rs1-KO), n = 5. Controls were normally-sighted mice, n = 10. Eyeless Pax6Sey-Dey mice, n = 4, were used to determine the performance of animals without vision in VGSA. RESULTS Eyeless Pax6Sey-Dey mice had a VGSA time-to-platform (TTP) 7X longer than normally-sighted controls (P < 0.0001). Controls demonstrated no difference in their TTP in both lighting conditions; the same was true for Pax6Sey-Dey. At 4-6 M, Rs1-KO and Bbs10-/- had longer TTP in the dark than controls (P = 0.0156 and P = 1.23 × 10-8, respectively). At 9-11 M, both BBS models had longer TTP than controls in light and dark with times similar to Pax6Sey-Dey (P < 0.0001), demonstrating progressive vision loss in BBS models, but not in controls nor in Rs1-KO. At 1 M, Bbs10-/- ERG light-adapted (cone) amplitudes were nonrecordable, resulting in a floor effect. VGSA did not reach a floor until 9-11 M. ERG combined rod/cone b-wave amplitudes were nonrecordable in all three mutant groups at 9-11 M, but VGSA still showed differences in visual function. ERG values correlate non-linearly with VGSA, and VGSA measured the continual decline of vision. CONCLUSION ERG is no longer a useful endpoint once the nonrecordable level is reached. VGSA differentiates between different levels of vision, different ages, and different disease models even after ERG is nonrecordable, similar to the MLMT in humans.
Collapse
Affiliation(s)
- Salma Hassan
- Department of Anatomy and Cell Biology, Biomedical Science- Cell and Developmental Biology Graduate Program, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, IVR, Iowa City, IA, USA
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, IVR, Iowa City, IA, USA
| | - Sara K. Mayer
- Department of Ophthalmology and Visual Sciences, IVR, Iowa City, IA, USA
- Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA, USA
| | - Jacintha Thomas
- Department of Ophthalmology and Visual Sciences, IVR, Iowa City, IA, USA
| | | | - Megan Helms
- Department of Ophthalmology and Visual Sciences, IVR, Iowa City, IA, USA
| | - Sheila A. Baker
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - Joseph G. Laird
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - Sajag Bhattarai
- Department of Ophthalmology and Visual Sciences, IVR, Iowa City, IA, USA
| | - Arlene V. Drack
- Department of Anatomy and Cell Biology, Biomedical Science- Cell and Developmental Biology Graduate Program, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, IVR, Iowa City, IA, USA
- Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
25
|
Abdalla Elsayed MEA, Taylor LJ, Josan AS, Fischer MD, MacLaren RE. Choroideremia: The Endpoint Endgame. Int J Mol Sci 2023; 24:14354. [PMID: 37762657 PMCID: PMC10532430 DOI: 10.3390/ijms241814354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Choroideremia is an X-linked retinal degeneration resulting from the progressive, centripetal loss of photoreceptors and choriocapillaris, secondary to the degeneration of the retinal pigment epithelium. Affected individuals present in late childhood or early teenage years with nyctalopia and progressive peripheral visual loss. Typically, by the fourth decade, the macula and fovea also degenerate, resulting in advanced sight loss. Currently, there are no approved treatments for this condition. Gene therapy offers the most promising therapeutic modality for halting or regressing functional loss. The aims of the current review are to highlight the lessons learnt from clinical trials in choroideremia, review endpoints, and propose a future strategy for clinical trials.
Collapse
Affiliation(s)
- Maram E. A. Abdalla Elsayed
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Laura J. Taylor
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Amandeep S. Josan
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - M. Dominik Fischer
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
26
|
Hamed MM, Masoud MA. An Exploratory Assessment of Self-Reported Satisfaction with Infrastructure and Out-of-Home Activities for People with Vision Impairments. Vision (Basel) 2023; 7:58. [PMID: 37756132 PMCID: PMC10535916 DOI: 10.3390/vision7030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE The purpose of this study is to assess the satisfaction levels of people with VI with regard to infrastructure and outdoor activities. Furthermore, this study aims to develop an assessment model for the levels of difficulty in using public transport. METHODS Participants in a standardized survey questionnaire included 74 participants with VI. Three assessment-ordered probit models were estimated based on self-reported responses. RESULTS Estimation results revealed that the use of public transport is extremely difficult for 83.47% of older participants. In addition, 84.2% of people with albinism have extreme difficulty using public transport. Furthermore, 53.98% of people with restricted horizontal and vertical fields face extreme difficulty using public transport. There was dissatisfaction with outdoor activities among 97.40% of people with macular disease. The results show that 51.70% of people with normal or near-normal horizontal visual fields and restricted vertical planes are satisfied with their level of outdoor activity while 72.65% of people with retinal diseases expressed dissatisfaction with the existing infrastructure. CONCLUSION This study revealed that the experiences of people with VI are heterogeneous and depend on their eye condition, access to assistive technology, and socioeconomic characteristics. Results clearly show evidence of heterogeneity among individuals with VI. The combination of horizontal and vertical restrictions yields random parameters, underscoring the heterogeneous experiences of people with VI, influenced by their eye condition and access to assistive devices. Our results have important implications for developing targeted interventions to enhance the mobility of people with VI.
Collapse
Affiliation(s)
- Mohammad M. Hamed
- Engineering Faculty, Civil Engineering Department, Isra University, Queen Alia International Airport Road, Amman 11118, Jordan
| | - Maisaa A. Masoud
- Vision Rehabilitation Center, German Jordanian University, Amman 11180, Jordan;
| |
Collapse
|
27
|
Mitra A, Ahmed MA, Krishna R, Sun K, Gibbons FD, Campagne O, Rayad N, Roman YM, Albusaysi S, Burian M, Younis IR. Model-Informed Approaches and Innovative Clinical Trial Design for Adeno-Associated Viral Vector-Based Gene Therapy Product Development: A White Paper. Clin Pharmacol Ther 2023; 114:515-529. [PMID: 37313953 DOI: 10.1002/cpt.2972] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
The promise of viral vector-based gene therapy (GT) as a transformative paradigm for treating severely debilitating and life-threatening diseases is slowly coming to fruition with the recent approval of several drug products. However, they have a unique mechanism of action often necessitating a tortuous clinical development plan. Expertise in such complex therapeutic modality is still fairly limited in this emerging class of adeno-associated virus (AAV) vector-based gene therapies. Because of the irreversible mode of action and incomplete understanding of genotype-phenotype relationship and disease progression in rare diseases careful considerations should be given to GT product's benefit-risk profile. In particular, special attention needs to be paid to safe dose selection, reliable dose exposure response (including clinically relevant endpoints), or creative approaches in study design targeting small patient populations during clinical development. We believe that quantitative tools encompassed within model-informed drug development (MIDD) framework fits quite well in the development of such novel therapies, as they enable us to benefit from the totality of data approach in order to support dose selection as well as optimize clinical trial designs, end point selection, and patient enrichment. In this thought leadership paper, we provide our collective experiences, identify challenges, and suggest areas of improvement in applications of modeling and innovative trial design in development of AAV-based GT products and reflect on the challenges and opportunities for incorporating MIDD tools and more in rational development of these products.
Collapse
Affiliation(s)
- Amitava Mitra
- Clinical Pharmacology, Kura Oncology, Boston, Massachusetts, USA
| | - Mariam A Ahmed
- Quantitative Clinical Pharmacology, Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | - Rajesh Krishna
- Integrated Drug Development, Certara USA, Inc., Princeton, New Jersey, USA
| | - Kefeng Sun
- Quantitative Clinical Pharmacology, Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | - Francis D Gibbons
- Quantitative Solutions, Preclinical and Translational Sciences, Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | - Olivia Campagne
- Quantitative Clinical Pharmacology, Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | - Noha Rayad
- Clinical Pharmacology, Modeling and Simulation, Parexel International (MA) Corporation, Mississauga, Ontario, Canada
| | - Youssef M Roman
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Salwa Albusaysi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maria Burian
- Translational Medicine Neuroscience and Gene Therapy, UCB Biopharma SRL, Braine-l'Alleud, Belgium
| | - Islam R Younis
- Clinical Pharmacology Sciences, Gilead Science, Inc, Foster City, California, USA
| |
Collapse
|
28
|
Duncan JL, Liang W, Maguire MG, Porco TC, Wong J, Audo I, Cava JA, Grieve K, Kalitzeos A, Kreis J, Michaelides M, Norberg N, Paques M, Carroll J. Change in Cone Structure Over 24 Months in USH2A-Related Retinal Degeneration. Am J Ophthalmol 2023; 252:77-93. [PMID: 36948373 PMCID: PMC11087021 DOI: 10.1016/j.ajo.2023.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023]
Abstract
PURPOSE To describe cone structure changes using adaptive optics scanning laser ophthalmoscopy (AOSLO) in the Rate of Progression of USH2A-related Retinal Degeneration (RUSH2A) study. DESIGN Multicenter, longitudinal natural history study. METHODS AOSLO images were acquired at 4 centers, twice at baseline and annually for 24 months in this natural history study. For each eye, at least 10 regions of interest (ROIs) with ≥50 contiguous cones were analyzed by masked, independent graders. Cone spacing Z-scores, standard deviations from the normal mean at the measured location, were compared between graders and tests at baseline. The association of cone spacing with clinical characteristics was assessed using linear mixed effects regression models weighted by image quality score. Annual rates of change were calculated based on differences between visits. RESULTS Fourteen eyes of 14 participants were imaged, with 192 ROIs selected at baseline. There was variability among graders, which was greater in images with lower image quality score (P < .001). Cone spacing was significantly correlated with eccentricity, quality score, and disease duration (P < .02). On average, the cone spacing Z-score increased 0.14 annually (about 9%, P < .001). We observed no significant differences in rate of change between disease type (Usher syndrome or retinitis pigmentosa), imaging site, or grader. CONCLUSIONS Using current methods, the analysis of quantitative measures of cone structure showed some challenges, yet showed promise that AOSLO images can be used to characterize progressive change over 24 months. Additional multicenter studies using AOSLO are needed to advance cone mosaic metrics as sensitive outcome measures for clinical trials. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
| | - Wendi Liang
- Jaeb Center for Health Research, Tampa, FL, USA
| | | | | | - Jessica Wong
- University of California, San Francisco, CA, USA
| | - Isabelle Audo
- Quinze Vingts National Ophthalmology Hospital, Paris, France
| | - Jenna A Cava
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kate Grieve
- Quinze Vingts National Ophthalmology Hospital, Paris, France
| | | | - Joseph Kreis
- Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | - Michel Paques
- Quinze Vingts National Ophthalmology Hospital, Paris, France
| | | |
Collapse
|
29
|
Farris M, Goodall S, De Abreu Lourenco R. A systematic review of economic evaluations for RPE65-mediated inherited retinal disease including HTA assessment of broader value. Int J Technol Assess Health Care 2023; 39:e38. [PMID: 37313789 PMCID: PMC11570094 DOI: 10.1017/s0266462323000326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/04/2023] [Accepted: 05/01/2023] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To summarize the key methodological challenges identified by health technology assessment (HTA) agencies assessing gene therapy (GT) and consideration of broad elements of value. METHOD Economic evaluations (EEs) of voretigene neparvovec (VN) in RPE65-mediated inherited retinal disease (IRD) published in English were selected. HTA evaluations from Australia, Canada, Ireland, Scotland, England, and the United States were reviewed. An existing methodological framework was used to identify the challenges and considerations. RESULTS Eight unique EEs were identified of which six were evaluated by HTA agencies. Incremental cost-effectiveness ratios ranged from $68,951 to $643,813 per quality-adjusted life-years (QALY) gained (healthcare perspective) and dominant to $480,130 per QALY gained (societal perspective). The key challenges were the lack of validated surrogate outcome, utility values and indirect costs from IRD patients, and limited evidence of the long-term treatment effect. Two HTA agencies reviewed a range of novel broader elements of value and whether they were associated with VN while other agencies discussed some elements of broader value. Caregiver disutility was included in some, but not all, evaluations. CONCLUSION The methodological challenges were consistent with innovative interventions for rare diseases and managed using standard methods. Broader value was important to decision-makers but inconsistently applied across agencies. Possible reasons are limitations in the evidence available of the broader benefits that VN offers and how to incorporate these within an EE. A need exists for greater guidance and consistency across jurisdictions regarding the consideration of broader value that considers latest best practice.
Collapse
Affiliation(s)
- Maria Farris
- Market Access Department, Novartis Pharmaceuticals Australia, Macquarie Park, Australia
| | - Stephen Goodall
- Centre for Health Economic Research and Evaluation, University of Technology Sydney, Ultimo, Australia
| | - Richard De Abreu Lourenco
- Centre for Health Economic Research and Evaluation, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
30
|
Gabriele Sandrian M, Ng E, Nguyen T, Eydelman M. FDA's role in expediting innovation of bioelectronic implants for vision restoration. J Neural Eng 2023; 20:030401. [PMID: 37278453 DOI: 10.1088/1741-2552/acd8f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
Bioelectronic implants for vision restoration are medical devices regulated in the United States by the Food and Drug Administration (FDA). This paper provides an overview of regulatory pathways and related FDA programs for bioelectronic implants for vision restoration, and identifies some of the gaps in the regulatory science of these devices. The FDA recognizes that additional discussion regarding development in this space is needed to further develop bioelectronic implants and ensure that safe and effective technologies are made available to patients with profound vision loss. FDA regularly participates in the Eye and the Chip World Research Congress meetings and continues to engage with important external stakeholders, including through public workshops such as the recent co-sponsored Expediting Innovation of Bioelectronic Implants for Vision Restoration. By participating in forums for discussion of these devices with all stakeholders, especially patients, FDA seeks to encourage advancement of these devices.
Collapse
Affiliation(s)
- Michelle Gabriele Sandrian
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Elvin Ng
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Tieuvi Nguyen
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Malvina Eydelman
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, United States of America
| |
Collapse
|
31
|
Reape KZ, High KA. Trial by "Firsts": Clinical Trial Design and Regulatory Considerations in the Development and Approval of the First AAV Gene Therapy Product in the United States. Cold Spring Harb Perspect Med 2023; 13:a041312. [PMID: 36096545 PMCID: PMC10153798 DOI: 10.1101/cshperspect.a041312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Given the therapeutic potential of supplying a normal copy of a mutant gene to the correct target tissue, gene therapy holds extraordinary promise for the treatment of genetic disease. Like other novel classes of therapeutics however, gene therapies must overcome a range of clinical, regulatory, and manufacturing hurdles to reach regulatory approval. This paper reviews key aspects of clinical trial design, development, and evaluation of a novel primary end point, and regulatory interactions that resulted in the first approval by the U.S. Food and Drug Administration (FDA) of an adeno-associated virus (AAV) gene therapy product.
Collapse
|
32
|
Bennett J, Maguire AM. Lessons Learned from the Development of the First FDA-Approved Gene Therapy Drug, Voretigene Neparvovec-rzyl. Cold Spring Harb Perspect Med 2023; 13:a041307. [PMID: 36167727 PMCID: PMC10153797 DOI: 10.1101/cshperspect.a041307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the 5 years following U.S. Food and Drug Administration (FDA) approval of the first gene therapy reagent approved to treat a genetic disease, voretigene neparvovec-rzyl (Luxturna), retinal disease clinics, hospital pharmacies, operating rooms, and even health insurance entities around the world have incorporated gene therapy as a standard procedure. The success of Luxturna has helped pave the way to establish a template for developing other gene therapy reagents that promise to restore sight or halt the progression of photoreceptor cell loss in both inherited and acquired retinal diseases. Here we review lessons learned from development of a gene therapy drug for RPE65 disease and how these lessons may expedite the development of additional treatments for previously untreatable blinding conditions.
Collapse
Affiliation(s)
- Jean Bennett
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania 19104, USA
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Albert M Maguire
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania 19104, USA
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Division of Ophthalmology at the Children's Hospital of Philadelphia of the Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19102, USA
| |
Collapse
|
33
|
Abstract
Inherited ocular diseases comprise a heterogeneous group of rare and complex diseases, including inherited retinal diseases (IRDs) and inherited optic neuropathies. Recent success in adeno-associated virus-based gene therapy, voretigene neparvovec (Luxturna®) for RPE65-related IRDs, has heralded rapid evolution in gene therapy platform technologies and strategies, from gene augmentation to RNA editing, as well as gene agnostic approaches such as optogenetics. This review discusses the fundamentals underlying the mode of inheritance, natural history studies and clinical trial outcomes, as well as current and emerging therapies covering gene therapy strategies, cell-based therapies and bionic vision.
Collapse
Affiliation(s)
- Hwei Wuen Chan
- Department of Ophthalmology, National University Hospital, Singapore,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Correspondence: Dr Hwei Wuen Chan, Assistant Professor, Department of Ophthalmology (Eye), Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 7, 119228, Singapore. E-mail:
| | - Jaslyn Oh
- Department of Ophthalmology, National University Hospital, Singapore
| | - Bart Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium,Department of Head and Skin, Ghent University, Ghent, Belgium,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium,Division of Ophthalmology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
34
|
Zhou HW. Multi-luminance Mobility Testing Endpoint. Methods Mol Biol 2023; 2560:175-179. [PMID: 36481896 DOI: 10.1007/978-1-0716-2651-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An individual's functional vision may be measured via visual assessment and performance on mobility tasks. Since traditional mobility performance tests neglect to examine the effects of illumination on performance, the multi-luminance mobility test (MLMT) was designed to quantitatively assess the effects of illumination levels on an individual's mobility performance. In this chapter, we describe how the MLMT is conducted and scored in order to properly evaluate a participant's mobility under various light conditions.
Collapse
Affiliation(s)
- Henry W Zhou
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
35
|
High KA. THE JEREMIAH METZGER LECTURE: TURNING GENES INTO MEDICINES: HIGHLIGHTS AND HURDLES IN THE DEVELOPMENT OF GENE THERAPY FOR GENETIC DISEASE. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2023; 133:204-233. [PMID: 37701622 PMCID: PMC10493758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The journey from in vitro transfer of genes into mammalian cells to approved gene therapy products has spanned decades. This manuscript summarizes hurdles encountered and obstacles overcome in the development of successful adeno-associated viral (AAV) vectors for hemophilia B and for an inherited retinal dystrophy caused by mutations in the RPE65 gene. In the case of hemophilia B, careful analysis of the first unsuccessful attempts led to the realization that the human immune response to AAV vectors was preventing durable expression; elucidation of the response to the recombinant virion led to strategies that enabled successful long-lasting gene transfer. For RPE65 deficiency, a key to success was development and validation of a novel clinical endpoint for a disease that previously lacked a pharmacologic treatment.
Collapse
|
36
|
Stingl K, Kempf M, Jung R, Kortüm F, Righetti G, Reith M, Dimopoulos S, Ott S, Kohl S, Stingl K. Therapy with voretigene neparvovec. How to measure success? Prog Retin Eye Res 2023; 92:101115. [PMID: 36096933 DOI: 10.1016/j.preteyeres.2022.101115] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 02/01/2023]
Abstract
Retinal gene supplementation therapy such as the first approved one, voretigene neparvovec, delivers a functioning copy of the missing gene enabling the protein transcription in retinal cells and restore visual functions. After gene supplementation for the genetic defect, a complex network of functional regeneration is the consequence, whereas the extent is very individualized. Diagnostic and functional testings that have been used routinely by ophthalmologists so far to define the correct diagnosis, cannot be applied in the new context of defining small, sometimes subtle changes in visual functions. New view on retinal diagnostics is needed to understand this processes that define safety and efficacy of the treatment. Not only does vision have many aspects that must be addressed by specific evaluations and imaging techniques, but objective readouts of local retinal function for rods and cones separately have been an unmet need until recently. A reliable test-retest variability is necessary in rare diseases such as inherited retinal dystrophies, because statistics are often not applicable due to a low number of participants. Methods for a reliable individual evaluation of the therapy success are needed. In this manuscript we present an elaboration on retinal diagnostics combining psychophysics (eg. full-field stimulus threshold or dark adapted perimetry) as well as objective measures for local retinal function (eg. photopic and scotopic chromatic pupil campimetry) and retinal imaging for a meaningful workflow to apply in evaluation of the individual success in patients receiving gene therapy for photoreceptor diseases.
Collapse
Affiliation(s)
- Krunoslav Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany; Center for Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany.
| | - Melanie Kempf
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany; Center for Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany.
| | - Ronja Jung
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Friederike Kortüm
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Giulia Righetti
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Milda Reith
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Spyridon Dimopoulos
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Saskia Ott
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany.
| | - Katarina Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany; Center for Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
37
|
Leroy BP, Fischer MD, Flannery JG, MacLaren RE, Dalkara D, Scholl HPN, Chung DC, Spera C, Viriato D, Banhazi J. Gene Therapy for Inherited Retinal Disease: Long-Term Durability of Effect. Ophthalmic Res 2022; 66:179-196. [PMID: 36103843 DOI: 10.1159/000526317] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/27/2022] [Indexed: 12/23/2023]
Abstract
The recent approval of voretigene neparvovec (Luxturna®) for patients with biallelic RPE65 mutation-associated inherited retinal dystrophy with viable retinal cells represents an important step in the development of ocular gene therapies. Herein, we review studies investigating the episomal persistence of different recombinant adeno-associated virus (rAAV) vector genomes and the preclinical and clinical evidence of long-term effects of different RPE65 gene replacement therapies. A targeted review of articles published between 1974 and January 2021 in Medline®, Embase®, and other databases was conducted, followed by a descriptive longitudinal analysis of the clinical trial outcomes of voretigene neparvovec. Following an initial screening, 14 publications examining the episomal persistence of different rAAV genomes and 71 publications evaluating gene therapies in animal models were included. Viral genomes were found to persist for at least 22 months (longest study follow-up) as transcriptionally active episomes. Treatment effects lasting almost a decade were reported in canine disease models, with more pronounced effects the earlier the intervention. The clinical trial outcomes of voretigene neparvovec are consistent with preclinical findings and reveal sustained results for up to 7.5 years for the full-field light sensitivity threshold test and 5 years for the multi-luminance mobility test in the Phase I and Phase III trials, respectively. In conclusion, the therapeutic effect of voretigene neparvovec lasts for at least a decade in animal models and 7.5 years in human subjects. Since retinal cells can retain functionality over their lifetime after transduction, these effects may be expected to last even longer in patients with a sufficient number of outer retinal cells at the time of intervention.
Collapse
Affiliation(s)
- Bart P Leroy
- Department of Ophthalmology & Centre for Medical Genetics, Ghent University Hospital & Ghent University, Ghent, Belgium
- Division of Ophthalmology & Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
- Oxford Eye Hospital, University of Oxford NHS Foundation Trust and NIHR Oxford Biomedical Research Centre, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - John G Flannery
- School of Optometry and the Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, USA
| | - Robert E MacLaren
- Oxford Eye Hospital, University of Oxford NHS Foundation Trust and NIHR Oxford Biomedical Research Centre, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
- Department of Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
38
|
Li Y, Izem R. Novel clinical trial design and analytic methods to tackle challenges in therapeutic development in rare diseases. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1034. [PMID: 36267797 PMCID: PMC9577738 DOI: 10.21037/atm-21-5496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022]
Abstract
While only a fraction of the worldwide population may have a particular rare disorder, millions of people worldwide are affected across the over 6,000 rare disorders and do not have a safe and effective approved therapy to help them live or manage complications from the disorder. Challenges to clinical development of new therapies in rare disorders include difficulty in powering and recruiting into a study in small and often heterogenous population, scarcity of natural history data informing critical design elements such as endpoint selection and study duration, and ethical and recruitment challenges in randomizing patients to a placebo arm. In this review, we describe some existing and novel strategies to tackle these challenges, by efficient utilization of available resources. We discuss the role of natural history studies and endpoint selection as they remain critical features that apply across designs and disorders. We also review some novel clinical trial designs including incorporating external control and/or longitudinal measures, master protocol designs, and adaptive designs. Additionally, we review some analytic strategies that are often associated with these designs, such as the use of causal inference methods, and Bayesian methods. We hope this review will raise awareness of these novel approaches and encourage their use in studies of rare diseases.
Collapse
Affiliation(s)
- Yimei Li
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, PA, USA
| | - Rima Izem
- Statistical Methodology and Consulting, Novartis, Basel, Switzerland
| |
Collapse
|
39
|
Bentley SA, Black AA, Hindmarsh GP, Owsley C, Wood JM. Concept Mapping to Identify Content for a Performance-Based Measure of Low Luminance Vision-Related Activities of Daily Living. Transl Vis Sci Technol 2022; 11:27. [PMID: 36166222 PMCID: PMC9526368 DOI: 10.1167/tvst.11.9.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to identify low luminance activities of daily living (ADL) relevant to adults with vision impairment using a concept-mapping approach. Methods “Group concept mapping” was utilized to identify specific ADLs that persons with vision impairment find challenging under low light conditions. In the first “brainstorming” phase, 24 adults with vision impairment from a range of eye conditions (mean age = 73 years, SD = 14 years) and 26 international low vision experts (mean experience = 22, SD = 11 years) generated statements to the focus prompt, “Thinking as broadly as possible, generate a list of statements detailing specific day-to-day activities a person with vision impairment might find challenging under low light conditions, such as in a poorly lit room or outside at dusk.” In the second phase, participants sorted activities by similarity and rated the importance of each activity. Multidimensional scaling and hierarchical cluster analysis were applied to produce concept maps showing clusters of prioritized activities. Results One hundred thirteen unique ideas/activities were generated, rated and sorted. Eight clusters were identified (from highest to lowest importance): hazard detection and safety outside; social interactions; navigation; near reading; selfcare and safety at home; distance spotting; searching around the home; and cooking and cleaning. Conclusions The conceptual framework and low luminance ADLs identified (the most important being hazard detection and safety outside, and social interactions) provide a basis for developing a performance-based measure of low luminance visual function. Translational Relevance A performance-based measure of low luminance vision-related ADLs is required for comprehensively and objectively assessing efficacy of eye treatments and low vision rehabilitation outcomes in adults with vision impairment.
Collapse
Affiliation(s)
- Sharon A Bentley
- School of Optometry and Vision Science, Centre of Vision and Eye Research, Queensland University of Technology, Brisbane, Australia
| | - Alex A Black
- School of Optometry and Vision Science, Centre of Vision and Eye Research, Queensland University of Technology, Brisbane, Australia
| | - Gregory P Hindmarsh
- School of Optometry and Vision Science, Centre of Vision and Eye Research, Queensland University of Technology, Brisbane, Australia
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joanne M Wood
- School of Optometry and Vision Science, Centre of Vision and Eye Research, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
40
|
Mayer SK, Thomas J, Helms M, Kothapalli A, Cherascu I, Salesevic A, Stalter E, Wang K, Datta P, Searby C, Seo S, Hsu Y, Bhattarai S, Sheffield VC, Drack AV. Progressive retinal degeneration of rods and cones in a Bardet-Biedl syndrome type 10 mouse model. Dis Model Mech 2022; 15:dmm049473. [PMID: 36125046 PMCID: PMC9536196 DOI: 10.1242/dmm.049473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a multi-organ autosomal-recessive disorder caused by mutations in at least 22 different genes. A constant feature is early-onset retinal degeneration leading to blindness. Among the most common forms is BBS type 10 (BBS10), which is caused by mutations in a gene encoding a chaperonin-like protein. To aid in developing treatments, we phenotyped a Bbs10 knockout (Bbs10-/-) mouse model. Analysis by optical coherence tomography (OCT), electroretinography (ERG) and a visually guided swim assay (VGSA) revealed a progressive degeneration (from P19 to 8 months of age) of the outer nuclear layer that is visible by OCT and histology. Cone ERG was absent from at least P30, at which time rod ERG was reduced to 74.4% of control levels; at 8 months, rod ERG was 2.3% of that of controls. VGSA demonstrated loss of functional vision at 9 months. These phenotypes progressed more rapidly than retinal degeneration in the Bbs1M390R/M390R knock-in mouse. This study defines endpoints for preclinical trials that can be utilized to detect a treatment effect in the Bbs10-/- mouse and extrapolated to human clinical trials.
Collapse
Affiliation(s)
- Sara K. Mayer
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Jacintha Thomas
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Megan Helms
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Aishwarya Kothapalli
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Ioana Cherascu
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Adisa Salesevic
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Elliot Stalter
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Poppy Datta
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Charles Searby
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Sajag Bhattarai
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Val C. Sheffield
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Arlene V. Drack
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
41
|
Roman AJ, Cideciyan AV, Wu V, Mascio AA, Krishnan AK, Garafalo AV, Jacobson SG. Mobility test to assess functional vision in dark-adapted patients with Leber congenital amaurosis. BMC Ophthalmol 2022; 22:266. [PMID: 35701753 PMCID: PMC9195222 DOI: 10.1186/s12886-022-02475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Inherited retinal degenerations (IRDs) affect daylight and night vision to different degrees. In the current work, we devise a method to quantify mobility under dark-adapted conditions in patients with severe childhood blindness due to Leber congenital amaurosis (LCA). Mobility thresholds from two different LCA genotypes are compared to dark-adapted vision measurements using the full-field stimulus test (FST), a conventional desktop outcome measure of rod vision. METHODS A device consisting of vertical LED strips on a plane resembling a beaded curtain was programmed to produce a rectangular pattern target defining a 'door' of varying luminance that could appear at one of three positions. Mobility performance was evaluated by letting the subject walk from a fixed starting position ~ 4 m away from the device with instructions to touch the door. Success was defined as the subject touching within the 'door' area. Ten runs were performed and the process was repeated for different levels of luminance. Tests were performed monocularly in dark-adapted and dilated eyes. Results from LCA patients with the GUCY2D and CEP290 genotypes and normal subjects were analyzed using logistic regression to estimate the mobility threshold for successful navigation. The relation of thresholds for mobility, FST and visual acuity were quantified using linear regression. RESULTS Normal subjects had mobility thresholds near limits of dark-adapted rod vision. GUCY2D-LCA patients had a wide range of mobility thresholds from within 1 log of normal to greater than 8 log abnormal. CEP290-LCA patients had abnormal mobility thresholds that were between 5 and 6 log from normal. Sensitivity loss estimates using FST related linearly to the mobility thresholds which were not correlated with visual acuity. CONCLUSIONS The mobility task we developed can quantify functional vision in severely disabled patients with LCA. Taken together with other outcome measures of rod and cone photoreceptor-mediated vision, dark-adapted functional vision should provide a more complete understanding of the natural history and effects of treatment in patients with LCA.
Collapse
Affiliation(s)
- Alejandro J. Roman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, 51 North 39th St, PA 19104 Philadelphia, USA
| | - Artur V. Cideciyan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, 51 North 39th St, PA 19104 Philadelphia, USA
| | - Vivian Wu
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, 51 North 39th St, PA 19104 Philadelphia, USA
| | - Abraham A. Mascio
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, 51 North 39th St, PA 19104 Philadelphia, USA
| | - Arun K. Krishnan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, 51 North 39th St, PA 19104 Philadelphia, USA
| | - Alexandra V. Garafalo
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, 51 North 39th St, PA 19104 Philadelphia, USA
| | - Samuel G. Jacobson
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, 51 North 39th St, PA 19104 Philadelphia, USA
| |
Collapse
|
42
|
Lindner M, Gilhooley MJ, Hughes S, Hankins MW. Optogenetics for visual restoration: From proof of principle to translational challenges. Prog Retin Eye Res 2022; 91:101089. [PMID: 35691861 DOI: 10.1016/j.preteyeres.2022.101089] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/04/2023]
Abstract
Degenerative retinal disorders are a diverse family of diseases commonly leading to irreversible photoreceptor death, while leaving the inner retina relatively intact. Over recent years, innovative gene replacement therapies aiming to halt the progression of certain inherited retinal disorders have made their way into clinics. By rendering surviving retinal neurons light sensitive optogenetic gene therapy now offers a feasible treatment option that can restore lost vision, even in late disease stages and widely independent of the underlying cause of degeneration. Since proof-of-concept almost fifteen years ago, this field has rapidly evolved and a detailed first report on a treated patient has recently been published. In this article, we provide a review of optogenetic approaches for vision restoration. We discuss the currently available optogenetic tools and their relative advantages and disadvantages. Possible cellular targets will be discussed and we will address the question how retinal remodelling may affect the choice of the target and to what extent it may limit the outcomes of optogenetic vision restoration. Finally, we will analyse the evidence for and against optogenetic tool mediated toxicity and will discuss the challenges associated with clinical translation of this promising therapeutic concept.
Collapse
Affiliation(s)
- Moritz Lindner
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, 35037, Marburg, Germany
| | - Michael J Gilhooley
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; The Institute of Ophthalmology, University College London, EC1V 9EL, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Steven Hughes
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Mark W Hankins
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
43
|
Miyadera K, Santana E, Roszak K, Iffrig S, Visel M, Iwabe S, Boyd RF, Bartoe JT, Sato Y, Gray A, Ripolles-Garcia A, Dufour VL, Byrne LC, Flannery JG, Beltran WA, Aguirre GD. Targeting ON-bipolar cells by AAV gene therapy stably reverses LRIT3-congenital stationary night blindness. Proc Natl Acad Sci U S A 2022; 119:e2117038119. [PMID: 35316139 PMCID: PMC9060458 DOI: 10.1073/pnas.2117038119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 01/08/2023] Open
Abstract
SignificanceCanine models of inherited retinal diseases have helped advance adeno-associated virus (AAV)-based gene therapies targeting specific cells in the outer retina for treating blinding diseases in patients. However, therapeutic targeting of diseases such as congenital stationary night blindness (CSNB) that exhibit defects in ON-bipolar cells (ON-BCs) of the midretina remains underdeveloped. Using a leucine-rich repeat, immunoglobulin-like and transmembrane domain 3 (LRIT3) mutant canine model of CSNB exhibiting ON-BC dysfunction, we tested the ability of cell-specific AAV capsids and promotors to specifically target ON-BCs for gene delivery. Subretinal injection of one vector demonstrated safety and efficacy with robust and stable rescue of electroretinography signals and night vision up to 1 y, paving the way for clinical trials in patients.
Collapse
Affiliation(s)
- Keiko Miyadera
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Evelyn Santana
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Karolina Roszak
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sommer Iffrig
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Meike Visel
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Simone Iwabe
- Ophthalmology Services, Charles River Laboratories, Mattawan, MI 49071
| | - Ryan F. Boyd
- Ophthalmology Services, Charles River Laboratories, Mattawan, MI 49071
| | - Joshua T. Bartoe
- Ophthalmology Services, Charles River Laboratories, Mattawan, MI 49071
| | - Yu Sato
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexa Gray
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ana Ripolles-Garcia
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Valérie L. Dufour
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Leah C. Byrne
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - John G. Flannery
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - William A. Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gustavo D. Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
44
|
A call for an integrated approach to improve efficiency, equity and sustainability in rare disease research in the United States. Nat Genet 2022; 54:219-222. [DOI: 10.1038/s41588-022-01027-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Weinfurt KP. Constructing and evaluating a validity argument for a performance outcome measure for clinical trials: An example using the Multi-luminance Mobility Test. Clin Trials 2022; 19:184-193. [PMID: 35102750 DOI: 10.1177/17407745211073609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Clinical trials that evaluate new medical products often use clinical outcome assessments to measure how patients feel or function. Determining the evidentiary support needed for clinical outcome assessments is challenging but necessary to ensure scores from a clinical outcome assessment reflect the relevant aspects of patients' health. Modern validity theory-from educational and psychological testing-addresses the challenge by requiring that investigators state key assumptions underlying the proposed use of a clinical outcome assessment and collect evidence for or against those assumptions. METHODS This article describes the argument-based approach to validity using an example of a performance outcome measure-the Multi-luminance Mobility Test-designed to assess patients with inherited retinal dystrophy that causes progressive loss of night vision. For the proposed interpretation and use of a performance outcome measure to be reasonable, several key assumptions need to be plausible. I describe the assumptions along with examples of supporting evidence from the published literature to evaluate each assumption within the rationale. RESULTS This article provides an example of a validity rationale to evaluate a clinical outcome assessment using the Multi-luminance Mobility Test as an example. CONCLUSION The demonstration illustrates the use of the argument-based approach to validity evaluation and the challenges in supporting parts of a validity rationale for clinical outcome assessments that measure how patients feel and function in a more indirect way. By making clinical outcome assessment validation practices consistent with modern validity theory, investigators, sponsors, and regulators should be able to communicate more clearly and direct resources more efficiently to support the creation of patient-centered endpoints in clinical trials.
Collapse
Affiliation(s)
- Kevin P Weinfurt
- Center for Health Measurement, Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
46
|
Khanani AM, Thomas MJ, Aziz AA, Weng CY, Danzig CJ, Yiu G, Kiss S, Waheed NK, Kaiser PK. Review of gene therapies for age-related macular degeneration. Eye (Lond) 2022; 36:303-311. [PMID: 35017696 PMCID: PMC8807824 DOI: 10.1038/s41433-021-01842-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 02/03/2023] Open
Abstract
Gene therapies aim to deliver a therapeutic payload to specified tissues with underlying protein deficiency. Since the 1990s, gene therapies have been explored as potential treatments for chronic conditions requiring lifetime care and medical management. Ocular gene therapies target a range of ocular disorders, but retinal diseases are of particular importance due to the prevalence of retinal disease and the current treatment burden of such diseases on affected patients, as well as the challenge of properly delivering these therapies to the target tissue. The purpose of this review is to provide an update on the most current data available for five different retinal gene therapies currently undergoing clinical trials for use against age-related macular degeneration (AMD) and the development of novel delivery routes for the administration of such therapies. Research has been performed and compiled from PubMed and the select authors of this manuscript on the treatment and effectiveness of five current retinal gene therapies: Luxturna, ADVM-022, RGX-314, GT-005, and HMR59. We present the available data of current clinical trials for the treatment of neovascular and dry age-related macular degeneration with different AAV-based gene therapies. We also present current research on the progress of developing novel routes of administration for ocular gene therapies. Retinal gene therapies offer the potential for life-changing treatment for chronic conditions like age-related macular degeneration with a single administration. In doing so, gene therapies change the landscape of treatment options for these chronic conditions for both patient and provider.
Collapse
Affiliation(s)
- Arshad M. Khanani
- grid.492896.8Sierra Eye Associates, Reno, NV USA ,grid.266818.30000 0004 1936 914XThe University of Nevada, Reno School of Medicine, Reno, NV USA
| | - Mathew J. Thomas
- grid.266818.30000 0004 1936 914XThe University of Nevada, Reno School of Medicine, Reno, NV USA
| | - Aamir A. Aziz
- grid.492896.8Sierra Eye Associates, Reno, NV USA ,grid.266818.30000 0004 1936 914XThe University of Nevada, Reno School of Medicine, Reno, NV USA
| | - Christina Y. Weng
- grid.39382.330000 0001 2160 926XDepartment of Ophthalmology, Baylor College of Medicine, Houston, TX USA
| | - Carl J. Danzig
- Rand Eye Institute, Deerfield Beach, FL USA ,grid.255951.fFlorida Atlantic University, Charles E. Schmidt College of Medicine, Boca Raton, FL USA
| | - Glenn Yiu
- grid.27860.3b0000 0004 1936 9684Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA USA
| | - Szilárd Kiss
- grid.413734.60000 0000 8499 1112Department of Ophthalmology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY USA
| | - Nadia K. Waheed
- grid.67033.310000 0000 8934 4045Department of Ophthalmology, Tufts University School of Medicine, Boston, MA USA
| | - Peter K. Kaiser
- grid.239578.20000 0001 0675 4725Cole Eye Institute, Cleveland Clinic, Cleveland, OH USA
| |
Collapse
|
47
|
Fenner BJ, Tan TE, Barathi AV, Tun SBB, Yeo SW, Tsai ASH, Lee SY, Cheung CMG, Chan CM, Mehta JS, Teo KYC. Gene-Based Therapeutics for Inherited Retinal Diseases. Front Genet 2022; 12:794805. [PMID: 35069693 PMCID: PMC8782148 DOI: 10.3389/fgene.2021.794805] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a heterogenous group of orphan eye diseases that typically result from monogenic mutations and are considered attractive targets for gene-based therapeutics. Following the approval of an IRD gene replacement therapy for Leber's congenital amaurosis due to RPE65 mutations, there has been an intensive international research effort to identify the optimal gene therapy approaches for a range of IRDs and many are now undergoing clinical trials. In this review we explore therapeutic challenges posed by IRDs and review current and future approaches that may be applicable to different subsets of IRD mutations. Emphasis is placed on five distinct approaches to gene-based therapy that have potential to treat the full spectrum of IRDs: 1) gene replacement using adeno-associated virus (AAV) and nonviral delivery vectors, 2) genome editing via the CRISPR/Cas9 system, 3) RNA editing by endogenous and exogenous ADAR, 4) mRNA targeting with antisense oligonucleotides for gene knockdown and splicing modification, and 5) optogenetic approaches that aim to replace the function of native retinal photoreceptors by engineering other retinal cell types to become capable of phototransduction.
Collapse
Affiliation(s)
- Beau J Fenner
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| | - Tien-En Tan
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| | | | - Sai Bo Bo Tun
- Singapore Eye Research Institute, Singapore, Singapore
| | - Sia Wey Yeo
- Singapore Eye Research Institute, Singapore, Singapore
| | - Andrew S H Tsai
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| | - Shu Yen Lee
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| | - Chui Ming Gemmy Cheung
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| | - Choi Mun Chan
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| | - Jodhbir S Mehta
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore.,School of Material Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Yong Loo Lin School of Medicine, Department of Ophthalmology, National University of Singapore, Singapore, Singapore
| | - Kelvin Y C Teo
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| |
Collapse
|
48
|
Deng C, Zhao PY, Branham K, Schlegel D, Fahim AT, Jayasundera TK, Khan N, Besirli CG. Real-world outcomes of voretigene neparvovec treatment in pediatric patients with RPE65-associated Leber congenital amaurosis. Graefes Arch Clin Exp Ophthalmol 2022; 260:1543-1550. [PMID: 35001204 PMCID: PMC9010358 DOI: 10.1007/s00417-021-05508-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To investigate real-world safety and efficacy of voretigene neparvovec gene therapy administration in pediatric patients with biallelic RPE65 disease-causing variants. METHODS A retrospective study of 27 eyes of 14 patients with RPE65-associated Leber congenital amaurosis examined postoperative complications and longitudinal changes in photoreceptor function following treatment with subretinal injection of voretigene neparvovec. Full-field stimulus threshold testing (FST), Goldmann visual fields (GVF), best-corrected visual acuity (BCVA), and central subfield thickness (CST) on optical coherence tomography (OCT) scans were collected preoperatively and up to 12 months posttreatment. RESULTS Baseline through 6-12 month follow-up FST and GVF data were obtained for 13 eyes of 7 patients. FST improved for each eye after treatment with a mean improvement of 2.1 log-units (P < 0.001) and GVF improved for each eye with a mean improvement of 221 sum degrees (P < 0.001). BCVA improved from logMAR 0.98 at baseline to logMAR 0.83 at last follow-up (P < 0.001). Across 19 eyes of 10 patients included in CST analysis, there was a small but statistically significant 9-μ decrease in mean CST from baseline to last follow-up (P < 0.001). The most common postoperative issues included elevation in intraocular pressure (59%), persistent intraocular inflammation (15%), and vitreous opacities (26%) that resolved over a period of months. CONCLUSIONS This report provides some of the earliest longitudinal real-world evidence of the pediatric safety and efficacy of voretigene neparvovec using multiple functional and structural measures of the retina. Outcomes demonstrate significant improvements in visual function consistent with clinical trial results.
Collapse
Affiliation(s)
- Callie Deng
- Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, MI, USA
| | - Peter Y Zhao
- Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, MI, USA
| | - Kari Branham
- Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, MI, USA
| | - Dana Schlegel
- Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, MI, USA
| | - Abigail T Fahim
- Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, MI, USA
| | - Thiran K Jayasundera
- Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, MI, USA
| | - Naheed Khan
- Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, MI, USA
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, MI, USA.
| |
Collapse
|
49
|
Simunovic MP, Grigg J, Mahroo O. Vision at the limits: absolute threshold, visual function, and outcomes in clinical trials. Surv Ophthalmol 2022; 67:1270-1286. [DOI: 10.1016/j.survophthal.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022]
|
50
|
Kadyshev VV, Zolnikova IV, Khalanskaya OV, Stepanova AA, Kutsev SI. [Inherited retinal dystrophy: first results of RPE65 gene replacement therapy in Russia]. Vestn Oftalmol 2022; 138:48-57. [PMID: 36004591 DOI: 10.17116/oftalma202213804148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PURPOSE To present the main aspects of interdisciplinary diagnostics of patients with hereditary retinal diseases and the first results of the follow-up of patients with inherited retinal dystrophies (IRD) caused by biallelic mutations in the gene RPE65 after gene replacement therapy in Russia. MATERIAL AND METHODS The cohort of patients consisted of six children (5-15 years old) with the diagnosis of Leber amaurosis type 2. All patients underwent a multi-disciplinary examination using conventional clinical, instrumental and molecular-genetic methods. Genetic diagnosis was established based on the results of two-stage DNA diagnostics using high-performance parallel sequencing of a custom panel and family segregation analysis by Sanger sequencing. RESULTS In the Research Centre for Medical Genetics the first group of Russian patients with an orphan inherited retinal disease was verified, they underwent subretinal injection of the gene replacement drug Voretigene neparvovec (12 eyes) in the Helmholtz National Medical Research Center of Eye Diseases. According to the regulated terms of monitoring gene therapy patients, they were examined in the Research Centre for Medical Genetics after 1, 3, 6 and 12 months, and then once per year. Thus, the available data allows us to analyze the first results 3 months after the treatment. CONCLUSION The presented data on inherited retinal dystrophies caused by biallelic mutations in the RPE65 gene emphasize the need to change the diagnostic algorithm in the ophthalmic practice. The use of clinical instrumental and molecular genetic diagnostic methods makes it possible to apply etiotropic treatment to patients with a disabling disease that was previously considered untreatable. The gene replacement drug Voretigene neparvovec registered in Russia showed irrefutable first positive results in all targeted patients.
Collapse
Affiliation(s)
- V V Kadyshev
- N.P. Bochkov Research Centre for Medical Genetics, Moscow, Russia
| | - I V Zolnikova
- N.P. Bochkov Research Centre for Medical Genetics, Moscow, Russia
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - O V Khalanskaya
- N.P. Bochkov Research Centre for Medical Genetics, Moscow, Russia
| | - A A Stepanova
- N.P. Bochkov Research Centre for Medical Genetics, Moscow, Russia
| | - S I Kutsev
- N.P. Bochkov Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|