1
|
Wang Y, Wang C, Yang X, Ni K, Jiang L, Xu L, Liu Q, Xu X, Gu X, Liu Y, Ma Z. Inhibition of Cyclophilin A-Metalloproteinase-9 Pathway Alleviates the Development of Neuropathic Pain by Promoting Repair of the Blood-Spinal Cord Barrier. Anesth Analg 2024; 138:1313-1323. [PMID: 38009963 DOI: 10.1213/ane.0000000000006705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
BACKGROUND Dysfunction of the blood-spinal cord barrier (BSCB) contributes to the occurrence and development of neuropathic pain (NP). Previous studies revealed that the activation of cyclophilin A (CypA)-metalloproteinase-9 (MMP9) signaling pathway can disrupt the integrity of the blood-brain barrier (BBB) and aggravate neuroinflammatory responses. However, the roles of CypA-MMP9 signaling pathway on BSCB in NP have not been studied. This study aimed to investigate the effect of CypA on the structure and function of the BSCB and pain behaviors in mice with NP. METHODS We first created the mouse chronic constriction injury (CCI) model, and they were then intraperitoneally injected with the CypA inhibitor cyclosporine A (CsA) or vehicle. Pain behaviors, the structure and function of the BSCB, the involvement of the CypA-MMP9 signaling pathway, microglia activation, and expression levels of proinflammatory factors in mice were examined. RESULTS CCI mice presented mechanical allodynia and thermal hyperalgesia, impaired permeability of the BSCB, downregulated tight junction proteins, activated CypA-MMP9 signaling pathway, microglia activation, and upregulated proinflammatory factors, which were significantly alleviated by inhibition of CypA. CONCLUSIONS Collectively, the CypA-MMP9 signaling pathway is responsible for CCI-induced NP in mice by impairing the structure and function of the BSCB, and activating microglia and inflammatory responses.
Collapse
Affiliation(s)
- Yu Wang
- From the Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chenchen Wang
- From the Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xuli Yang
- From the Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Kun Ni
- From the Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Li Jiang
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Li Xu
- From the Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qi Liu
- From the Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xuan Xu
- From the Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoping Gu
- From the Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yue Liu
- From the Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengliang Ma
- From the Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Fan W, Tang J, Xu H, Huang X, Wu D, Zhang Z. Early diagnosis for the onset of peri-implantitis based on artificial neural network. Open Life Sci 2023; 18:20220691. [PMID: 37671094 PMCID: PMC10476483 DOI: 10.1515/biol-2022-0691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/16/2023] [Accepted: 07/29/2023] [Indexed: 09/07/2023] Open
Abstract
The aim of this study is to construct an artificial neural network (ANN) based on bioinformatic analysis to enable early diagnosis of peri-implantitis (PI). PI-related datasets were retrieved from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and functional enrichment analyses were performed between PI and the control group. Furthermore, the infiltration of 22 immune cells in PI was analyzed using CIBERSORT. Hub genes were identified with random forest (RF) classification. The ANN model was then constructed for early diagnosis of PI. A total of 1,380 DEGs were identified. Enrichment analysis revealed the involvement of neutrophil-mediated immunity and the NF-kappa B signaling pathway in PI. Additionally, higher proportion of naive B cells, activated memory CD4 T cells, activated NK cells, M0 macrophages, M1 macrophages, and neutrophils were observed in the soft tissues surrounding PI. From the RF analysis, 13 hub genes (ST6GALNAC4, MTMR11, SKAP2, AKR1B1, PTGS2, CHP2, CPEB2, SYT17, GRIP1, IL10, RAB8B, ABHD5, and IGSF6) were selected. Subsequently, the ANN model for early diagnosis of PI was constructed with high performance. We identified 13 hub genes and developed an ANN model that accurately enables early diagnosis of PI.
Collapse
Affiliation(s)
- Wanting Fan
- Department of Stomatology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Jianming Tang
- Department of Stomatology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Huixia Xu
- Department of Stomatology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Xilin Huang
- Department of Obstetrics, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Donglei Wu
- Department of Stomatology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Zheng Zhang
- Department of Stomatology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Liu X, Tang Z, Jiang X, Wang T, Zhao L, Xu Z, Liu K. Cyclophilin A/CD147 signaling induces the epithelial-to-mesenchymal transition and renal fibrosis in chronic allograft dysfunction by regulating p38 MAPK signaling. Ren Fail 2022; 44:1585-1594. [PMID: 36203223 PMCID: PMC9553177 DOI: 10.1080/0886022x.2022.2126788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective Our study was designed to explore the role of Cyclophilin A (CyPA)/CD147 signaling in renal allograft fibrosis and chronic allograft dysfunction (CAD). Materials and methods A rat renal transplant model with significant CAD was successfully achieved. Renal allograft tissues and blood samples were collected. Hematoxylin and eosin, Masson’s, and immunohistochemistry staining were performed. Since CD147 is mainly expressed in the renal tubular epithelial cells, human HK-2 cells were used and intervened by specific concentrations of CyPA, and the total protein and mRNA were extracted. Western blot assay and polymerase chain reaction were performed to explore the protein and mRNA expression of CyPA, CD147, and epithelial-to-mesenchymal transition (EMT)-related biomarkers. SiRNA-CD147 and specific inhibitors of p38 MAPK were used to explore the cellular mechanisms involved in the process. Results We have successfully established and validated a 20-week renal transplant CAD model. We observed significant distributed and expressed CyPA and CD147 in the renal allograft fibrotic tissues. We also found a significant expression of CD147 and EMT-related markers in the HK-2 cells stimulated by CyPA. The CD147 siRNA confirmed the previous in vitro results. The selective inhibition of MAPK suggested the notable role of p38 MAPK signaling pathway in the CyP/CD147 signaling involved in renal allograft fibrosis. Conclusions Our study reported the positive relationship of CyPA-CD147 signaling with renal allograft dysfunction. The in vitro study suggested that CyPA-CD147 signaling induce the development of the EMT process by p38 MAPK signaling, thus contributing to renal allograft fibrosis and CAD.
Collapse
Affiliation(s)
- Xuzhong Liu
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Nanjing, Huai'an, China
| | - Zhiwang Tang
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Nanjing, Huai'an, China
| | - Xi Jiang
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Nanjing, Huai'an, China
| | - Tianwei Wang
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Nanjing, Huai'an, China
| | - Lun Zhao
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Nanjing, Huai'an, China
| | - Zongyuan Xu
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Nanjing, Huai'an, China
| | - Kun Liu
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Nanjing, Huai'an, China
| |
Collapse
|
4
|
Solderer A, de Boer M, Wiedemeier DB, Solderer M, Liu CC, Schmidlin PR. Bone defect development in experimental canine peri-implantitis models: a systematic review. Syst Rev 2022; 11:202. [PMID: 36131319 PMCID: PMC9494778 DOI: 10.1186/s13643-022-02075-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To provide a systematic overview of preclinical research regarding bone defect formation around different implant surfaces after ligature-induced peri-implantitis models in dogs. Two focused questions were formulated: 'How much bone loss can be expected after a certain time of ligature induced peri-implantitis?' and 'Do different implant types, dog breeds and study protocols differ in their extent of bone loss?' MATERIALS AND METHODS A systematic literature search was conducted on four databases (MEDLINE, Web of Science, EMBASE and Scopus). Observations, which consisted of bone defects measured directly after ligature removal in canine models, were included and analysed. Two approaches were used to analyse the relatively heterogeneous studies that fulfilled the inclusion criteria. First, separate simple linear regressions were calculated for each study and implant surface, for which observations were available across multiple time points. Second, a linear mixed model was specified for the observations at 12 weeks after ligature initiation, and assessing the potential influencing factors on defect depth was explored using lasso regularisation. RESULTS Thirty-six studies with a total of 1082 implants were included after. Bone loss was determined at different time points, either with clinical measurements radiographically or histologically. Different implant groups [e.g. turned, sand-blasted-acid-etched (SLA), titanium-plasma-sprayed (TPS) and other rough surfaces] were assessed and described in the studies. A mean incremental defect depth increase of 0.08 mm (SD: -0.01-0.28 mm) per week was observed. After 12 weeks, the defect depths ranged between 0.7 and 5 mm. Based on the current data set, implant surface could not be statistically identified as an essential factor in defect depth after 12 weeks of ligature-induced peri-implantitis. CONCLUSION Expectable defect depth after a specific time of ligature-induced peri-implantitis can vary robustly. It is currently impossible to delineate apparent differences in bone loss around different implant surfaces.
Collapse
Affiliation(s)
- A Solderer
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-implant Diseases, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland. .,Private Practice, 39100, Bolzano, Italy.
| | - M de Boer
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-implant Diseases, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - D B Wiedemeier
- Statistical Services, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | | | - C C Liu
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-implant Diseases, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - P R Schmidlin
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-implant Diseases, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland
| |
Collapse
|
5
|
Zhang Q, Xu H, Bai N, Tan F, Xu H, Liu J. Matrix Metalloproteinase 9 is Regulated by LOX-1 and erk1/2 Pathway in Dental Peri-Implantitis. Curr Pharm Biotechnol 2020; 21:862-871. [PMID: 32081107 DOI: 10.2174/1389201021666200221121139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/12/2019] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Dental peri-implantitis, which can be caused by several different microbial factors, is characterized by inflammatory lesions of the surrounding hard and soft tissues of an oral implant. Matrix Metalloproteinase 9 (MMP9) is thought to be involved in the pathogenesis of peri-implantitis. However, the regulatory mechanism of MMP9 in peri-implantitis has not been fully elucidated. In this study, we tried to evaluate the regulatory mechanism of MMP9 in peri-implantitis. METHODS We collected Peri-Implant Crevicular Fluid (PICF) from ten healthy implants and ten periimplantitis patients and compared their expression level of MMP9. We also cultured macrophages from the peripheral blood of healthy volunteers infected by Porphyromonas gingivalis to reveal the regulatory mechanism of MMP9 in peri-implantitis. Western blot, immunofluorescence staining and quantitative Polymerase Chain Reaction (RT-PCR) were used to better characterize the mechanism of MMP9. RESULTS The expression of MMP9 was up-regulated in peri-implantitis patient PICF and P. gingivalis infected human macrophages. LOX-1, not dectin-1, was found to mediate MMP9 expression in human macrophages with P. gingivalis infection. Expression of Erk1/2 was responsible for infection-induced MMP9 expression. Finally, use of a broad-spectrum metalloproteinase inhibitor impaired LOX-1 expression in infected macrophages. CONCLUSION Our results demonstrate that MMP9 is involved in dental peri-implantitis and is regulated by LOX-1 and Erk1/2. This LOX-1/MMP9 signaling pathway may represent a potential drug target for peri-implantitis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Haitao Xu
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Na Bai
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Fei Tan
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Huirong Xu
- Department of Pathology, ZiBo Central Hospital, ZiBo, Shandong 255000, China
| | - Jie Liu
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| |
Collapse
|
6
|
Gegunde S, Alfonso A, Alonso E, Alvariño R, Botana LM. Gracilin-Derivatives as Lead Compounds for Anti-inflammatory Effects. Cell Mol Neurobiol 2020; 40:603-615. [PMID: 31729596 PMCID: PMC11448785 DOI: 10.1007/s10571-019-00758-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/05/2019] [Indexed: 01/23/2023]
Abstract
Gracilins are diterpenes derivative, isolated from the marine sponge Spongionella gracilis. Natural gracilins and synthetic derivatives have shown antioxidant, immunosuppressive, and neuroprotective capacities related to the affinity for cyclophilins. The aim of this work was to study anti-inflammatory and immunosuppressive pathways modulated by gracilin L and two synthetic analogues, compound 1 and 2, on a cellular model of inflammation. In this way, the murine BV2 microglia cell line was used. To carry out the experiments, microglia cells were pre-treated with compounds for 1 h and then stimulated with lipopolysaccharide for 24 h to determine reactive oxygen species production, mitochondrial membrane potential, the release of nitric oxide, interleukin-6 and tumor necrosis factor-α and the expression of Nuclear factor-erythroid 2-related factor 2, Nuclear Factor-κB, the inducible nitric oxide synthase, and the cyclophilin A. Finally, a co-culture of neuron SH-SY5Y and microglia BV2 cells was used to check the neuroprotective effect of these compounds. Cyclosporine A was used as a control of effect. The compounds were able to decrease inflammatory mediators, the expression of inflammatory target proteins as well as they activated anti-oxidative mechanism upon inflammatory conditions. For this reason, natural and synthetic gracilins could be interesting for developing anti-inflammatory drugs.
Collapse
Grants
- 2017 GRC GI-1682 Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- AGL2016-78728-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- ISCIII/PI16/01830 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- RTC-2016-5507-2 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- ITC-20161072 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- 0161-Nanoeaters -1-E-1 European Commission
- Interreg AlertoxNet EAPA-317-2016 European Commission
- Interreg Agritox EAPA-998-2018 European Commission
- 778069-EMERTOX Horizon 2020
Collapse
Affiliation(s)
- Sandra Gegunde
- Pharmacology Department, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Amparo Alfonso
- Pharmacology Department, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - Eva Alonso
- Pharmacology Department, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
- Fundación Instituto de Investigación Sanitaria Santiago de Compostela (FIDIS), Hospital Universitaio Lucus Augusti, 27004, Lugo, Spain
| | - Rebeca Alvariño
- Pharmacology Department, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Luis M Botana
- Pharmacology Department, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
7
|
Q-Switch Nd:YAG Laser-Assisted Elimination of Multi-Species Biofilm on Titanium Surfaces. MATERIALS 2020; 13:ma13071573. [PMID: 32235332 PMCID: PMC7177273 DOI: 10.3390/ma13071573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022]
Abstract
(1) Background: The relatively high prevalence of peri-implantitis (PI) and the lack of a standard method for decontamination of the dental implant surface have pushed us to conduct further research in the field. Bacterial biofilms were found to play a primordial role in the etiology of PI. Therefore, the aim is to evaluate the efficacy of a laser-assisted elimination of biofilm protocol in the removal of a multi-species biofilm on titanium surfaces. (2) Methods: In total, 52 titanium discs (grade 4) were used. The study group consisted of 13 titanium disks contaminated with multi-species biofilms and subsequently irradiated with the laser (T + BF + L). The control groups consisted of the following types of titanium disks: 13 contaminated with multi-species biofilms (T + BF), 13 sterile and irradiated (T + L), 13 sterile and untreated (T). Q-Switch Nd:YAG laser Irradiation parameters were the following: energy density equal to 0.597 J/cm2 per pulse, power equal to 270 milliwatt per pulse, 2.4 mm of spot diameter, and 10 Hz repetition rate for pulse duration of six nanoseconds (ns). The laser irradiation was made during 2 s of total time in non-contact and at 0.5 mm away from the titanium disc surface. After treatment, presence of biofilms on the disks was evaluated by staining with crystal violet (CV), which was measured as optical density at six hundred thirty nm, and statistical analyses were done. (3) Results: the optical density values were 0.004 ± 0.004 for the study group T + BF + L, 0.120 ± 0.039 for group T + BF, 0.006 ± 0.003 for group T + L, and 0.007 ± 0.007 for group T. For the study group, laser treatment resulted in a total elimination of the biofilm, with mean values statistically significantly lower than those of contaminated titanium surfaces and similar to those of sterile titanium surfaces. (4) Conclusions: Our irradiation protocol provided a significant elimination of the multi-species biofilm on titanium surfaces. Laser treated titanium surfaces were biofilm-free, similar to the sterile ones.
Collapse
|