1
|
Sun X, Heng BC, Zhang X. Oral hard tissue defect models for evaluating the regenerative efficacy of implant materials. MEDCOMM – BIOMATERIALS AND APPLICATIONS 2023; 2. [DOI: 10.1002/mba2.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/13/2023] [Indexed: 01/05/2025]
Abstract
AbstractOral hard tissue defects are common concomitant symptoms of oral diseases, which have poor prognosis and often exert detrimental effects on the physical and mental health of patients. Implant materials can accelerate the regeneration of oral hard tissue defects (such as periodontal defects, alveolar bone defects, maxilla bone defects, mandible bone defects, alveolar ridge expansion, and site preservation), but their regenerative efficacy and biocompatibility need to be preclinically validated in vivo with animal‐based oral hard tissue defect models. The choice of oral hard tissue defect model depends on the regenerative effect and intended application of the tested implant material. At the same time, factors that need to be considered include techniques for constructing the particular defect model, the scaffold/graft material used, the availability of animal model evaluation techniques and instrumentation, as well as costs and time constraints. In this article, we summarize the common oral hard tissue defect models in various animal species (such as periodontal model, jaw defect model, and implantation defect model) that can be used to evaluate the regenerative efficacy and biocompatibility of implant materials.
Collapse
Affiliation(s)
- Xiaowen Sun
- Department of Dental Materials & Dental Medical Devices Testing Center Peking University School and Hospital of Stomatology Beijing People's Republic of China
| | - Boon Chin Heng
- Central Laboratory Peking University School and Hospital of Stomatology Beijing People's Republic of China
- School of Medical and Life Sciences Sunway University Darul Ehsan Selangor Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center Peking University School and Hospital of Stomatology Beijing People's Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing People's Republic of China
| |
Collapse
|
2
|
Gadzhiev NY, Kuznetsova VS, Vasilyev AV, Kulakov AA, Losev FF. [Models of bone defects in rabbits used to evaluate the bone graft materials efficacy]. STOMATOLOGIIA 2023; 102:55-60. [PMID: 38096396 DOI: 10.17116/stomat202310206255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The review deals with the main types of experimental models of bone defects of the skull in rabbits. The information about the types of critical defects, methods of their modeling and the possibilities of application of the described models in the studies of bone graft materials in dentistry and maxillofacial surgery is systematized.
Collapse
Affiliation(s)
- N Yu Gadzhiev
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| | - V S Kuznetsova
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
- Research Centre for Medical Genetics, Moscow, Russia
| | - A V Vasilyev
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
- Research Centre for Medical Genetics, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - A A Kulakov
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| | - F F Losev
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
3
|
Nanostructured Zn-Substituted Monetite Based Material Induces Higher Bone Regeneration Than Anorganic Bovine Bone and β-Tricalcium Phosphate in Vertical Augmentation Model in Rabbit Calvaria. NANOMATERIALS 2021; 12:nano12010143. [PMID: 35010093 PMCID: PMC8746457 DOI: 10.3390/nano12010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022]
Abstract
The capacity of a nanostructured multicomponent material composed of Zn-substituted monetite, amorphous calcium phosphate, hydroxyapatite and silica gel (MSi) to promote vertical bone augmentation was compared with anorganic bovine bone (ABB) and synthetic β-tricalcium phosphate (β-TCP). The relation between biological behavior and physicochemical properties of the materials was also studied. The in vivo study was conducted in a vertical bone augmentation model in rabbit calvaria for 10 weeks. Significant differences in the biological behavior of the materials were observed. MSi showed significantly higher bone regeneration (39%) than ABB and β-TCP (24%). The filled cylinder volume was similar in MSi (92%) and ABB (91%) and significantly lower in β-TCP (81%) implants. In addition, β-TCP showed the highest amount of non-osteointegrated particles (17%). MSi was superior to the control materials because it maintains the volume of the defect almost full, with the highest bone formation, the lowest number of remaining particles, which are almost fully osteointegrated and having the lowest amount of connective tissue. Besides, the bone formed was mature, with broad trabeculae, high vascularization and osteogenic activity. MSi resorbs gradually over time with an evident increment of the porosity and simultaneous colonization for vascularized new bone. In addition, the osteoinductive behavior of MSi material was evidenced.
Collapse
|
4
|
Saoud K, Brad B, Alkhouli M. Overall bone gaining after using calcium sulfate bone graft simultaneously to dental implantation. JOURNAL OF ORAL MEDICINE AND ORAL SURGERY 2021. [DOI: 10.1051/mbcb/2021011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Objectives: this study was carried out to evaluate the gaining occurring in the bone gaining after the simultaneous grafting with calcium sulfate around dental implants. Materials and methods: 24 implantation sites in the anterior area of the maxilla were included in this study. Dental implants were inserted, bone grafting was done simultaneously and post evaluation of the overall bone gaining 6 months after the grafting process (T2 time) was done to study the changes. Results: Paired Samples T-Test revealed a significant difference between the three time points (before the implantation, the day after it, six months later) (P-value = 0.000) at the confidence level of 95%. Furthermore, two-way comparisons between the three follow-ups was done to determine where the difference was. The test showed that there is a significant difference (P-value < 0.05) between all time points. by doing two-way comparisons between the three follow-ups, it was shown that the significant difference (P-value < 0.05) was in each comparison. Conclusion: We conclude within the limits of this study that an adequate amount of bone gain was found 6 months after the bone grafting process.
Collapse
|
5
|
Grego T, Jurković L, Lyons DM, Kralj D, Maltar-Strmečki N. The influence of the saline and artificial saliva on gamma induced radical concentration in dental bone graft materials based on calcium sulfate studied by EPR spectroscopy. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.109138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
de Moura NK, Martins EF, Oliveira RLMS, de Brito Siqueira IAW, Machado JPB, Esposito E, Amaral SS, de Vasconcellos LMR, Passador FR, de Sousa Trichês E. Synergistic effect of adding bioglass and carbon nanotubes on poly (lactic acid) porous membranes for guided bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111327. [PMID: 32919681 DOI: 10.1016/j.msec.2020.111327] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022]
Abstract
Polymer membranes have been widely used in guided bone regeneration (GBR), especially when it comes to their use in dentistry. Poly (lactic acid) (PLA) have good mechanical properties such as flexibility, which allows the material to be moldable and also has biocompatibility and biodegradation. Besides that, bioglass (BG) incorporated into the polymer matrix can promote osteoinduction properties and osteoconduction properties to the polymer-ceramic biocomposite. The membranes are also required to exhibit antimicrobial activity to prevent or control the proliferation of pathogenic microorganisms, and the addition of carbon nanotubes (CNT) can assist in this property. The porous membranes of PLA with the addition of different contents of BG and CNT were obtained by solvent casting in controlled humidity method, and the synergistic effect of the addition of both fillers were investigated. The membranes showed pores (3-11 μm) on their surface. The addition of 5 wt% BG causes an increase in the surface porosity and bioactivity properties of the PLA. The agar diffusion test showed antimicrobial activity in the membranes with addition of CNT. In vitro results showed that the porous membranes were not cytotoxic and allowed cell activity and differentiation. Thus, BG collaborated to increase biological activity while CNT contributed to microbial activity, creating a synergistic effect on PLA porous membranes, being this effect more evident for PLA/5BG/1.0CNT. These results indicated a promising use of this new biomaterial for the production of porous membranes for GBR.
Collapse
Affiliation(s)
- Nayara Koba de Moura
- Federal University of São Paulo (UNIFESP), 330 Talim St, 12231-280 São José dos Campos, SP, Brazil
| | - Eduardo Ferreira Martins
- Federal University of São Paulo (UNIFESP), 330 Talim St, 12231-280 São José dos Campos, SP, Brazil
| | | | | | - João Paulo Barros Machado
- National Institute for Space Research (INPE), 1758 dos Astronautas Avenue, 12227-010 São José dos Campos, SP, Brazil
| | - Elisa Esposito
- Federal University of São Paulo (UNIFESP), 330 Talim St, 12231-280 São José dos Campos, SP, Brazil
| | - Suelen Simões Amaral
- São Paulo State University (UNESP), Institute of Science and Technology, 777 Eng. Francisco José Longo Avenue, 12245-000 São José dos Campos, SP, Brazil
| | - Luana Marotta Reis de Vasconcellos
- São Paulo State University (UNESP), Institute of Science and Technology, 777 Eng. Francisco José Longo Avenue, 12245-000 São José dos Campos, SP, Brazil
| | - Fabio Roberto Passador
- Federal University of São Paulo (UNIFESP), 330 Talim St, 12231-280 São José dos Campos, SP, Brazil
| | | |
Collapse
|
7
|
Osteogenic Potential of Bovine Bone Graft in Combination with Laser Photobiomodulation: An Ex Vivo Demonstrative Study in Wistar Rats by Cross-Linked Studies Based on Synchrotron Microtomography and Histology. Int J Mol Sci 2020; 21:ijms21030778. [PMID: 31991756 PMCID: PMC7037661 DOI: 10.3390/ijms21030778] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Alveolar bone defects are usually the main concern when planning implant treatments for the appropriate oral rehabilitation of patients. To improve local conditions and achieve implant treatments, there are several methods used for increasing bone volume, among which one of the most successful, versatile, and effective is considered to be guided bone regeneration. The aim of this demonstrative study was to propose an innovative analysis protocol for the evaluation of the effect of photobiomodulation on the bone regeneration process, using rat calvarial defects of 5 mm in diameter, filled with xenograft, covered with collagen membrane, and then exposed to laser radiation. METHODS The animals were sacrificed at different points in time (i.e., after 14, 21, and 30 days). Samples of identical dimensions were harvested in order to compare the results obtained after different periods of healing. The analysis was performed by cross-linking the information obtained using histology and high-resolution synchrotron-based tomography on the same samples. A comparison was made with both the negative control (NC) group (with a bone defect which was left for spontaneous healing), and the positive control (PC) group (in which the bone defects were filled with xenografts and collagen membrane without receiving laser treatment). RESULTS We demonstrated that using photobiomodulation provides a better healing effect than when receiving only the support of the biomaterial. This effect has been evident for short times treatments, i.e., during the first 14 days after surgery. CONCLUSION The proposed analysis protocol was effective in detecting the presence of higher quantities of bone volumes under remodeling after photobiomodulation with respect to the exclusive bone regeneration guided by the xenograft.
Collapse
|
8
|
Lanka M, Damian D, Edyta RW, Gregori K. The use of biphasic calcium sulfate (Bond Apatite ®) for surgical treatment of osseous defects resulting from radicular cysts – Clinical study of 6 months follow-up. JOURNAL OF THE INTERNATIONAL CLINICAL DENTAL RESEARCH ORGANIZATION 2020. [DOI: 10.4103/jicdro.jicdro_16_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Wang H, Wang H, Li X, Zhang Z, Zhao X, Wang C, Wei F. MicroRNA-21 promotes bone reconstruction in maxillary bone defects. J Oral Rehabil 2019; 47 Suppl 1:4-11. [PMID: 31556140 DOI: 10.1111/joor.12896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Bone reconstruction of the maxillary bone defects is an urgent issue due to its functional and aesthetic influence. MicroRNAs (miRNAs) are a class of non-coding RNAs that function in diverse biological and pathological processes. Recently, microRNA-21 (miR-21) was reported to play significant roles in bone formation, suggesting that miR-21 can be novel biomarker and therapeutic target for bone remodelling and skeletal diseases. However, the role of miR-21 in maxillary bone defects remains unclear. OBJECTIVE AND METHODS This study aimed to investigate the effect of miR-21 on the bone reconstruction by inducing maxillary bone defects in wild-type (WT) and miR-21 knockout (miR-21-KO) mice and explore these mice as maxillary bone defect models. RESULTS Micro-computed tomography (micro-CT) and histochemistry showed that the miR-21-KO mice had reduced bone reformation ability compared with the WT mice. The expression levels of alkaline phosphatase (ALP) and osteocalcin (OCN) were dramatically decreased in the miR-21-KO mice. In addition, injection of miR-21 agomir intra-peritoneally into miR-21-KO mice (miR-21-KO+ agomir) following the maxillary bone defects surgery displayed a significantly enhanced bone formation -promoting ability, which indicated that miR-21 agomir could ameliorate maxillary bone defects in miR-21-KO mice in vivo. Furthermore, immunohistochemistry suggested that ALP and OCN expressions were prominently increased in miR-21-KO+ agomir mice. CONCLUSION These findings demonstrated that miR-21 deficiency impaired bone reformation and miR-21 contributed to the bone reconstruction of the maxillary bone defects. The evidence also supported the use of WT and miR-21-KO mice as maxillary bone defect models for further research.
Collapse
Affiliation(s)
- Hong Wang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hong Wang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xiaoyu Li
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zijie Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xiaolu Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Chunling Wang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
10
|
Novel non-resorbable polymeric-nanostructured scaffolds for guided bone regeneration. Clin Oral Investig 2019; 24:2037-2049. [PMID: 31493213 DOI: 10.1007/s00784-019-03068-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the bone-regeneration efficiency of novel polymeric nanostructured membranes and the effect of zinc, calcium, titanium, and bone morpho-protein loading on membranes, through an in vivo rabbit model. MATERIAL AND METHODS Nanostructured membranes of methylmethacrylate were loaded with zinc, calcium, TiO2 nanoparticles, and bone-morphogenetic protein (BMP). These membranes covered the bone defects prepared on the skulls of six rabbits. Animals were sacrificed 6 weeks after surgery. Micro computed tomography was used to evaluate bone architecture through BoneJ pluging and ImageJ script. Three histological processing of samples, including von Kossa silver nitrate, toluidine blue, and fluorescence by the deposition of calcein were utilized. RESULTS Zn-membranes (Zn-Ms) promoted the highest amount of new bone and higher bone perimeter than both unloaded and Ti-membranes (Ti-Ms). Ca-membranes (Ca-Ms) attained higher osteoid perimeter and bone perimeter than Zn-Ms. The skeleton analysis showed that Zn-Ms produced more branches and junctions at the trabecular bone than BMP-loaded membranes (BMP-Ms). Samples treated with Ti-Ms showed less bone formation and bony bridging processes. Both Zn-Ms and Ca-Ms achieved higher number of osteoblasts than the control group. BMP-Ms and Ca-Ms originated higher number of blood vessels than Ti-Ms and control group. CONCLUSIONS Zn incorporation in novel nanostructured membranes provided the highest regenerative efficiency for bone healing at the rabbit calvarial defects. CLINICAL RELEVANCE Zn-Ms promoted osteogenesis and enhanced biological activity, as mineralized and osteoid new bone with multiple interconnected ossified trabeculae appeared in close contact with the membrane.
Collapse
|
11
|
Cao YB, Liu C, Pan WL, Tu Y, Li CJ, Hua CG. [Research progress on the modification of guided bone regeneration membranes]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:325-329. [PMID: 31218871 DOI: 10.7518/hxkq.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Guided bone regeneration (GBR) is an important technique to solve bone defect problems. In this technique, GBR barrier membranes play an irreplaceable role. GBR membranes can act as a barrier protecting fibroblasts from bone defects and promote osteoblast adhesion and proliferation, leading to bone regeneration. GBR barrier membranes should be enhanced because of the disadvantages of collagen membranes, which are extensively applied to the field of GBR. Therefore, various efforts have been devoted to modifying the antibacterial and osteogenic properties of GBR barrier membranes and developing novel materials. This article reviews the research advancements on the modification of GBR barrier membranes and discover future directions for the development of GBR barrier membranes to provide a reference for bone tissue engi-neering and repair.
Collapse
Affiliation(s)
- Yu-Bin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chang Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei-Lin Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuan Tu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Evidence-based Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Cheng-Ge Hua
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Evidence-based Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Fernández-Bodereau E, Dedossi G, Ortega Asencio V, Fernández-Domínguez M, Gehrke SA, Aragoneses JM, Calvo-Guirado JL. Comparison of Different Bone Filling Materials and Resorbable Membranes by Means of Micro-Tomography. A Preliminary Study in Rabbits. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1197. [PMID: 31013766 PMCID: PMC6514859 DOI: 10.3390/ma12081197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 11/16/2022]
Abstract
The purpose of this work was to evaluate the behavior of different membranes and bone filling materials used to fill critical defects in rabbit calvaria. Four defects were prepared in the cranial calvaria of female rabbits. They were randomly divided into three subgroups according to the type of barrier membrane to be used. Four animals carried cross-linked bovine collagen membranes (Mem-Lok, Bio-Horizons, Birmingham, AL, USA)), four human fascia lata membranes (Tissue, Inbiomed SA, Córdoba, Argentina) and four human chorioamniotic membranes (Tissue. Inbiomed SA, Córdoba, Argentina). The defects were filled with the deproteinized bovine bone particulate Bio-Oss® (Geistlich-Pharma AG, Wolhusen, Switzerland), with particulate human hydroxyapatite MinerOss® (Bio-Horizons, Birmingham, AL, USA), with particulate dental material (Tissue Bank Foundation, Inbiomed S.A., Córdoba, Argentina), and the last one was left without the addition of filler material. In the first group of four specimens, a resorbable cross-linked bovine collagen membrane was placed over the skull and defects, without additional fixing. In the second group, a human fascia lata membrane was placed, without additional fixing. In the third group, a human chorioamniotic membrane was placed, without additional fixing. The animals were sacrificed at 4 and 8 weeks. The highest percentages of relative radiological density (average) were recorded considering the amnio-chorionic membranes (83.63%) followed by collagen (81.44%) and finally the fascia lata membranes (80.63%), but the differences were not statistically significant (p > 0.05). The sites grafted with a decellularized tooth (96.83%) and Bio-Oss (88.42%), recorded the highest percentages of radiological density but did not differ significantly from each other (subset 2). The three membranes used did not show statistical differences between them, in any of the two time periods used. There were statistical differences between the filling materials evidencing the presence of a large quantity of calcified material in the defects treated with particulate tooth and deproteinized bovine bone and while smaller amounts of calcified material were registered in the case of defects treated with human hydroxyapatite and those that were not treated.
Collapse
Affiliation(s)
| | - Guillermo Dedossi
- Department of Prothodontics, Universidad Nacional de Córdoba, Córdoba 5100, Argentine.
| | | | | | | | - Juan Manuel Aragoneses
- Department of Dental Research in Universidad Federico Henriquez y Carvajal (UFHEC), Santo Domingo 10107, Dominican Republic.
| | - José Luis Calvo-Guirado
- Faculty of Health Sciences, Universidad Católica San Antonio de Murcia (UCAM), 30107 Murcia, Spain.
| |
Collapse
|
13
|
Gavazzoni A, Filho LI, Hernandes L. Analysis of bone formation and membrane resorption in guided bone regeneration using deproteinized bovine bone mineral versus calcium sulfate. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:167. [PMID: 30392111 DOI: 10.1007/s10856-018-6167-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Guided Bone Regeneration (GBR) is a technique based on the use of a physical barrier that isolates the region of bone regeneration from adjacent tissues. The objective of this study was to compare GBR, adopting a critical-size defect model in rat calvaria and using collagen membrane separately combined with two filling materials, each having different resorption rates. A circular defect 8 mm in diameter was made in the calvaria of Wistar rats. The defects were then filled with calcium sulfate (CaS group) or deproteinized bovine bone mineral (DBBM group) and covered by resorbable collagen membrane. The animals were killed 15, 30, 45 and 60 days after the surgical procedure. Samples were collected, fixed in 4% paraformaldehyde and processed for paraffin embedding. The resultant sections were stained with H&E for histological and histomorphometric study. For the histomorphometric study, the area of membrane was quantified along with the amount of bone formed in the region of the membrane. Calcium sulfate was reabsorbed more rapidly compared to DBBM. The CaS group had the highest percentages of remaining membrane at 15, 30, 45 and 60 days, compared to the DBBM group. The DBBM group had the highest amount of new bone at 45 and 60 days compared to the CaS group. Based on these results, it was concluded that the type of filling material may influence both the resorption of collagen membrane and amount of bone formed.
Collapse
Affiliation(s)
| | - Liogi Iwaki Filho
- Department of Dentistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Luzmarina Hernandes
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
14
|
Hao F, Qin L, Liu J, Chang J, Huan Z, Wu L. Assessment of calcium sulfate hemihydrate-Tricalcium silicate composite for bone healing in a rabbit femoral condyle model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 88:53-60. [PMID: 29636138 DOI: 10.1016/j.msec.2018.02.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/24/2017] [Accepted: 02/28/2018] [Indexed: 11/26/2022]
Abstract
Calcium sulfate or plaster of Paris (POP) is considered as a bone cement with a fast degradation rate, which frequently makes it resorb before the bone defect area is completely filled by new bone. The incorporation of tricalcium silicate (C3S) into POP cement has been proven as a feasible approach to reduce the in vitro degradation rate and improve the in vitro bioactivity of the material. However, the in vivo performance of the POP/C3S composite cement is still unclear. Therefore, the aim of the present study is to assess the biodegradability and osteogenesis of POP/C3S composite cement in comparison with those of POP bone cement. To carry out the in vivo evaluation, POP and POP/C3S cements were implanted into a femoral condyle defect model in rabbits (5 mm diameter × 10 mm length) for 4, 8, and 12 weeks duration. The area of the remaining cement and new bone regeneration in bone defect were investigated and quantitatively measured using radiography, micro-computed tomography, and histological staining. For both cements, no sign of inflammation was observed. POP cement was completely degraded at the 8th week of post-implantation. By contrast, only approximately 50% by volume of POP/C3S composite cement degraded at the 12th week, which allowed a long-term framework for new bone formation. The osteogenic ability of POP/C3S composite cement was significantly superior to that of POP as indicated by the higher mineralization rate and maturity of the newly formed bone around the composite cement. In summary, our findings demonstrated that the in vivo degradation behaviors and osteogenic ability of POP cement could be improved by incorporating C3S in vivo, suggesting that POP/C3S composite cement has potential as a biodegradable cement for bone repair.
Collapse
Affiliation(s)
- Fengyu Hao
- School of Stomatology, China Medical University, Shenyang 110001, PR China
| | - Limei Qin
- School of Stomatology, China Medical University, Shenyang 110001, PR China
| | - Jingdong Liu
- School of Stomatology, China Medical University, Shenyang 110001, PR China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China.
| | - Lin Wu
- School of Stomatology, China Medical University, Shenyang 110001, PR China.
| |
Collapse
|
15
|
Novel microinjector for carrying bone substitutes for bone regeneration in periodontal diseases. J Formos Med Assoc 2015; 115:45-50. [PMID: 26071794 DOI: 10.1016/j.jfma.2014.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/08/2014] [Accepted: 10/15/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND/PURPOSE Traditionally, guide bone regeneration (GBR) was a widely used method for repairing bone lost from periodontal disease. There were some disadvantages associated with the GBR method, such as the need for a stable barrier membrane and a new creative cavity during the surgical process. To address these disadvantages, the purpose of this study was to evaluate a novel microinjector developed for dental applications. The microinjector was designed to carry bone graft substitutes to restore bone defects for bone regeneration in periodontal diseases. The device would be used to replace the GBR method. METHODS In this study, the injected force and ejected volume of substitutes (including air, water, and ethanol) were defined by Hooke's law (n = 3). The optimal particle size of bone graft substitutes was determined by measuring the recycle ratio of bone graft substitutes from the microinjector (n = 3). Furthermore, a novel agarose gel model was used to evaluate the feasibility of the microinjector. RESULTS The current study found that the injected force was less than 0.4 N for obtaining the ejected volume of approximately 2 mL, and when the particle size of tricalcium phosphate (TCP) was smaller than 0.5 mm, 80% TCP could be ejected from the microinjector. Furthermore, by using an agarose model to simulate the periodontal soft tissue, it was also found that bone graft substitutes could be easily injected into the gel. CONCLUSION The results confirmed the feasibility of this novel microinjector for dental applications to carry bone graft substitutes for the restoration of bone defects of periodontal disease.
Collapse
|