1
|
Bard AM, Clark LV, Cosgun E, Aldinger KA, Timms A, Quina LA, Ferres JML, Jardine D, Haas EA, Becker TM, Pagan CM, Santani A, Martinez D, Barua S, McNutt Z, Nesbitt A, Mitchell EA, Ramirez JM. Known pathogenic gene variants and new candidates detected in sudden unexpected infant death using whole genome sequencing. Am J Med Genet A 2024; 194:e63596. [PMID: 38895864 DOI: 10.1002/ajmg.a.63596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 06/21/2024]
Abstract
The purpose of this study is to gain insights into potential genetic factors contributing to the infant's vulnerability to Sudden Unexpected Infant Death (SUID). Whole Genome Sequencing (WGS) was performed on 144 infants that succumbed to SUID, and 573 healthy adults. Variants were filtered by gnomAD allele frequencies and predictions of functional consequences. Variants of interest were identified in 88 genes, in 64.6% of our cohort. Seventy-three of these have been previously associated with SIDS/SUID/SUDP. Forty-three can be characterized as cardiac genes and are related to cardiomyopathies, arrhythmias, and other conditions. Variants in 22 genes were associated with neurologic functions. Variants were also found in 13 genes reported to be pathogenic for various systemic disorders and in two genes associated with immunological function. Variants in eight genes are implicated in the response to hypoxia and the regulation of reactive oxygen species (ROS) and have not been previously described in SIDS/SUID/SUDP. Seventy-two infants met the triple risk hypothesis criteria. Our study confirms and further expands the list of genetic variants associated with SUID. The abundance of genes associated with heart disease and the discovery of variants associated with the redox metabolism have important mechanistic implications for the pathophysiology of SUID.
Collapse
Affiliation(s)
- Angela M Bard
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Lindsay V Clark
- Bioinformatics and Research Scientific Computing, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Erdal Cosgun
- Bioinformatics and Research Scientific Computing, Seattle Children's Research Institute, Seattle, Washington, USA
- AI for Good Research Lab, Microsoft, Redmond, Washington, USA
- Microsoft Genomics Team, Redmond, Washington, USA
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Andrew Timms
- Bioinformatics and Research Scientific Computing, Seattle Children's Research Institute, Seattle, Washington, USA
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Lely A Quina
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Juan M Lavista Ferres
- Bioinformatics and Research Scientific Computing, Seattle Children's Research Institute, Seattle, Washington, USA
- AI for Good Research Lab, Microsoft, Redmond, Washington, USA
- Microsoft Genomics Team, Redmond, Washington, USA
| | - David Jardine
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elisabeth A Haas
- Department of Research, Rady Children's Hospital-San Diego, San Diego, California, USA
| | - Tatiana M Becker
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Chelsea M Pagan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | | | | | | | | | - Edwin A Mitchell
- Department of Paediatrics, University of Auckland, Auckland, New Zealand
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
2
|
Bard AM, Clark LV, Cosgun E, Aldinger KA, Timms A, Quina LA, Lavista Ferres JM, Jardine D, Haas EA, Becker TM, Pagan CM, Santani A, Martinez D, Barua S, McNutt Z, Nesbitt A, Mitchell EA, Ramirez JM. Known pathogenic gene variants and new candidates detected in Sudden Unexpected Infant Death using Whole Genome Sequencing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.11.23295207. [PMID: 37745463 PMCID: PMC10516094 DOI: 10.1101/2023.09.11.23295207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Purpose To gain insights into potential genetic factors contributing to the infant's vulnerability to Sudden Unexpected Infant Death (SUID). Methods Whole Genome Sequencing (WGS) was performed on 145 infants that succumbed to SUID, and 576 healthy adults. Variants were filtered by gnomAD allele frequencies and predictions of functional consequences. Results Variants of interest were identified in 86 genes, 63.4% of our cohort. Seventy-one of these have been previously associated with SIDS/SUID/SUDP. Forty-three can be characterized as cardiac genes and are related to cardiomyopathies, arrhythmias, and other conditions. Variants in 22 genes were associated with neurologic functions. Variants were also found in 13 genes reported to be pathogenic for various systemic disorders. Variants in eight genes are implicated in the response to hypoxia and the regulation of reactive oxygen species (ROS) and have not been previously described in SIDS/SUID/SUDP. Seventy-two infants met the triple risk hypothesis criteria (Figure 1). Conclusion Our study confirms and further expands the list of genetic variants associated with SUID. The abundance of genes associated with heart disease and the discovery of variants associated with the redox metabolism have important mechanistic implications for the pathophysiology of SUID.
Collapse
|
3
|
Zeng B, Zhang X, Schimpf R, Powers A, Glikson M, Antzelevitch C, Hu D, Barajas-Martinez H. Functional identification of hot-spot mutations in cardiac calcium channel genes associated with the J wave syndromes. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220286. [PMID: 37122210 PMCID: PMC10150203 DOI: 10.1098/rstb.2022.0286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
J wave syndrome (JWS) is an inherited cardiac channelopathy associated with malignant ventricular arrhythmias and sudden cardiac death (SCD), which comprises early repolarization syndrome and Brugada syndrome. Here, we explore the association between variants in the L-type calcium channel gene subunits, α1C (CACNA1C) and β2b (CACNB2b), and the JWS phenotype. Using next-generation genetic sequencing of 402 JWS probands and their family members, we identified a CACNA1C-G37R (p.Gly37Arg) mutation in five individuals in four families, two of which had a family history of SCD as well as a CACNB2b-S143F (p.Ser143Phe) mutation in seven individuals in three families, two of which had a family history of SCD. The variants were located in exon 2 in CACNA1C and exon 5 in CACNB2b; both were in highly conserved amino acid residues. Whole-cell patch-clamp results showed that compared with the wild-type group, calcium current density of CACNB2b-S143F and CACNA1C-G37R were significantly lower displaying a dominant-negative effect. Our findings provide further support for the hypothesis that variants in CACNA1C and CACNB2b are associated with JWS. The results suggest that mutations in these two genes lead to loss-of-function of the cardiac calcium channel current warranting their inclusion in genetic screening protocols. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Xiang Zhang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Rainer Schimpf
- Cardiology Practice Clinic, Ludwig-Guttmann-Str. 11, Ludwigshafen, Ludwigshafen-Neustadt, 67071, Germany
| | - Andrew Powers
- Department of Biology, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Michael Glikson
- Jesselson Integrated Heart Center, Shaare Zedek Medical Center and Hebrew University Faculty of Medicine, Jerusalem, 91031, Israel
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, Pennsylvania, PA, 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Hector Barajas-Martinez
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, Pennsylvania, PA, 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
4
|
Abstract
The CACNA1C gene encodes the pore-forming subunit of the CaV1.2 L-type Ca2+ channel, a critical component of membrane physiology in multiple tissues, including the heart, brain, and immune system. As such, mutations altering the function of these channels have the potential to impact a wide array of cellular functions. The first mutations identified within CACNA1C were shown to cause a severe, multisystem disorder known as Timothy syndrome (TS), which is characterized by neurodevelopmental deficits, long-QT syndrome, life-threatening cardiac arrhythmias, craniofacial abnormalities, and immune deficits. Since this initial description, the number and variety of disease-associated mutations identified in CACNA1C have grown tremendously, expanding the range of phenotypes observed in affected patients. CACNA1C channelopathies are now known to encompass multisystem phenotypes as described in TS, as well as more selective phenotypes where patients may exhibit predominantly cardiac or neurological symptoms. Here, we review the impact of genetic mutations on CaV1.2 function and the resultant physiological consequences.
Collapse
Affiliation(s)
- Kevin G Herold
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John W Hussey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ivy E Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Fan W, Sun X, Yang C, Wan J, Luo H, Liao B. Pacemaker activity and ion channels in the sinoatrial node cells: MicroRNAs and arrhythmia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:151-167. [PMID: 36450332 DOI: 10.1016/j.pbiomolbio.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The primary pacemaking activity of the heart is determined by a spontaneous action potential (AP) within sinoatrial node (SAN) cells. This unique AP generation relies on two mechanisms: membrane clocks and calcium clocks. Nonhomologous arrhythmias are caused by several functional and structural changes in the myocardium. MicroRNAs (miRNAs) are essential regulators of gene expression in cardiomyocytes. These miRNAs play a vital role in regulating the stability of cardiac conduction and in the remodeling process that leads to arrhythmias. Although it remains unclear how miRNAs regulate the expression and function of ion channels in the heart, these regulatory mechanisms may support the development of emerging therapies. This study discusses the spread and generation of AP in the SAN as well as the regulation of miRNAs and individual ion channels. Arrhythmogenicity studies on ion channels will provide a research basis for miRNA modulation as a new therapeutic target.
Collapse
Affiliation(s)
- Wei Fan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Xuemei Sun
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Chao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Hongli Luo
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
6
|
Baez-Nieto D, Allen A, Akers-Campbell S, Yang L, Budnik N, Pupo A, Shin YC, Genovese G, Liao M, Pérez-Palma E, Heyne H, Lal D, Lipscombe D, Pan JQ. Analysing an allelic series of rare missense variants of CACNA1I in a Swedish schizophrenia cohort. Brain 2022; 145:1839-1853. [PMID: 34919654 PMCID: PMC9166571 DOI: 10.1093/brain/awab443] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/23/2021] [Accepted: 11/11/2021] [Indexed: 11/14/2022] Open
Abstract
CACNA1I is implicated in the susceptibility to schizophrenia by large-scale genetic association studies of single nucleotide polymorphisms. However, the channelopathy of CACNA1I in schizophrenia is unknown. CACNA1I encodes CaV3.3, a neuronal voltage-gated calcium channel that underlies a subtype of T-type current that is important for neuronal excitability in the thalamic reticular nucleus and other regions of the brain. Here, we present an extensive functional characterization of 57 naturally occurring rare and common missense variants of CACNA1I derived from a Swedish schizophrenia cohort of more than 10 000 individuals. Our analysis of this allelic series of coding CACNA1I variants revealed that reduced CaV3.3 channel current density was the dominant phenotype associated with rare CACNA1I coding alleles derived from control subjects, whereas rare CACNA1I alleles from schizophrenia patients encoded CaV3.3 channels with altered responses to voltages. CACNA1I variants associated with altered current density primarily impact the ionic channel pore and those associated with altered responses to voltage impact the voltage-sensing domain. CaV3.3 variants associated with altered voltage dependence of the CaV3.3 channel and those associated with peak current density deficits were significantly segregated across affected and unaffected groups (Fisher's exact test, P = 0.034). Our results, together with recent data from the SCHEMA (Schizophrenia Exome Sequencing Meta-Analysis) cohort, suggest that reduced CaV3.3 function may protect against schizophrenia risk in rare cases. We subsequently modelled the effect of the biophysical properties of CaV3.3 channel variants on thalamic reticular nucleus excitability and found that compared with common variants, ultrarare CaV3.3-coding variants derived from control subjects significantly decreased thalamic reticular nucleus excitability (P = 0.011). When all rare variants were analysed, there was a non-significant trend between variants that reduced thalamic reticular nucleus excitability and variants that either had no effect or increased thalamic reticular nucleus excitability across disease status. Taken together, the results of our functional analysis of an allelic series of >50 CACNA1I variants in a schizophrenia cohort reveal that loss of function of CaV3.3 is a molecular phenotype associated with reduced disease risk burden, and our approach may serve as a template strategy for channelopathies in polygenic disorders.
Collapse
Affiliation(s)
- David Baez-Nieto
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrew Allen
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Seth Akers-Campbell
- Carney Institute for Brain Science & Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Lingling Yang
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Nikita Budnik
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Amaury Pupo
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Young-Cheul Shin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Eduardo Pérez-Palma
- Genomic Medicine Institute, Lerner Research institute, Cleveland Clinic, OH 44195, USA
- Centro de Genética y Genómica, Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Chile
| | - Henrike Heyne
- Genomic Medicine, Hasso Plattner Institute, Potsdam, 14482, Germany
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research institute, Cleveland Clinic, OH 44195, USA
- Cologne Center for Genomics, University of Cologne, Cologne 50931, Germany
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Diane Lipscombe
- Carney Institute for Brain Science & Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Jen Q. Pan
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
7
|
Novelli V, Memmi M, Malovini A, Mazzanti A, Liu N, Yanfei R, Bongianino R, Denegri M, Monteforte N, Bloise R, Morini M, Napolitano C. The role of CACNA1C in Brugada syndrome: prevalence and phenotype of probands referred for genetic testing. Heart Rhythm 2022; 19:798-806. [PMID: 34999275 DOI: 10.1016/j.hrthm.2021.12.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/07/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Contradictory evidence is available on the role of the CACNA1C gene, encoding for the α-subunit of the cardiac L-type calcium channel (CaV1.2), as a cause of the BrS3 variant of Brugada syndrome (BrS). OBJECTIVE We aimed at tackling this issue in a large BrS cohort to define the yield of molecular screening and to address the hypothesis if an appropriate patient selection could improve the clinical utility. METHODS A total of 709 patients entered this study. BrS probands (n= 563, consecutively referred) underwent CACNA1C sequencing. Two matched cohorts where defined: discovery cohort (n = 200 patients) and confirmation cohort (n = 363 patients). Furthermore, the clinical phenotypes of a matched SCN5A positive BrS cohort (n= 146) were included for comparative genotype-phenotype correlation. RESULTS In the discovery cohort, we identified 11 different rare variants in 9 patients of whom 10 (5%) were considered potentially causative based on their frequency in the general population. However, ACMG criteria were unable to classify the majority (80%) of them eventually labeled as variants of unknown significance (VUS). Functional studies revealed a loss of function for 9 variants pointing to a prevalence of CACNA1C causative variants in 4% in the discovery cohort. Genotype-phenotype correlation showed that pathogenic variants are significantly more frequent in patients with a shorter QTc (12.9 % vs 2.2 % in patients with QTc < 390 ms). CONCLUSION CACNA1C is an infrequent but definitive cause of BrS typically associated with short QT. Functional studies are highly relevant to improve variant interpretation.
Collapse
Affiliation(s)
- Valeria Novelli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mirella Memmi
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Alberto Malovini
- Laboratory of Informatics and Systems Engineering for Clinical Research, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Andrea Mazzanti
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Nian Liu
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Ruan Yanfei
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Rossana Bongianino
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Marco Denegri
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Nicola Monteforte
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Raffaella Bloise
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Massimo Morini
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
8
|
Chen X, Barajas-Martínez H, Xia H, Zhang Z, Chen G, Yang B, Jiang H, Antzelevitch C, Hu D. Clinical and Functional Genetic Characterization of the Role of Cardiac Calcium Channel Variants in the Early Repolarization Syndrome. Front Cardiovasc Med 2021; 8:680819. [PMID: 34222376 PMCID: PMC8249565 DOI: 10.3389/fcvm.2021.680819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Early repolarization syndrome (ERS) is an inherited sudden cardiac death (SCD) syndrome. The present study investigates the role of genetic variants in cardiac calcium-channel genes in the pathogenesis of ERS and probes the underlying mechanisms. Methods: Polymerase chain reaction-based next-generation sequencing was carried out using a targeted gene approach. Unrelated ERS probands carrying calcium-channel variants were evaluated clinically and compared with matched healthy controls. Wild-type (WT) and mutant CACNA1C genes were coexpressed with CACNB2b and CACNA2D1 in HEK293 cells and studied using whole-cell patch-clamp techniques and confocal fluorescence microscope. Results: Among 104 ERS probands, 16 carried pathogenic variants in calcium-channel genes (32.2 ± 14.6 years old, 87.5% male). The symptoms at diagnosis included syncope (56.3%), ventricular tachycardia/fibrillation (62.5%), and SCD (56.3%). Three cases (18.8%) had a family history of SCD or syncope. Eight patients (50.0%) had a single calcium gene rare variant. The other half carried rare variants in other ERS-susceptible genes. Compared with controls, the heart rate was slower (72.7 ± 8.9 vs. 65.6 ± 16.1 beats/min, * p < 0.05), QTc interval was shorter (408.2 ± 21.4 vs. 386.8 ± 16.9 ms, ** p < 0.01), and Tp-e/QT was longer (0.22 ± 0.05 vs. 0.28 ± 0.04, *** p < 0.001) in single calcium mutation carriers. Electrophysiological analysis of one mutation, CACNA1C-P817S (c.2449C>T), revealed that the density of whole-cell calcium current (I Ca) was reduced by ~84.61% compared to WT (-3.17 ± 2.53 vs. -20.59 ± 3.60 pA/pF, n = 11 and 15, respectively, ** p < 0.01). Heterozygous expression of mutant channels was associated with a 51.35% reduction of I Ca. Steady-state inactivation was shifted to more negative potentials and significantly accelerated as well. Confocal microscopy revealed trafficking impairment of CACNA1C-P817S (peripheral/central intensity: 0.94 ± 0.10 in WT vs. 0.33 ± 0.12 in P817S, n = 10 and 9, respectively, ** p < 0.01). Conclusions: ERS associated with loss-of-function (LOF) genetic defects in genes encoding the cardiac calcium channel represents a unique clinical entity characterized by decreased heart rate and QTc, as well as increased transmural dispersion of repolarization. In the case of CACNA1C-P817S, impaired trafficking of the channel to the membrane contributes to the LOF.
Collapse
Affiliation(s)
- Xiu Chen
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hector Barajas-Martínez
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnewood, PA, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Hao Xia
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhonghe Zhang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ganxiao Chen
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bo Yang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hong Jiang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnewood, PA, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
9
|
Kessi M, Chen B, Peng J, Yan F, Yang L, Yin F. Calcium channelopathies and intellectual disability: a systematic review. Orphanet J Rare Dis 2021; 16:219. [PMID: 33985586 PMCID: PMC8120735 DOI: 10.1186/s13023-021-01850-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Calcium ions are involved in several human cellular processes including corticogenesis, transcription, and synaptogenesis. Nevertheless, the relationship between calcium channelopathies (CCs) and intellectual disability (ID)/global developmental delay (GDD) has been poorly investigated. We hypothesised that CCs play a major role in the development of ID/GDD and that both gain- and loss-of-function variants of calcium channel genes can induce ID/GDD. As a result, we performed a systematic review to investigate the contribution of CCs, potential mechanisms underlying their involvement in ID/GDD, advancements in cell and animal models, treatments, brain anomalies in patients with CCs, and the existing gaps in the knowledge. We performed a systematic search in PubMed, Embase, ClinVar, OMIM, ClinGen, Gene Reviews, DECIPHER and LOVD databases to search for articles/records published before March 2021. The following search strategies were employed: ID and calcium channel, mental retardation and calcium channel, GDD and calcium channel, developmental delay and calcium channel. MAIN BODY A total of 59 reports describing 159 cases were found in PubMed, Embase, ClinVar, and LOVD databases. Variations in ten calcium channel genes including CACNA1A, CACNA1C, CACNA1I, CACNA1H, CACNA1D, CACNA2D1, CACNA2D2, CACNA1E, CACNA1F, and CACNA1G were found to be associated with ID/GDD. Most variants exhibited gain-of-function effect. Severe to profound ID/GDD was observed more for the cases with gain-of-function variants as compared to those with loss-of-function. CACNA1E, CACNA1G, CACNA1F, CACNA2D2 and CACNA1A associated with more severe phenotype. Furthermore, 157 copy number variations (CNVs) spanning calcium genes were identified in DECIPHER database. The leading genes included CACNA1C, CACNA1A, and CACNA1E. Overall, the underlying mechanisms included gain- and/ or loss-of-function, alteration in kinetics (activation, inactivation) and dominant-negative effects of truncated forms of alpha1 subunits. Forty of the identified cases featured cerebellar atrophy. We identified only a few cell and animal studies that focused on the mechanisms of ID/GDD in relation to CCs. There is a scarcity of studies on treatment options for ID/GDD both in vivo and in vitro. CONCLUSION Our results suggest that CCs play a major role in ID/GDD. While both gain- and loss-of-function variants are associated with ID/GDD, the mechanisms underlying their involvement need further scrutiny.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fangling Yan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China.
| |
Collapse
|
10
|
Di Mauro V, Ceriotti P, Lodola F, Salvarani N, Modica J, Bang ML, Mazzanti A, Napolitano C, Priori SG, Catalucci D. Peptide-Based Targeting of the L-Type Calcium Channel Corrects the Loss-of-Function Phenotype of Two Novel Mutations of the CACNA1 Gene Associated With Brugada Syndrome. Front Physiol 2021; 11:616819. [PMID: 33488405 PMCID: PMC7821386 DOI: 10.3389/fphys.2020.616819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
Brugada syndrome (BrS) is an inherited arrhythmogenic disease that may lead to sudden cardiac death in young adults with structurally normal hearts. No pharmacological therapy is available for BrS patients. This situation highlights the urgent need to overcome current difficulties by developing novel groundbreaking curative strategies. BrS has been associated with mutations in 18 different genes of which loss-of-function (LoF) CACNA1C mutations constitute the second most common cause. Here we tested the hypothesis that BrS associated with mutations in the CACNA1C gene encoding the L-type calcium channel (LTCC) pore-forming unit (Cavα1.2) is functionally reverted by administration of a mimetic peptide (MP), which through binding to the LTCC chaperone beta subunit (Cavβ2) restores the physiological life cycle of aberrant LTCCs. Two novel Cavα1.2 mutations associated with BrS were identified in young individuals. Transient transfection in heterologous and cardiac cells showed LoF phenotypes with reduced Ca2+ current (ICa). In HEK293 cells overexpressing the two novel Cavα1.2 mutations, Western blot analysis and cell surface biotinylation assays revealed reduced Cavα1.2 protein levels at the plasma membrane for both mutants. Nano-BRET, Nano-Luciferase assays, and confocal microscopy analyses showed (i) reduced affinity of Cavα1.2 for its Cavβ2 chaperone, (ii) shortened Cavα1.2 half-life in the membrane, and (iii) impaired subcellular localization. Treatment of Cavα1.2 mutant-transfected cells with a cell permeant MP restored channel trafficking and physiologic channel half-life, thereby resulting in ICa similar to wild type. These results represent the first step towards the development of a gene-specific treatment for BrS due to defective trafficking of mutant LTCC.
Collapse
Affiliation(s)
- Vittoria Di Mauro
- Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Paola Ceriotti
- Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Francesco Lodola
- ICS Maugeri, IRCCS, Pavia, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Nicolò Salvarani
- Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Jessica Modica
- Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Andrea Mazzanti
- ICS Maugeri, IRCCS, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carlo Napolitano
- ICS Maugeri, IRCCS, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Silvia G Priori
- ICS Maugeri, IRCCS, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Daniele Catalucci
- Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| |
Collapse
|
11
|
Jaouadi H, Bouyacoub Y, Chabrak S, Kraoua L, Zaroui A, Elouej S, Nagara M, Dallali H, Delague V, Levy N, Benkhalifa R, Mechmeche R, Zaffran S, Abdelhak S. Multiallelic rare variants support an oligogenic origin of sudden cardiac death in the young. Herz 2020; 46:94-102. [PMID: 31970460 DOI: 10.1007/s00059-019-04883-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/20/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022]
Abstract
Unexplained sudden death in the young is cardiovascular in most cases. Structural and conduction defects in cardiac-related genes can conspire to underlie sudden cardiac death. Here we report a clinical investigation and an extensive genetic assessment of a Tunisian family with sudden cardiac death in young members. In order to identify the family-genetic basis of sudden cardiac death, we performed Whole Exome Sequencing (WES), read depth copy-number-variation (CNV) screening and segregation analysis. We identify 6 ultra-rare pathogenic heterozygous variants in OBSCN, RYR2, DSC2, AKAP9, CACNA1C and RBM20 genes, and one homozygous splicing variant in TECRL gene consistent with an oligogenic model of inheritance. CNV analysis did not reveal any causative CNV consistent with the family phenotype. Overall, our results are highly suggestive for a cumulative effect of heterozygous missense variants as disease causation and to account for a greater disease severity among offspring. Our study further confirms the complexity of the inheritance of sudden cardiac death and highlights the utility of family-based WES and segregation analysis in the identification of family specific mutations within different cardiac genes pathways.
Collapse
Affiliation(s)
- Hager Jaouadi
- Biomedical Genomics and Oncogenetics Laboratory LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur, BP74-1002, Tunis, belvédère, Tunisia.
| | - Yosra Bouyacoub
- Biomedical Genomics and Oncogenetics Laboratory LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur, BP74-1002, Tunis, belvédère, Tunisia
| | - Sonia Chabrak
- Department of Cardiology, La Rabta Hospital, Tunis, Tunisia.,Faculty of Medicine of Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Lilia Kraoua
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia
| | - Amira Zaroui
- Faculty of Medicine of Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Sahar Elouej
- Aix Marseille University, INSERM, U1251, Marseille Medical Genetics, Marseille, France
| | - Majdi Nagara
- Biomedical Genomics and Oncogenetics Laboratory LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur, BP74-1002, Tunis, belvédère, Tunisia
| | - Hamza Dallali
- Biomedical Genomics and Oncogenetics Laboratory LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur, BP74-1002, Tunis, belvédère, Tunisia
| | - Valérie Delague
- Aix Marseille University, INSERM, U1251, Marseille Medical Genetics, Marseille, France
| | - Nicolas Levy
- Aix Marseille University, INSERM, U1251, Marseille Medical Genetics, Marseille, France
| | - Rym Benkhalifa
- Venoms and Therapeutic Biomolecules Laboratory LR16IPT08, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Rachid Mechmeche
- Department of Cardiology, La Rabta Hospital, Tunis, Tunisia.,Faculty of Medicine of Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Stéphane Zaffran
- Aix Marseille University, INSERM, U1251, Marseille Medical Genetics, Marseille, France
| | - Sonia Abdelhak
- Biomedical Genomics and Oncogenetics Laboratory LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur, BP74-1002, Tunis, belvédère, Tunisia
| |
Collapse
|
12
|
Šustr F, Stárek Z, Souček M, Novák J. Non-coding RNAs and Cardiac Arrhythmias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:287-300. [PMID: 32285419 DOI: 10.1007/978-981-15-1671-9_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Cardiac arrhythmias represent wide and heterogenic group of disturbances in the cardiac rhythm. Pathophysiology of individual arrhythmias is highly complex and dysfunction in ion channels/currents involved in generation or spreading of action potential is usually documented. Non-coding RNAs (ncRNAs) represent highly variable group of molecules regulating the heart expression program, including regulation of the expression of individual ion channels and intercellular connection proteins, e.g. connexins.Within this chapter, we will describe basic electrophysiological properties of the myocardium. We will focus on action potential generation and spreading in pacemaker and non-pacemaker cells, including description of individual ion channels (natrium, potassium and calcium) and their ncRNA-mediated regulation. Most of the studies have so far focused on microRNAs, thus, their regulatory function will be described into greater detail. Clinical consequences of altered ncRNA regulatory function will also be described together with potential future directions of the research in the field.
Collapse
Affiliation(s)
- Filip Šustr
- Second Department of Internal Medicine of St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdeněk Stárek
- First Department of Internal Medicine and Cardioangiology of St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Miroslav Souček
- Second Department of Internal Medicine of St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Novák
- Second Department of Internal Medicine of St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- CEITEC - Central European Institute for Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
13
|
Jankelson L, Zimmermann H, Fowler S, Borneman L, Conner B, Wu S, Karam R, Chinitz L, Cerrone M. Impact of RNA testing on cardiac variant interpretation and patient management. HeartRhythm Case Rep 2019; 5:402-406. [PMID: 31453089 PMCID: PMC6700669 DOI: 10.1016/j.hrcr.2019.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Han D, Xue X, Yan Y, Li G. Dysfunctional Cav1.2 channel in Timothy syndrome, from cell to bedside. Exp Biol Med (Maywood) 2019; 244:960-971. [PMID: 31324123 DOI: 10.1177/1535370219863149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Timothy syndrome is a rare disorder caused by CACNA1C gene mutations and characterized by multi-organ system dysfunctions, including ventricular arrhythmias, syndactyly, dysmorphic facial features, intermittent hypoglycemia, immunodeficiency, developmental delay, and autism. Because of the low morbidity and high mortality at a young age, it remains a huge challenge to establish a diagnosis and treatment system to manage Timothy syndrome patients. Here, we aim to provide a detailed review of Timothy syndrome, discuss the mechanisms underlying dysfunctional Cav1.2 due to CACNA1C mutations, and provide some new emerging evidences in treating Timothy syndrome from cell to bedside, promoting the management of this rare disease. Impact statement The knowledge of Timothy syndrome (TS) caused by dysfunctional Cav1.2 channel due to CACNA1C mutations is rapidly evolving as novel technologies of electrophysiology are introduced and our understanding of the mechanisms of TS develops. In this review, we focus on the TS-related dysfunctional Cav1.2 and the underlying mechanisms. We update TS-related CACNA1C mutations in a precise way over the past 20 years and summarize all reported TS patients based on their clinical presentations and molecular mechanisms, respectively. We hope this review will provide a new comprehensive way to better understand the electrophysiological mechanisms underlying TS from cell to bedside, promoting the management of TS in practice.
Collapse
Affiliation(s)
- Dan Han
- 1 Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P. R. China.,2 Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P.R. China*These authors contributed equally to this work and should be considered to share first authorship
| | - Xiaolin Xue
- 1 Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| | - Yang Yan
- 2 Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P.R. China*These authors contributed equally to this work and should be considered to share first authorship
| | - Guoliang Li
- 1 Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| |
Collapse
|
15
|
Gardner RJM, Crozier IG, Binfield AL, Love DR, Lehnert K, Gibson K, Lintott CJ, Snell RG, Jacobsen JC, Jones PP, Waddell-Smith KE, Kennedy MA, Skinner JR. Penetrance and expressivity of the R858H CACNA1C variant in a five-generation pedigree segregating an arrhythmogenic channelopathy. Mol Genet Genomic Med 2018; 7:e00476. [PMID: 30345660 PMCID: PMC6382452 DOI: 10.1002/mgg3.476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Isolated cardiac arrhythmia due to a variant in CACNA1C is of recent knowledge. Most reports have been of singleton cases or of quite small families, and estimates of penetrance and expressivity have been difficult to obtain. We here describe a large pedigree, from which such estimates have been calculated. METHODS We studied a five-generation family, in which a CACNA1C variant c.2573G>A p.Arg858His co-segregates with syncope and cardiac arrest, documenting electrocardiographic data and cardiac symptomatology. The reported patients/families from the literature with CACNA1C gene variants were reviewed, and genotype-phenotype correlations are drawn. RESULTS The range of phenotype in the studied family is wide, from no apparent effect, through an asymptomatic QT interval prolongation on electrocardiography, to episodes of presyncope and syncope, ventricular fibrillation, and sudden death. QT prolongation showed inconsistent correlation with functional cardiology. Based upon analysis of 28 heterozygous family members, estimates of penetrance and expressivity are derived. CONCLUSIONS These estimates of penetrance and expressivity, for this specific variant, may be useful in clinical practice. Review of the literature indicates that individual CACNA1C variants have their own particular genotype-phenotype correlations. We suggest that, at least in respect of the particular variant reported here, "arrhythmogenic channelopathy" may be a more fitting nomenclature than long QT syndrome.
Collapse
Affiliation(s)
- R J McKinlay Gardner
- Cardiac Inherited Disease Group, Auckland, New Zealand.,Genetic Health Service New Zealand (South Island Hub), Christchurch Hospital, Christchurch, New Zealand.,Clinical Genetics Group, Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - Ian G Crozier
- Cardiac Inherited Disease Group, Auckland, New Zealand.,Department of Cardiology, Christchurch Hospital, Christchurch, New Zealand
| | - Alex L Binfield
- Cardiac Inherited Disease Group, Auckland, New Zealand.,Department of Paediatrics, Christchurch Hospital, Christchurch, New Zealand.,Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | - Donald R Love
- Cardiac Inherited Disease Group, Auckland, New Zealand.,LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Klaus Lehnert
- Cardiac Inherited Disease Group, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kate Gibson
- Cardiac Inherited Disease Group, Auckland, New Zealand.,Genetic Health Service New Zealand (South Island Hub), Christchurch Hospital, Christchurch, New Zealand
| | - Caroline J Lintott
- Cardiac Inherited Disease Group, Auckland, New Zealand.,Genetic Health Service New Zealand (South Island Hub), Christchurch Hospital, Christchurch, New Zealand
| | - Russell G Snell
- Cardiac Inherited Disease Group, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jessie C Jacobsen
- Cardiac Inherited Disease Group, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Peter P Jones
- Cardiac Inherited Disease Group, Auckland, New Zealand.,Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Kathryn E Waddell-Smith
- Cardiac Inherited Disease Group, Auckland, New Zealand.,Department of Cardiology, Auckland City Hospital, Auckland, New Zealand
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Jonathan R Skinner
- Cardiac Inherited Disease Group, Auckland, New Zealand.,Department of Cardiology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
16
|
An African loss-of-function CACNA1C variant p.T1787M associated with a risk of ventricular fibrillation. Sci Rep 2018; 8:14619. [PMID: 30279520 PMCID: PMC6168548 DOI: 10.1038/s41598-018-32867-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
Calcium regulation plays a central role in cardiac function. Several variants in the calcium channel Cav1.2 have been implicated in arrhythmic syndromes. We screened patients with Brugada syndrome, short QT syndrome, early repolarisation syndrome, and idiopathic ventricular fibrillation to determine the frequency and pathogenicity of Cav1.2 variants. Cav1.2 related genes, CACNA1C, CACNB2 and CACNA2D1, were screened in 65 probands. Missense variants were introduced in the Cav1.2 alpha subunit plasmid by mutagenesis to assess their pathogenicity using patch clamp approaches. Six missense variants were identified in CACNA1C in five individuals. Five of them, A1648T, A1689T, G1795R, R1973Q, C1992F, showed no major alterations of the channel function. The sixth C-terminal variant, Cavα1c-T1787M, present mostly in the African population, was identified in two patients with resuscitated cardiac arrest. The first patient originated from Cameroon and the second was an inhabitant of La Reunion Island with idiopathic ventricular fibrillation originating from Purkinje tissues. Patch-clamp analysis revealed that Cavα1c-T1787M reduces the calcium and barium currents by increasing the auto-inhibition mediated by the C-terminal part and increases the voltage-dependent inhibition. We identified a loss-of-function variant, Cavα1c-T1787M, present in 0.8% of the African population, as a new risk factor for ventricular arrhythmia.
Collapse
|
17
|
Ye D, Tester DJ, Zhou W, Papagiannis J, Ackerman MJ. A pore-localizing CACNA1C-E1115K missense mutation, identified in a patient with idiopathic QT prolongation, bradycardia, and autism spectrum disorder, converts the L-type calcium channel into a hybrid nonselective monovalent cation channel. Heart Rhythm 2018; 16:270-278. [PMID: 30172029 DOI: 10.1016/j.hrthm.2018.08.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Gain-of-function variants in the CACNA1C-encoded L-type calcium channel (LTCC, Cav1.2) cause type 8 long QT syndrome (LQT8). The pore region contains highly conserved glutamic acid (E) residues that collectively form the LTCC's selectivity filter. Here, we identified and characterized a pore-localizing missense variant, E1115K, that yielded a novel perturbation in the LTCC. OBJECTIVE The purpose of this study was to determine whether CACNA1C-E1115K alters the LTCC's selectivity and is the substrate for the patient's LQTS. METHODS The proband was a 14-year-old male with idiopathic QT prolongation and bradycardia. Genetic testing revealed a missense variant, CACNA1C-E1115K. The whole-cell patch clamp technique was used to measure CACNA1C-WT and -E1115K currents when heterologously expressed in TSA201 cells. RESULTS The CACNA1C-E1115K channel exhibited no inward calcium current. Instead, robust cardiac transient outward potassium current (Ito)-like outward currents that were blocked significantly by nifedipine were measured when 2 mM/0.1 mM extracellular/intracellular CaCl2 or 4 mM/141 mM extracellular/intracellular KCl was applied. Furthermore, when 140 mM extracellular NaCl was applied, the CACNA1C-E1115K channel revealed both robust inward persistent Na+ currents with slower inactivation and outward currents, which were also nifedipine sensitive. In contrast, CACNA1C-WT revealed only a small inward persistent Na+ current without a robust outward current. CONCLUSION This CACNA1C-E1115K variant destroyed the LTCC's calcium selectivity and instead converted the mutant channel into a channel with a marked increase in sodium-mediated inward currents and potassium-mediated outward currents. Despite the anticipated 50% reduction in LTCC, the creation of a new population of channels with accentuated inward and outward currents represents the likely pathogenic substrates for the patient's LQTS and arrhythmia phenotype.
Collapse
Affiliation(s)
- Dan Ye
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - David J Tester
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Wei Zhou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - John Papagiannis
- Department of Pediatrics, University of Missouri, Kansas City, Missouri
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatrics, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
18
|
Huang L, Wu KH, Zhang L, Wang Q, Tang S, Wu Q, Jiang PH, Lin JJC, Guo J, Wang L, Loh SH, Cheng J. Critical Roles of Xirp Proteins in Cardiac Conduction and Their Rare Variants Identified in Sudden Unexplained Nocturnal Death Syndrome and Brugada Syndrome in Chinese Han Population. J Am Heart Assoc 2018; 7:e006320. [PMID: 29306897 PMCID: PMC5778954 DOI: 10.1161/jaha.117.006320] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 11/16/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Sudden unexplained nocturnal death syndrome (SUNDS) remains an autopsy negative entity with unclear etiology. Arrhythmia has been implicated in SUNDS. Mutations/deficiencies in intercalated disc components have been shown to cause arrhythmias. Human cardiomyopathy-associated 1 (XIRP1) and 3 (XIRP2) are intercalated disc-associated, Xin repeats-containing proteins. Mouse Xirp1 is necessary for the integrity of intercalated disc and for the surface expression of transient outward and delayed rectifier K+ channels, whereas mouse Xirp2 is required for Xirp1 intercalated disc localization. Thus, XIRP1 and XIRP2 may be potentially causal genes for SUNDS. METHODS AND RESULTS We genetically screened XIRP genes in 134 sporadic SUNDS victims and 22 Brugada syndrome (BrS) cases in a Chinese Han population. We identified 16 rare variants (6 were in silico predicted as deleterious) in SUNDS victims, including a novel variant, XIRP2-E215K. There were also four rare variants (2 were in silico predicted as deleterious) detected in BrS cases, including a novel variant, XIRP2-L2718P. Interestingly, among these 20 variants, we detected 2 likely pathogenic variants: a nonsense variant (XIRP2-Q2875*) and a frameshift variant (XIRP2-T2238QfsX7). Analyzing available Xirp2 knockout mice, we further found that mouse hearts without Xirp2 exhibited prolonged PR and QT intervals, slow conduction velocity, atrioventricular conduction block, and an abnormal infranodal ventricular conduction system. Whole-cell patch-clamp detected altered ionic currents in Xirp2-/- cardiomyocytes, consistent with the observed association between Xirp2 and Nav1.5/Kv1.5 in co-immunoprecipitation. CONCLUSIONS This is the first report identifying likely pathogenic XIRP rare variants in arrhythmogenic disorders such as SUNDS and Brugada syndrome, and showing critical roles of Xirp2 in cardiac conduction.
Collapse
Affiliation(s)
- Lei Huang
- Department of Forensic Pathology, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kuo-Ho Wu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
- Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Liyong Zhang
- Department of Forensic Pathology, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qinchuan Wang
- Department of Biology, University of Iowa, Iowa City, IA
| | - Shuangbo Tang
- Department of Forensic Pathology, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiuping Wu
- Department of Forensic Pathology, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pei-Hsiu Jiang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | | | - Jian Guo
- BGI-Shenzhen, Shenzhen, Guangdong, China
- China National GeneBank BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Lin Wang
- BGI-Shenzhen, Shenzhen, Guangdong, China
- China National GeneBank BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Shih-Hurng Loh
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Jianding Cheng
- Department of Forensic Pathology, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Zhang Q, Chen J, Qin Y, Wang J, Zhou L. Mutations in voltage-gated L-type calcium channel: implications in cardiac arrhythmia. Channels (Austin) 2018; 12:201-218. [PMID: 30027834 PMCID: PMC6104696 DOI: 10.1080/19336950.2018.1499368] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/08/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023] Open
Abstract
The voltage-gated L-type calcium channel (LTCC) is essential for multiple cellular processes. In the heart, calcium influx through LTCC plays an important role in cardiac electrical excitation. Mutations in LTCC genes, including CACNA1C, CACNA1D, CACNB2 and CACNA2D, will induce the dysfunctions of calcium channels, which result in the abnormal excitations of cardiomyocytes, and finally lead to cardiac arrhythmias. Nevertheless, the newly found mutations in LTCC and their functions are continuously being elucidated. This review summarizes recent findings on the mutations of LTCC, which are associated with long QT syndromes, Timothy syndromes, Brugada syndromes, short QT syndromes, and some other cardiac arrhythmias. Indeed, we describe the gain/loss-of-functions of these mutations in LTCC, which can give an explanation for the phenotypes of cardiac arrhythmias. Moreover, we present several challenges in the field at present, and propose some diagnostic or therapeutic approaches to these mutation-associated cardiac diseases in the future.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Cardiology, the Second Affiliated Hospital of Nantong University, Nantong First Hospital, Nantong, Jiangsu, China
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junjie Chen
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yao Qin
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juejin Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Zhou
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Bai J, Wang K, Liu Y, Li Y, Liang C, Luo G, Dong S, Yuan Y, Zhang H. Computational Cardiac Modeling Reveals Mechanisms of Ventricular Arrhythmogenesis in Long QT Syndrome Type 8: CACNA1C R858H Mutation Linked to Ventricular Fibrillation. Front Physiol 2017; 8:771. [PMID: 29046645 PMCID: PMC5632762 DOI: 10.3389/fphys.2017.00771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023] Open
Abstract
Functional analysis of the L-type calcium channel has shown that the CACNA1C R858H mutation associated with severe QT interval prolongation may lead to ventricular fibrillation (VF). This study investigated multiple potential mechanisms by which the CACNA1C R858H mutation facilitates and perpetuates VF. The Ten Tusscher-Panfilov (TP06) human ventricular cell models incorporating the experimental data on the kinetic properties of L-type calcium channels were integrated into one-dimensional (1D) fiber, 2D sheet, and 3D ventricular models to investigate the pro-arrhythmic effects of CACNA1C mutations by quantifying changes in intracellular calcium handling, action potential profiles, action potential duration restitution (APDR) curves, dispersion of repolarization (DOR), QT interval and spiral wave dynamics. R858H “mutant” L-type calcium current (ICaL) augmented sarcoplasmic reticulum calcium content, leading to the development of afterdepolarizations at the single cell level and focal activities at the tissue level. It also produced inhomogeneous APD prolongation, causing QT prolongation and repolarization dispersion amplification, rendering R858H “mutant” tissue more vulnerable to the induction of reentry compared with other conditions. In conclusion, altered ICaL due to the CACNA1C R858H mutation increases arrhythmia risk due to afterdepolarizations and increased tissue vulnerability to unidirectional conduction block. However, the observed reentry is not due to afterdepolarizations (not present in our model), but rather to a novel blocking mechanism.
Collapse
Affiliation(s)
- Jieyun Bai
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yashu Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yacong Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Cuiping Liang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Gongning Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Suyu Dong
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yongfeng Yuan
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom.,Space Institute of Southern China, Shenzhen, China
| |
Collapse
|
21
|
Wang S, Li L, Tao R, Gao Y. Ion channelopathies associated genetic variants as the culprit for sudden unexplained death. Forensic Sci Int 2017; 275:128-137. [PMID: 28363160 DOI: 10.1016/j.forsciint.2017.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/23/2017] [Accepted: 03/13/2017] [Indexed: 11/29/2022]
Abstract
Forensic identification of sudden unexplained death (SUD) has always been a ticklish issue because it used to be defined as sudden death without a conclusive diagnosis after autopsy. However, benefiting from the developments in genome research, a growing body of evidence points to the importance of ion channelopathies associated genetic variants in the pathogenesis of SUD. Genetic diagnosis of the deceased is also a new trend in epidemiological studies, for it enables the undertaking for preventive approach in individuals with high risks. In this review, we briefly discuss the molecular structure of ion channels and the role of genetic variants in regulating their functions as well as the diverse mechanisms underlying the ion channelopathies at gene level.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Lijuan Li
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Ruiyang Tao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Yuzhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|