1
|
Khattri S, Kaushik M, Tomar N, Ahmed S, Rana N, Khan M, Singh S, Singh R. Effect of Platelet-Rich Fibrin Coating on Secondary Stability of Dental Implants: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e75166. [PMID: 39759623 PMCID: PMC11699968 DOI: 10.7759/cureus.75166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
A systematic review of the effect of platelet-rich fibrin (PRF) on the secondary stability of delayed dental implants is lacking. This systematic review and meta-analysis aims to evaluate if PRF's application on delayed implant placement enhances secondary stability. A comprehensive search was done on Pubmed, Cochrane Library, Embase, and Scopus databases to retrieve the records. Only randomized controlled trials (RCTs) or controlled clinical trials (CCTs) were included in the review. The outcome was secondary stability values measured in the implant stability quotient (ISQ). The meta-analysis was performed using a random effects model with 95% confidence intervals (CIs). We assessed the certainty of evidence using GRADEpro. We included 12 trials conducted worldwide involving 456 dental implants installed. Six studies showed a high risk of bias, whereas three had a low risk of bias, and three had an unclear risk of bias. One trial did not contribute to meta-analysis. Certainty of evidence was assessed for only one comparison, which reported follow-up at 12 weeks. Implant + PRF versus Implant + no PRF: the evidence for the secondary stability of implant at four weeks (Mean difference (MD) 3.34, 95% CI 2.24 to 4.43; implants = 302; studies = 8; I2 = 0%); at six weeks (MD 2.53, 95% CI 0.85 to 4.20; implants = 146; studies = 3; I2 = 0%) and at ≥12 weeks (MD 3.37, 95% CI 0.69 to 6.06; participants = 162; studies = 4; I2 = 17%) was of low certainty. There is low certainty of evidence (≥12 weeks follow-up) for implant stability by PRF coating during installation to confirm if it can be useful for the clinicians during the delayed dental implant placement. Well-planned RCTs need to be conducted with longer follow-ups of ≥12 weeks to strengthen the evidence.
Collapse
Affiliation(s)
- Shivi Khattri
- Periodontology, Subharti Dental College, Swami Vivekanand Subharti University, Meerut, IND
| | - Mayur Kaushik
- Periodontology, Subharti Dental College, Swami Vivekanand Subharti University, Meerut, IND
| | - Nitin Tomar
- Periodontology, Subharti Dental College, Swami Vivekanand Subharti University, Meerut, IND
| | - Sameer Ahmed
- Periodontology, Subharti Dental College, Swami Vivekanand Subharti University, Meerut, IND
| | - Nazar Rana
- Periodontology, Subharti Dental College, Swami Vivekanand Subharti University, Meerut, IND
| | - Mehvish Khan
- Periodontology, Subharti Dental College, Swami Vivekanand Subharti University, Meerut, IND
| | - Soundarya Singh
- Periodontology, Subharti Dental College, Swami Vivekanand Subharti University, Meerut, IND
| | - Roopse Singh
- Periodontology, Subharti Dental College, Swami Vivekanand Subharti University, Meerut, IND
| |
Collapse
|
2
|
Peev S, Yotsova R, Parushev I. Histomorphometric Analysis of Osseointegrated Intraosseous Dental Implants Using Undecalcified Specimens: A Scoping Review. Biomimetics (Basel) 2024; 9:672. [PMID: 39590244 PMCID: PMC11592138 DOI: 10.3390/biomimetics9110672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/19/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Bone histology and histomorphometry are reliable diagnostic tools for the assessment of the bone-implant interface, material safety and biocompatibility, and tissue response. They allow for the qualitative and quantitative analysis of undecalcified bone specimens. This scoping review aims to identify the most common staining techniques, study models for in vivo experiments, and histomorphometric parameters used for quantitative bone evaluation of osseointegrated dental implants in the last decade. The Web of Science, PubMed, and Scopus databases were searched on 1 July 2024 for relevant articles in English, published in the last ten years, and the data were exported to an MS Excel spreadsheet. A total of 115 studies met the eligibility criteria and were included in the present review. The results indicate that the most common study models are dogs, rabbits, and pigs. Some of the most frequently used methods for the assessment of the bone-implant interface are the Toluidine blue, Stevenel's blue with Van Gieson, and Levai-Laczko stainings. The results from this study demonstrate that the most commonly used histomorphometric parameters in implant dentistry are the bone-to-implant contact (BIC), bone area fraction occupancy (BAFO), bone area (BA), and bone density (BD). This review presents the recent trends in histomorphometric analysis of dental implants and identifies some research gaps that necessitate further research.
Collapse
Affiliation(s)
- Stefan Peev
- Department of Periodontology and Dental Implantology, Faculty of Dental Medicine, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Ralitsa Yotsova
- Department of Oral Surgery, Faculty of Dental Medicine, Medical University of Varna, 9002 Varna, Bulgaria
| | - Ivaylo Parushev
- Department of Clinical Medical Sciences, Faculty of Dental Medicine, Medical University of Varna, 9002 Varna, Bulgaria;
| |
Collapse
|
3
|
Abdulghafor MA, Mahmood MK, Tassery H, Tardivo D, Falguiere A, Lan R. Biomimetic Coatings in Implant Dentistry: A Quick Update. J Funct Biomater 2023; 15:15. [PMID: 38248682 PMCID: PMC10816551 DOI: 10.3390/jfb15010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Biomimetic dental implants are regarded as one of the recent clinical advancements in implant surface modification. Coatings with varying thicknesses and roughness may affect the dental implant surface's chemical inertness, cell adhesion, and antibacterial characteristics. Different surface coatings and mechanical surface changes have been studied to improve osseointegration and decrease peri-implantitis. The surface medication increases surface energy, leading to enhanced cell proliferation and growth factors, and, consequently, to a rise in the osseointegration process. This review provides a comprehensive update on the numerous biomimetic coatings used to improve the surface characteristics of dental implants and their applications in two main categories: coating to improve osseointegration, including the hydroxyapatite layer and nanocomposites, growth factors (BMPs, PDGF, FGF), and extracellular matrix (collagen, elastin, fibronectin, chondroitin sulfate, hyaluronan, and other proteoglycans), and coatings for anti-bacterial performance, covering drug-coated dental implants (antibiotic, statin, and bisphosphonate), antimicrobial peptide coating (GL13K and human beta defensins), polysaccharide antibacterial coatings (natural chitosan and its coupling agents) and metal elements (silver, zinc, and copper).
Collapse
Affiliation(s)
| | - Mohammed Khalid Mahmood
- Faculty of Dentistry, Aix-Marseille University, CNRS, EFS, ADES, 13284 Marseille, France;
- College of Dentistry, The American University of Iraq, Sulaimani 46001, Kurdistan, Iraq
| | | | - Delphine Tardivo
- Faculty of Dentistry, Aix-Marseille University, CNRS, EFS, ADES, 13284 Marseille, France;
| | - Arthur Falguiere
- Oral Surgery Department, Timone Hospital, Aix-Marseille University, APHM, 13284 Marseille, France
| | - Romain Lan
- Oral Surgery Department, Timone Hospital, Aix-Marseille University, APHM, CNRS, EFS, ADES, 13284 Marseille, France;
| |
Collapse
|
4
|
Li D, Tan X, Zheng L, Tang H, Hu S, Zhai Q, Jing X, Liang P, Zhang Y, He Q, Jian G, Fan D, Ji P, Chen T, Zhang H. A Dual-Antioxidative Coating on Transmucosal Component of Implant to Repair Connective Tissue Barrier for Treatment of Peri-Implantitis. Adv Healthc Mater 2023; 12:e2301733. [PMID: 37660274 DOI: 10.1002/adhm.202301733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/10/2023] [Indexed: 09/04/2023]
Abstract
Since the microgap between implant and surrounding connective tissue creates the pass for pathogen invasion, sustained pathological stimuli can accelerate macrophage-mediated inflammation, therefore affecting peri-implant tissue regeneration and aggravate peri-implantitis. As the transmucosal component of implant, the abutment therefore needs to be biofunctionalized to repair the gingival barrier. Here, a mussel-bioinspired implant abutment coating containing tannic acid (TA), cerium and minocycline (TA-Ce-Mino) is reported. TA provides pyrogallol and catechol groups to promote cell adherence. Besides, Ce3+ /Ce4+ conversion exhibits enzyme-mimetic activity to remove reactive oxygen species while generating O2 , therefore promoting anti-inflammatory M2 macrophage polarization to help create a regenerative environment. Minocycline is involved on the TA surface to create local drug storage for responsive antibiosis. Moreover, the underlying therapeutic mechanism is revealed whereby the coating exhibits exogenous antioxidation from the inherent properties of Ce and TA and endogenous antioxidation through mitochondrial homeostasis maintenance and antioxidases promotion. In addition, it stimulates integrin to activate PI3K/Akt and RhoA/ROCK pathways to enhance VEGF-mediated angiogenesis and tissue regeneration. Combining the antibiosis and multidimensional orchestration, TA-Ce-Mino repairs soft tissue barriers and effector cell differentiation, thereby isolating the immune microenvironment from pathogen invasion. Consequently, this study provides critical insight into the design and biological mechanism of abutment surface modification to prevent peri-implantitis.
Collapse
Affiliation(s)
- Dize Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Xi Tan
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Liwen Zheng
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Han Tang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Shanshan Hu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Qiming Zhai
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Xuan Jing
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, P. R. China
| | - Panpan Liang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Yuxin Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Qingqing He
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Guangyu Jian
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Dongqi Fan
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Hongmei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| |
Collapse
|
5
|
Wang Z, Wang J, Wu R, Wei J. Construction of functional surfaces for dental implants to enhance osseointegration. Front Bioeng Biotechnol 2023; 11:1320307. [PMID: 38033823 PMCID: PMC10682203 DOI: 10.3389/fbioe.2023.1320307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Dental implants have been extensively used in patients with defects or loss of dentition. However, the loss or failure of dental implants is still a critical problem in clinic. Therefore, many methods have been designed to enhance the osseointegration between the implants and native bone. Herein, the challenge and healing process of dental implant operation will be briefly introduced. Then, various surface modification methods and emerging biomaterials used to tune the properties of dental implants will be summarized comprehensively.
Collapse
Affiliation(s)
- Zhenshi Wang
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
| | - Jiaolong Wang
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Runfa Wu
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Kligman S, Ren Z, Chung CH, Perillo MA, Chang YC, Koo H, Zheng Z, Li C. The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation. J Clin Med 2021; 10:1641. [PMID: 33921531 PMCID: PMC8070594 DOI: 10.3390/jcm10081641] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Implant surface design has evolved to meet oral rehabilitation challenges in both healthy and compromised bone. For example, to conquer the most common dental implant-related complications, peri-implantitis, and subsequent implant loss, implant surfaces have been modified to introduce desired properties to a dental implant and thus increase the implant success rate and expand their indications. Until now, a diversity of implant surface modifications, including different physical, chemical, and biological techniques, have been applied to a broad range of materials, such as titanium, zirconia, and polyether ether ketone, to achieve these goals. Ideal modifications enhance the interaction between the implant's surface and its surrounding bone which will facilitate osseointegration while minimizing the bacterial colonization to reduce the risk of biofilm formation. This review article aims to comprehensively discuss currently available implant surface modifications commonly used in implantology in terms of their impact on osseointegration and biofilm formation, which is critical for clinicians to choose the most suitable materials to improve the success and survival of implantation.
Collapse
Affiliation(s)
- Stefanie Kligman
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Zhi Ren
- Biofilm Research Laboratories, Department of Orthodontics, Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (Z.R.); (H.K.)
| | - Chun-Hsi Chung
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.-H.C.); (M.A.P.)
| | - Michael Angelo Perillo
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.-H.C.); (M.A.P.)
| | - Yu-Cheng Chang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hyun Koo
- Biofilm Research Laboratories, Department of Orthodontics, Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (Z.R.); (H.K.)
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.-H.C.); (M.A.P.)
| |
Collapse
|
7
|
Kellesarian SV, Malignaggi VR, Kellesarian TV, Bashir Ahmed H, Javed F. Does incorporating collagen and chondroitin sulfate matrix in implant surfaces enhance osseointegration? A systematic review and meta-analysis. Int J Oral Maxillofac Surg 2017; 47:241-251. [PMID: 29096932 DOI: 10.1016/j.ijom.2017.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/27/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022]
Abstract
Implant surface modification has been used to improve osseointegration. However, evidence regarding improved new bone formation (NBF) and osseointegration with the use of collagen-chondroitin sulfate (CS) matrix coated implants remains unclear. The aim of this study was to assess the efficacy of collagen-CS matrix coating on the osseointegration of implants. The focused question was "Does the incorporation of collagen-CS matrix in implant surfaces influence osseointegration?" To answer the question, indexed databases were searched up to July 2017 using various combinations of the key words "collagen", "chondroitin sulfate", "osseointegration", and "implants". The initial literature search identified 497 articles, of which 18 reporting experimental studies fulfilled the inclusion criteria. Thirteen of the studies included (72%) reported that implants coated with a collagen-CS matrix presented higher NBF, bone-to-implant contact, and/or bone volume density. The strength of this observation was supported by meta-analysis results. Nevertheless, the results should be interpreted with caution due to the lack of standardization regarding the dosage formulation of collagen-CS, short-term follow-up, and lack of assessment of confounders. On experimental grounds, the incorporation of collagen-CS matrix into implant surfaces appears to promote osseointegration. From a clinical perspective, the results from animal models support phase I studies in healthy humans.
Collapse
Affiliation(s)
- S V Kellesarian
- Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, Rochester, New York, USA.
| | - V R Malignaggi
- Department of General Dentistry, Dental School, Santa Maria University, Caracas, Venezuela
| | - T V Kellesarian
- Department of General Dentistry, Dental School, Santa Maria University, Caracas, Venezuela; College of Health Sciences, Barry University, Miami Shores, Florida, USA
| | | | - F Javed
- Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, Rochester, New York, USA
| |
Collapse
|
8
|
Bellone G, Vizio B, Scirelli T, Emanuelli G. A Xenogenic Bone Derivative as a Potential Adjuvant for Bone Regeneration and Implant Osseointegration: An In Vitro Study. Tissue Eng Regen Med 2017; 14:243-251. [PMID: 30603481 DOI: 10.1007/s13770-017-0029-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/31/2016] [Accepted: 06/04/2016] [Indexed: 12/18/2022] Open
Abstract
Several clinical conditions may limit the success of bone regeneration and/or implant osseointegration. For this reason, many compounds have been tested for their ability to stimulate this biological process. Synthetic hydroxyapatite (HA), mimicking natural bone hydroxyapatite, and extra-cellular matrix proteins, such as type I collagen, are potential candidates. However, the synthetic origin of HA and the denaturing conditions required for extracting collagen from skin and derma are sources of potential drawbacks. This study examines the in vitro effects of a natural bone derivative (NBD) extracted from equine bone and containing both natural, non-synthetic bone hydroxyapatite and native, non-denatured, type I bone collagen as a possible active compound for stimulating bone regeneration and implant osseointegration. The activity of NBD was tested on bone marrow stromal cells (BMSCs), evaluating their growth/viability by the methylthiazol tetrazolium (MTT) assay and their migration potential by a scratch assay. Moreover, expression of the hyaluronic acid receptor (CD44) and the C-X-C chemokine receptor type 4 (CXCR4, CD184) on the surface of BMSCs was assessed by flow cytometry, and the release of Transforming Growth Factor (TGF)-β, Interleukin (IL)-1α and IL-6 was quantified using an enzyme-linked immunosorbent assay (ELISA). The effect of NBD-coated implants on human osteoblasts was tested by measuring alkaline phosphatase (ALP) activity with the p-nitrophenyl phosphate (pNPP) degradation test. NBD stimulated BMSC growth/viability, migration, CD184 surface expression and the release of TGF-β1. NBD-coated implants increased ALP activity of human osteoblasts. These results indicate that NBD may be an adjuvant to accelerate both bone regeneration and osseointegration.
Collapse
Affiliation(s)
- Graziella Bellone
- Department of Medical Sciences, University of Turin, Via Genova 3, 10126 Turin, Italy
| | - Barbara Vizio
- Department of Medical Sciences, University of Turin, Via Genova 3, 10126 Turin, Italy
| | - Tiziana Scirelli
- Department of Medical Sciences, University of Turin, Via Genova 3, 10126 Turin, Italy
| | - Giorgio Emanuelli
- Department of Medical Sciences, University of Turin, Via Genova 3, 10126 Turin, Italy
| |
Collapse
|
9
|
Bierbaum S, Hintze V, Scharnweber D. 2.8 Artificial Extracellular Matrices to Functionalize Biomaterial Surfaces ☆. COMPREHENSIVE BIOMATERIALS II 2017:147-178. [DOI: 10.1016/b978-0-12-803581-8.10206-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Impact of Dental Implant Surface Modifications on Osseointegration. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6285620. [PMID: 27478833 PMCID: PMC4958483 DOI: 10.1155/2016/6285620] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 05/22/2016] [Accepted: 06/06/2016] [Indexed: 11/18/2022]
Abstract
Objective. The aim of this paper is to review different surface modifications of dental implants and their effect on osseointegration. Common marketed as well as experimental surface modifications are discussed. Discussion. The major challenge for contemporary dental implantologists is to provide oral rehabilitation to patients with healthy bone conditions asking for rapid loading protocols or to patients with quantitatively or qualitatively compromised bone. These charging conditions require advances in implant surface design. The elucidation of bone healing physiology has driven investigators to engineer implant surfaces that closely mimic natural bone characteristics. This paper provides a comprehensive overview of surface modifications that beneficially alter the topography, hydrophilicity, and outer coating of dental implants in order to enhance osseointegration in healthy as well as in compromised bone. In the first part, this paper discusses dental implants that have been successfully used for a number of years focusing on sandblasting, acid-etching, and hydrophilic surface textures. Hereafter, new techniques like Discrete Crystalline Deposition, laser ablation, and surface coatings with proteins, drugs, or growth factors are presented. Conclusion. Major advancements have been made in developing novel surfaces of dental implants. These innovations set the stage for rehabilitating patients with high success and predictable survival rates even in challenging conditions.
Collapse
|