1
|
Zheng J, Yu J, Xie J, Chen D, Deng H. [Clinical significance of tertiary lymphoid structure maturity in colorectal cancer patients]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:765-771. [PMID: 39628410 PMCID: PMC11736343 DOI: 10.3724/zdxbyxb-2024-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVES To explore the clinical significance of the tertiary lymphoid structure (TLS) maturity in colorectal cancer patients. METHODS A total of 230 surgically removed colorectal cancer specimens with detailed follow-up data were collected from Yinzhou Second Hospital. The patients were divided into mature TLS group and immature TLS group according to immunohistochemical results. The patient age, gender, maximum tumor diameter, tumor location, differentiation degree, depth of invasion, lymph node metastasis, vascular tumor thrombus, liver metastasis, distant non-liver metastasis, mismatch repair status, expression of Ki-67, P53 and programmed death-ligand (PD-L) 1 were analyzed. The Kaplan-Meier method (Breslow test) was used to analyze the survival of patients, and multivariate Cox regression model was applied to analyze the prognostic factors. RESULTS There were 128 cases of mature TLS and 102 cases of immature TLS. Compared to the immature TLS group, the mature TLS group showed a significantly lower rate of vascular tumor thrombus, lymph node metastasis, and liver metastasis. Additionally, the positive expression rate of Ki-67 was markedly reduced, while the rate of deficient mismatch repair and the positive rate of PD-L1 were significantly increased (all P<0.05). The overall survival rate of the mature TLS group was superior to that of the immature TLS group (Breslow=4.553, P<0.05). Cox regression analysis indicated that lymph node metastasis was an independent risk factor for the prognosis of colorectal cancer patients (P<0.01), while TLS maturation was a protective factor (P<0.05). CONCLUSIONS The formation of TLS may play a significant role in inhibiting lymph node metastasis, liver metastasis, and vascular tumor thrombus in colorectal cancer. In addition, patients with mature TLS have a favorable clinical prognosis.
Collapse
Affiliation(s)
- Jiangjiang Zheng
- Department of Pathology, Yinzhou Second Hospital, Ningbo 315000, Zhejiang Province, China.
| | - Jingjing Yu
- Department of Pathology, Yinzhou Second Hospital, Ningbo 315000, Zhejiang Province, China
| | - Jingjing Xie
- Department of Pathology, Yinzhou Second Hospital, Ningbo 315000, Zhejiang Province, China
| | - Dong Chen
- Department of Pathology, Yinzhou Second Hospital, Ningbo 315000, Zhejiang Province, China
| | - Hong Deng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
2
|
Smith HG, Schlesinger NH, Chiranth D, Qvortrup C. The Association of Mismatch Repair Status with Microscopically Positive (R1) Margins in Stage III Colorectal Cancer: A Retrospective Cohort Study. Ann Surg Oncol 2024; 31:6423-6431. [PMID: 38907136 PMCID: PMC11413156 DOI: 10.1245/s10434-024-15595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND There is mounting evidence that microscopically positive (R1) margins in patients with colorectal cancer (CRC) may represent a surrogate for aggressive cancer biology rather than technical failure during surgery. However, whether detectable biological differences exist between CRC with R0 and R1 margins is unknown. We sought to investigate whether mismatch repair (MMR) status differs between Stage III CRC with R0 or R1 margins. METHODS Patients treated for Stage III CRC from January 1, 2016 to December 31, 2019 were identified by using the Danish Colorectal Cancer Group database. Patients were stratified according to MMR status (proficient [pMMR] vs. deficient [dMMR]) and margin status. Outcomes of interest included the R1 rate according to MMR and overall survival. RESULTS A total of 3636 patients were included, of whom 473 (13.0%) had dMMR colorectal cancers. Patients with dMMR cancers were more likely to be elderly, female, and have right-sided cancers. R1 margins were significantly more common in patients with dMMR cancers (20.5% vs. 15.2%, p < 0.001), with the greatest difference seen in the rate of R1 margins related to the primary tumour (8.9% vs. 4.7%) rather than to lymph node metastases (11.6% vs. 10.5%). This association was seen in both right- and left-sided cancers. On multivariable analyses, R1 margins, but not MMR status, were associated with poorer survival, alongside age, pN stage, perineural invasion, and extramural venous invasion. CONCLUSIONS In patients with Stage III CRC, dMMR status is associated with increased risks of R1 margins following potentially curative surgery, supporting the use of neoadjuvant immunotherapy in this patient group.
Collapse
Affiliation(s)
- Henry G Smith
- Abdominalcenter K, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.
| | - Nis H Schlesinger
- Abdominalcenter K, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Deepthi Chiranth
- Department of Pathology, Copenhagen University Hospital - Rigshospital, Copenhagen, Denmark
| | - Camilla Qvortrup
- Department of Oncology, Copenhagen University Hospital - Rigshospital, Copenhagen, Denmark
| |
Collapse
|
3
|
Gülşen T, Ergenç M, Şenol Z, Emirzeoğlu L, Güleç B. Clinicopathological outcomes of microsatellite instability in colorectal cancer. J Cancer Res Ther 2024; 20:103-111. [PMID: 38554306 DOI: 10.4103/jcrt.jcrt_1560_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/04/2022] [Indexed: 04/01/2024]
Abstract
AIMS This study aims to evaluate the histopathological features and prognostic parameters of tumors with microsatellite instability (MSI) compared with those without MSI in patients who underwent surgery for colorectal cancer (CRC). SETTING AND DESIGN Follow-up for CRC at Istanbul Sultan 2. Abdulhamid Han Training and Research Hospital was retrospectively evaluated between March 2017 and March 2021. METHODS AND MATERIAL The patients were divided into two groups: those with and without MSI. Groups were compared in survival parameters. As a secondary result, groups were compared in pathological parameters such as stage, tumor diameter, degree of differentiation, and lymphovascular, and perineural invasion. STATISTICAL ANALYSIS USED Survival calculations were performed using the Kaplan-Meier analysis method. The effects of various prognostic factors related to tumor and patient characteristics on disease-free and overall survival (OS) were investigated by log-rank test. RESULTS Two hundred fourteen patients were analyzed. The median age of the patients was 66 (30-89), and 59.3% (n = 127) were male. There were 25 patients in the MSI group and 189 patients in the non-MSI group. We found that MSI tumors had a significantly higher differentiation degree than non-MSI tumors and larger tumor diameters. MSI tumors frequently settled in the proximal colon, and more lymph nodes were removed in the resection material. MSI tumors had longer disease-free survival, cancer-specific survival, and overall survival. CONCLUSIONS By diagnosing microsatellite instability, CRCs can be divided into two groups. The histopathological features of the tumor and the prognosis of the disease differ between these groups. MSI can be a predictive marker in the patient's follow-up and treatment.
Collapse
Affiliation(s)
- Taygun Gülşen
- Department of General Surgery, Istanbul Sultanbeyli State Hospital, Istanbul, Turkey
| | - Muhammer Ergenç
- Department of General Surgery, Istanbul Sultanbeyli State Hospital, Istanbul, Turkey
| | - Zafer Şenol
- Department of General Surgery, Istanbul Sultan 2, Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Levent Emirzeoğlu
- Department of Oncology, Istanbul Sultan 2, Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Bülent Güleç
- Department of General Surgery, Istanbul Sultan 2, Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
4
|
Bosch DE, Yeh MM, Salipante SJ, Jacobson A, Cohen SA, Konnick EQ, Paulson VA. Isolated MLH1 Loss by Immunohistochemistry Because of Benign Germline MLH1 Polymorphisms. JCO Precis Oncol 2022; 6:e2200227. [PMID: 36044719 PMCID: PMC9489174 DOI: 10.1200/po.22.00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mismatch repair (MMR) immunohistochemistry (IHC) is frequently used to inform prognosis, select (immuno-)therapy, and identify patients for heritable cancer syndrome testing. However, false-negative and false-positive MMR IHC interpretations have been described.
Collapse
Affiliation(s)
- Dustin E Bosch
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA.,Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Matthew M Yeh
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Stephen J Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Angela Jacobson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Stacey A Cohen
- Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Eric Q Konnick
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Vera A Paulson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
5
|
Yan Z, Li J, Guo J, He R, Xing J. LncRNA XIST sponges microRNA-448 to promote malignant behaviors of colorectal cancer cells via regulating GRHL2. Funct Integr Genomics 2022; 22:977-988. [PMID: 35725976 DOI: 10.1007/s10142-022-00873-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are essential regulators in human cancers, while the role of lncRNA X-inactive-specific transcript (XIST) in colorectal cancer (CRC) via regulating miR-448 remains largely unknown. Herein, we aimed to elucidate the effect of the XIST/miR-448/grainyhead-like 2 (GRHL2) axis on CRC development. XIST, miR-448, and GRHL2 expression in CRC tissues from patients and in human CRC cell lines was assessed. Loss- and gain-function assays were implemented to unveil the roles of XIST, miR-448, and GRHL2 in screened CRC cells. The tumor growth in vivo was observed in nude mice. Binding relations among XIST, miR-448, and GRHL2 were evaluated. XIST and GRHL2 expressed highly whereas miR-448 expressed lowly in CRC tissues and cells. XIST or GRHL2 downregulation, or miR-448 elevation suppressed the malignant behaviors of CRC cells in vitro, and downregulated XIST or upregulated miR-448 also inhibited the tumor growth in vivo. miR-448 upregulation reversed the role of XIST elevation in CRC cells. XIST particularly bound to miR-448, and miR-448 targeted GRHL2. Knockdown of XIST upregulates miR-448 to impede malignant behaviors of CRC cells via inhibiting GRHL2. This study may provide novel biomarkers for CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Zhengzheng Yan
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 LongCheng Street, Taiyuan, 030001, Shanxi, China
| | - Ji Li
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 LongCheng Street, Taiyuan, 030001, Shanxi, China
| | - Ji Guo
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 LongCheng Street, Taiyuan, 030001, Shanxi, China
| | - Ruochong He
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 LongCheng Street, Taiyuan, 030001, Shanxi, China
| | - Jun Xing
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 LongCheng Street, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
6
|
Qu M, Li J, Hong Z, Jia F, He Y, Yuan L. The role of human umbilical cord mesenchymal stem cells-derived exosomal microRNA-431-5p in survival and prognosis of colorectal cancer patients. Mutagenesis 2022; 37:164-171. [PMID: 35460420 PMCID: PMC9071100 DOI: 10.1093/mutage/geac007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
We aim to discuss the role of miR-431-5p in colorectal cancer (CRC) progression via regulating peroxiredoxin 1 (PRDX1). miR-431-5p and PRDX1 expression were detected in CRC tissues and cells, and the relationship between miR-431-5p expression and prognosis of CRC patients was analyzed. Exosomes were extracted from human umbilical cord mesenchymal stem cells (hUCMSCs) and co-cultured with LoVo cells. MTT assay, flow cytometry and Transwell assay were implemented to test cell viability, apoptosis and invasion and migration ability, respectively. The tumor growth was determined as well, and the binding relation between miR-431-5p and PRDX1 was confirmed. miR-431-5p was downregulated and PRDX1 was upregulated in CRC, and miR-431-5p downregulation was associated with poor prognosis. hUCMSC-Exos suppressed the malignant behaviors of LoVo cells, and overexpression of miR-431-5p further aggravated the inhibitory effect of hUCMSC-Exos on LoVo cells. hUCMSC-Exos inhibited PRDX1 expression via miR-431-5p. PRDX1 was targeted by miR-431-5p. miR-431-5p serves as a prognostic biomarker in CRC, and hUCMSC-Exos transfer of miR-431-5p decelerates CRC cell growth by inhibiting PRDX1.
Collapse
Affiliation(s)
- Muwen Qu
- Anorectal Department of Guang’anmen Hospital of Chinese Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, 100053 Beijing, China
| | - Junyi Li
- Surgical Department of Guang’anmen Hospital of Chinese Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, 100053 Beijing, China
| | - Zifu Hong
- Anorectal Department of Guang’anmen Hospital of Chinese Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, 100053 Beijing, China
| | - Fei Jia
- Anorectal Department of Guang’anmen Hospital of Chinese Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, 100053 Beijing, China
| | - Yinghua He
- Anorectal Department of Guang’anmen Hospital of Chinese Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, 100053 Beijing, China
| | - Lingling Yuan
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, No. 5, Haiyuncang, Dongcheng District, 100700 Beijing, China
| |
Collapse
|
7
|
Moutabian H, Majdaeen M, Ghahramani-Asl R, Yadollahi M, Gharepapagh E, Ataei G, Falahatpour Z, Bagheri H, Farhood B. A systematic review of the therapeutic effects of resveratrol in combination with 5-fluorouracil during colorectal cancer treatment: with a special focus on the oxidant, apoptotic, and anti-inflammatory activities. Cancer Cell Int 2022; 22:142. [PMID: 35366874 PMCID: PMC8976963 DOI: 10.1186/s12935-022-02561-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/27/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE 5-fluorouracil (5-FU), an effective chemotherapy drug, is commonly applied for colorectal cancer treatment. Nevertheless, its toxicity to normal tissues and the development of tumor resistance are the main obstacles to successful cancer chemotherapy and hence, its clinical application is limited. The use of resveratrol can increase 5-FU-induced cytotoxicity and mitigate the unwanted adverse effects. This study aimed to review the potential therapeutic effects of resveratrol in combination with 5-FU against colorectal cancer. METHODS According to the PRISMA guideline, a comprehensive systematic search was carried out for the identification of relevant literature in four electronic databases of PubMed, Web of Science, Embase, and Scopus up to May 2021 using a pre-defined set of keywords in their titles and abstracts. We screened 282 studies in accordance with our inclusion and exclusion criteria. Thirteen articles were finally included in this systematic review. RESULTS The in vitro findings showed that proliferation inhibition of colorectal cancer cells in the groups treated by 5-FU was remarkably higher than the untreated groups and the co-administration of resveratrol remarkably increased cytotoxicity induced by 5-FU. The in vivo results demonstrated a decrease in tumor growth of mice treated by 5-FU than the untreated group and a dramatic decrease was observed following combined treatment of resveratrol and 5-FU. It was also found that 5-FU alone and combined with resveratrol could regulate the cell cycle profile of colorectal cancer cells. Moreover, this chemotherapeutic agent induced the biochemical and histopathological changes in the cancerous cells/tissues and these alterations were synergized by resveratrol co-administration (for most of the cases), except for the inflammatory mediators. CONCLUSION The results obtained from this systematic review demonstrated that co-administration of resveratrol could sensitize the colorectal cancer cells to 5-FU treatment via various mechanisms, including regulation of cell cycle distribution, oxidant, apoptosis, anti-inflammatory effects.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Mehrsa Majdaeen
- Department of Radiotherapy and Oncology, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ruhollah Ghahramani-Asl
- Department of Medical Physics and Radiological Sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Masoumeh Yadollahi
- Department of Allied Medical Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Esmaeil Gharepapagh
- Medical Radiation Sciences Research Team, Tabriz University of Medical Science, Tabriz, Iran
| | - Gholamreza Ataei
- Department of Radiology Technology, Faculty of Paramedical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Falahatpour
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Bagher Farhood
- Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Gao Z, Shi Y, Wang J, Li W, Bao Y, Wu D, Gu Y. Long non-coding RNA NEAT1 absorbs let-7 g-5p to induce epithelial-mesenchymal transition of colon cancer cells through upregulating BACH1. Dig Liver Dis 2021:S1590-8658(21)00216-4. [PMID: 34238666 DOI: 10.1016/j.dld.2021.04.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) are critical regulators in diverse human cancers. However, the role of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in colon cancer remains to be further investigated. We aimed to verify the role of NEAT1/let-7 g-5p/BTB and CNC homology 1 (BACH1) axis in colon cancer development. METHODS Expression of NEAT1, let-7 g-5p and BACH1 in colon cancer tissues and cells was determined. The interactions between NEAT1 and let-7 g-5p, and between let-7 g-5p and BACH1 were assessed. The colon cancer cell lines were treated with plasmids or oligonucleotides to alter NEAT1, BACH1 and let-7 g-5p expression. Then, viability, migration, invasion, and apoptosis of colon cells were evaluated, and the cell growth in vivo was observed as well. RESULTS NEAT1 and BACH1 were upregulated while let-7 g-5p was downregulated in colon cancer tissues and cells. NEAT1/BACH1 silencing or let-7 g-5p elevation suppressed colon cancer cell growth in vivo and in vitro. The effects of silenced NEAT1 on colon cancer cells and xenografts were reversed by downregulating let-7 g-5p. Down-regulation of BACH1 reversed the effect of NEAT1 overexpression on colon cancer cells. NEAT1 directly bound to let-7 g-5p and let-7 g-5p targeted BACH1. CONCLUSION Downregulated NEAT1 elevated let-7 g-5p to suppress EMT of colon cancer cells through inhibiting BACH1. This research may contribute to treatment of colon cancer.
Collapse
Affiliation(s)
- Zhenzhen Gao
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, zhejiang Province, China; Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yu Shi
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jiawei Wang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Wei Li
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yi Bao
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, zhejiang Province, China
| | - Dongjuan Wu
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, zhejiang Province, China
| | - Yanhong Gu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
9
|
Lin D, Fan W, Zhang R, Zhao E, Li P, Zhou W, Peng J, Li L. Molecular subtype identification and prognosis stratification by a metabolism-related gene expression signature in colorectal cancer. J Transl Med 2021; 19:279. [PMID: 34193202 PMCID: PMC8244251 DOI: 10.1186/s12967-021-02952-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/19/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Metabolic reprograming have been associated with cancer occurrence and progression within the tumor immune microenvironment. However, the prognostic potential of metabolism-related genes in colorectal cancer (CRC) has not been comprehensively studied. Here, we investigated metabolic transcript-related CRC subtypes and relevant immune landscapes, and developed a metabolic risk score (MRS) for survival prediction. METHODS Metabolism-related genes were collected from the Molecular Signatures Database and metabolic subtypes were identified using an unsupervised clustering algorithm based on the expression profiles of survival-related metabolic genes in GSE39582. The ssGSEA and ESTIMATE methods were applied to estimate the immune infiltration among subtypes. The MRS model was developed using LASSO Cox regression in the GSE39582 dataset and independently validated in the TCGA CRC and GSE17537 datasets. RESULTS We identified two metabolism-related subtypes (cluster-A and cluster-B) of CRC based on the expression profiles of 539 survival-related metabolic genes with distinct immune profiles and notably different prognoses. The cluster-B subtype had a shorter OS and RFS than the cluster-A subtype. Eighteen metabolism-related genes that were mostly involved in lipid metabolism pathways were used to build the MRS in GSE39582. Patients with higher MRS had worse prognosis than those with lower MRS (HR 3.45, P < 0.001). The prognostic role of MRS was validated in the TCGA CRC (HR 2.12, P = 0.00017) and GSE17537 datasets (HR 2.67, P = 0.039). Time-dependent receiver operating characteristic curve and stratified analyses revealed the robust predictive ability of the MRS in each dataset. Multivariate Cox regression analysis indicted that the MRS could predict OS independent of TNM stage and age. CONCLUSIONS Our study provides novel insight into metabolic heterogeneity and its relationship with immune landscape in CRC. The MRS was identified as a robust prognostic marker and may facilitate individualized therapy for CRC patients.
Collapse
Affiliation(s)
- Dagui Lin
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Wenhua Fan
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Rongxin Zhang
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Enen Zhao
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Pansong Li
- Geneplus-Beijing, Beijing, 102206, China
| | - Wenhao Zhou
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Jianhong Peng
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Liren Li
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Ribeirinho-Soares S, Pádua D, Amaral AL, Valentini E, Azevedo D, Marques C, Barros R, Macedo F, Mesquita P, Almeida R. Prognostic significance of MUC2, CDX2 and SOX2 in stage II colorectal cancer patients. BMC Cancer 2021; 21:359. [PMID: 33823840 PMCID: PMC8025574 DOI: 10.1186/s12885-021-08070-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/19/2021] [Indexed: 01/09/2023] Open
Abstract
Background Colorectal cancer (CRC) remains a serious health concern worldwide. Despite advances in diagnosis and treatment, about 15 to 30% of stage II CRC patients subjected to tumor resection with curative intent, develop disease relapse. Moreover, the therapeutic strategy adopted after surgery is not consensual for these patients. This supports the imperative need to find new prognostic and predictive biomarkers for stage II CRC. Methods For this purpose, we used a one-hospital series of 227 stage II CRC patient samples to assess the biomarker potential of the immunohistochemical expression of MUC2 mucin and CDX2 and SOX2 transcription factors. The Kaplan-Meier method was used to generate disease-free survival curves that were compared using the log-rank test, in order to determine prognosis of cases with different expression of these proteins, different mismatch repair (MMR) status and administration or not of adjuvant chemotherapy. Results In this stage II CRC series, none of the studied biomarkers showed prognostic value for patient outcome. However low expression of MUC2, in cases with high expression of CDX2, absence of SOX2 or MMR-proficiency, conferred a significantly worst prognosis. Moreover, cases with low expression of MUC2 showed a significantly clear benefit from treatment with adjuvant chemotherapy. Conclusion In conclusion, we observe that patients with stage II CRC with low expression of MUC2 in the tumor respond better when treated with adjuvant chemotherapy. This observation supports that MUC2 is involved in resistance to fluorouracil-based adjuvant chemotherapy and might be a promising future predictive biomarker in stage II CRC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08070-6.
Collapse
Affiliation(s)
- Sara Ribeirinho-Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Diana Pádua
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Ana Luísa Amaral
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Elvia Valentini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | | | - Rita Barros
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Filipa Macedo
- IPO-C - Instituto Português de Oncologia de Coimbra Francisco Gentil, E. P. E, Coimbra, Portugal
| | - Patrícia Mesquita
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Raquel Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal. .,Faculty of Medicine, University of Porto, Porto, Portugal. .,Biology Department, Faculty of Sciences of the University of Porto, Porto, Portugal.
| |
Collapse
|
11
|
Jin Z, Sinicrope FA. Prognostic and Predictive Values of Mismatch Repair Deficiency in Non-Metastatic Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13020300. [PMID: 33467526 PMCID: PMC7830023 DOI: 10.3390/cancers13020300] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Universal MMR/MSI testing is standard of care for all patients with newly diagnosed CRC based on multi-society guidelines in the United States. Such testing is intended to identify patients with Lynch Syndrome due to a germline mutation in an MMR gene, but also detects those with sporadic dMMR/MSI-high CRCs. The prognostic utility of MMR/MSI status in non-metastatic colorectal cancer has been studied extensively, yet more limited data are available for its predictive utility. Results have not been entirely consistent due to potential stage-related differences and limited numbers of dMMR/MSI-H patients included in the studies. In this review, we summarize the current evidence for the prognostic and predictive value of dMMR/MSI-H in non-metastatic CRC, and discuss the use of this biomarker for patient management and treatment decisions in clinical practice.
Collapse
|
12
|
Hu H, Wu Z, Wang C, Huang Y, Zhang J, Cai Y, Xie X, Li J, Shen C, Li W, Ling J, Xu X, Deng Y. Duration of FOLFOX Adjuvant Chemotherapy in High-Risk Stage II and Stage III Colon Cancer With Deficient Mismatch Repair. Front Oncol 2020; 10:579478. [PMID: 33344234 PMCID: PMC7747753 DOI: 10.3389/fonc.2020.579478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022] Open
Abstract
Background We evaluated the impact of 3 months of mFOLFOX6 adjuvant chemotherapy or surgery alone in comparison with 6 months of mFOLFOX6 on disease-free survival (DFS) in deficient mismatch repair (dMMR) colon cancer (CC) patients. Methods This retrospective study identified a cohort of patients with high-risk stage II and III dMMR CC who underwent curative surgery between May 2011 and July 2019. DFS was compared using the Kaplan-Meier survival methods and Cox proportional hazards models. Propensity-score matching was performed to reduce imbalance in baseline characteristics. Results A total of 242 dMMR CC patients were identified; 66 patients received 6 months of mFOLFOX6, 87 patients received 3 months of mFOLFOX6, and 89 patients were treated with surgery alone. The 3-year DFS rate was 72.8% in 3-month therapy group and 86.1% in 6-month therapy group, with a hazard ratio (HR) of 2.78 (95CI%, 1.18 to 6.47; P= 0.019). The difference in DFS between surgery alone group and 6-month therapy group was also observed but was nonsignificant (HR= 2.30, 95%CI, 0.99 to 5.38; P=0.054). The benefit of 6-month therapy in DFS compared with 3-month therapy group was pronounced for patients with stage III (HR=2.81, 95%CI, 1.03 to 7.67; P=0.044) but not for high-risk stage II patients. Propensity score matched analysis confirmed a DFS benefit in the 6-month therapy group. Conclusion This study suggested that a 6-month duration of mFOLFOX6 adjuvant chemotherapy in dMMR CC patients may be associated with improved DFS compared with 3-month therapy, particularly in patients with stage III. The observational nature of the study implies caution should be taken in the interpretation of these results.
Collapse
Affiliation(s)
- Huabin Hu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Zehua Wu
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Chao Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China.,Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Huang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China.,Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianwei Zhang
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Yue Cai
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Xiaoyu Xie
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Jianxia Li
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Cailu Shen
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Weiwei Li
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Jiayu Ling
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Xuehu Xu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanhong Deng
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| |
Collapse
|
13
|
Suerink M, Kilinç G, Terlouw D, Hristova H, Sensuk L, van Egmond D, Farina Sarasqueta A, Langers AMJ, van Wezel T, Morreau H, Nielsen M. Prevalence of mismatch repair deficiency and Lynch syndrome in a cohort of unselected small bowel adenocarcinomas. J Clin Pathol 2020; 74:724-729. [PMID: 33046565 PMCID: PMC8543220 DOI: 10.1136/jclinpath-2020-207040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
AIMS Previous estimates of the prevalence of mismatch repair (MMR) deficiency and Lynch syndrome in small bowel cancer have varied widely. The aim of this study was to establish the prevalence of MMR deficiency and Lynch syndrome in a large group of small bowel adenocarcinomas. METHODS To this end, a total of 400 small bowel adenocarcinomas (332 resections, 68 biopsies) were collected through the Dutch nationwide registry of histopathology and cytopathology (Pathologisch-Anatomisch Landelijk Geautomatiseerd Archief (PALGA)). No preselection criteria, such as family history, were applied, thus avoiding (ascertainment) bias. MMR deficiency status was determined by immunohistochemical staining of MMR proteins, supplemented by MLH1 promoter hypermethylation analysis and next generation sequencing of the MMR genes. RESULTS MMR deficiency was observed in 22.3% of resected and 4.4% of biopsied small bowel carcinomas. Prevalence of Lynch syndrome was 6.2% in resections and 0.0% in biopsy samples. Patients with Lynch syndrome-associated small bowel cancer were significantly younger at the time of diagnosis than patients with MMR-proficient and sporadic MMR-deficient cancers (mean age of 54.6 years vs 66.6 years and 68.8 years, respectively, p<0.000). CONCLUSIONS The prevalence of MMR deficiency and Lynch syndrome in resected small bowel adenocarcinomas is at least comparable to prevalence in colorectal cancers, a finding relevant both for treatment (immunotherapy) and family management. We recommend that all small bowel adenocarcinomas should be screened for MMR deficiency.
Collapse
Affiliation(s)
| | - Gül Kilinç
- Clinical Genetics, LUMC, Leiden, The Netherlands
| | - Diantha Terlouw
- Clinical Genetics, LUMC, Leiden, The Netherlands.,Pathology, LUMC, Leiden, The Netherlands
| | | | - Lily Sensuk
- Clinical Genetics, LUMC, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sun X, Zhao D, Long S, Chen S, Cai Q, Yao S. Clinicopathological and molecular features of colorectal cancer with synchronous adenoma. Scand J Gastroenterol 2020; 55:1063-1071. [PMID: 32713220 DOI: 10.1080/00365521.2020.1795922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To investigate the clinicopathological and molecular features of colorectal cancer (CRC) with synchronous adenoma and to describe features of synchronous adenomas in CRC patients. METHODS Single-centre retrospective cohort of 180 patients were included. The clinicopathological and endoscopic data were collected. The expression mismatch repair (MMR) proteins were detected by immunohistochemistry. The determination of microsatellite instability (MSI) was performed by multiple fluorescence PCR, and the mutations of genes were detected by real-time PCR. RESULTS Among all cases, 49 were diagnosed as CRC with synchronous adenoma, and 131 were diagnosed as solitary CRC. Some of the differences between the groups are: higher incidence was found in male (71.4 vs. 52.6%, p = .023) and in patients with habit drinking (34.7 vs. 14.5%, p = .030) and with other neoplastic diseases (42.7 vs. 26%, p = .028). Less tumors in the synchronous group were diagnosed as stage III and IV than in the solitary group (28.6 vs. 45%, p = .045). One and four mutant subtypes of KRAS gene mutations were detected insynchronous group and solitary group respectively.The prevalence of BRAF mutations in solitary group was higher than that in the synchronous group (7.4 vs. 0%, p = .045). A total of 123 adenomas were found in synchronous group and they tend to be smaller than 10 mm (74%). CONCLUSION Gender, a habit of drinking and other neoplastic diseases are risk factors for the development of a synchronous adenoma. With a low rate of BRAF mutations, the responses to monoclonal antibody and prognosis of patients with synchronous adenomas may be better than that of solitary CRC.
Collapse
Affiliation(s)
- Xizhen Sun
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Dongyan Zhao
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Sidan Long
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shuo Chen
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Qian Cai
- Beijing Weiren Human Resources Development Co. LTD, Beijing, China
| | - Shukun Yao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
15
|
Németh E, Lovrics A, Gervai JZ, Seki M, Rospo G, Bardelli A, Szüts D. Two main mutational processes operate in the absence of DNA mismatch repair. DNA Repair (Amst) 2020; 89:102827. [PMID: 32126497 DOI: 10.1016/j.dnarep.2020.102827] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The analysis of tumour genome sequences has demonstrated high rates of base substitution mutagenesis upon the inactivation of DNA mismatch repair (MMR), and the resulting somatic mutations in MMR deficient tumours appear to significantly enhance the response to immune therapy. A handful of different algorithmically derived base substitution mutation signatures have been attributed to MMR deficiency in tumour somatic mutation datasets. In contrast, mutation data obtained from whole genome sequences of isogenic wild type and MMR deficient cell lines in this study, as well as from published sources, show a more uniform experimental mutation spectrum of MMR deficiency. In order to resolve this discrepancy, we reanalysed mutation data from MMR deficient tumour whole exome and whole genome sequences. We derived two base substitution signatures using non-negative matrix factorisation, which together adequately describe mutagenesis in all tumour and cell line samples. The two new signatures broadly resemble COSMIC signatures 6 and 20, but perform better than existing COSMIC signatures at identifying MMR deficient tumours in mutation signature deconstruction. We show that the contribution of the two identified signatures, one of which is dominated by C to T mutations at CpG sites, is biased by the different sequence composition of the exome and the whole genome. We further show that the identity of the inactivated MMR gene, the tissue type, the mutational burden or the patient's age does not influence the mutation spectrum, but that a tendency for a greater contribution by the CpG mutational process is observed in tumours as compared to cultured cells. Our analysis suggest that two separable mutational processes operate in the genomes of MMR deficient cells.
Collapse
Affiliation(s)
- Eszter Németh
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Anna Lovrics
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Judit Z Gervai
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Masayuki Seki
- Department of Biochemistry, Tohoku Medical & Pharmaceutical University, Miyagi 981-8558, Japan
| | - Giuseppe Rospo
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo TO, Italy; Department of Oncology, University of Turin, 10060, Candiolo TO, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo TO, Italy; Department of Oncology, University of Turin, 10060, Candiolo TO, Italy
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary.
| |
Collapse
|