1
|
Yang Q, Li Y, Wan R, Dong L, He A, Zuo D, Dai Z. Multilayer Gelatin-Supported BMP-9 Coating Promotes Osteointegration and Neo-Bone Formation at the n-CDHA/PAA Composite Biomaterial-Bone Interface. FRONT BIOSCI-LANDMRK 2024; 29:326. [PMID: 39344336 DOI: 10.31083/j.fbl2909326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The development of biomaterials capable of accelerating bone wound repair is a critical focus in bone tissue engineering. This study aims to evaluate the osteointegration and bone regeneration potential of a novel multilayer gelatin-supported Bone Morphogenetic Protein 9 (BMP-9) coated nano-calcium-deficient hydroxyapatite/poly-amino acid (n-CDHA/PAA) composite biomaterials, focusing on the material-bone interface, and putting forward a new direction for the research on the interface between the coating material and bone. METHODS The BMP-9 recombinant adenovirus (Adenovirus (Ad)-BMP-9/Bone Marrow Mesenchymal Stem Cells (BMSc)) was produced by transfecting BMSc and supported using gelatin (Ad-BMP-9/BMSc/Gelatin (GT). Multilayer Ad-BMP-9/BMSc/GT coated nano-calcium deficient hydroxyapatite/polyamino acid (n-CDHA/PAA) composite biomaterials were then prepared and co-cultured with MG63 cells for 10 days, with biocompatibility assessed through microscopy, Cell Counting Kit-8 (CCK-8), and alkaline phosphatase (ALP) assays. Subsequently, multilayer Ad-BMP-9/BMSc/GT coated n-CDHA/PAA composite biomaterial screws were fabricated, and the adhesion of the coating to the substrate was observed using scanning electron microscopy (SEM). In vivo studies were conducted using a New Zealand White rabbit intercondylar femoral fracture model. The experimental group was fixed with screws featuring multilayer Ad-BMP-9/BMSc/GT coatings, while the control groups used medical metal screws and n-CDHA/PAA composite biomaterial screws. Fracture healing was monitored at 1, 4, 12, and 24 weeks, respectively, using X-ray observation, Micro-CT imaging, and SEM. Integration at the material-bone interface and the condition of neo-tissue were assessed through these imaging techniques. RESULTS The Ad-BMP-9/GT coating significantly enhanced MG63 cell adhesion, proliferation, and differentiation, while increasing BMP-9 expression in vitro. In vivo studies using a rabbit femoral fracture model confirmed the biocompatibility and osteointegration potential of the multilayer Ad-BMP-9/BMSc/GT coated n-CDHA/PAA composite biomaterial screws. Compared to control groups (medical metal screws and n-CDHA/PAA composite biomaterial screws), this material demonstrated faster fracture healing, stronger osteointegration, and facilitated new bone tissue formation with increased calcium deposition at the material-bone interface. CONCLUSION The multilayer GT-supported BMP-9 coated n-CDHA/PAA composite biomaterials have demonstrated favorable osteogenic cell interface performance, both in vitro and in vivo. This study provides a foundation for developing innovative bone repair materials, holding promise for significant advancements in clinical applications.
Collapse
Affiliation(s)
- Qiming Yang
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, 400021 Chongqing, China
| | - Yue Li
- Department of Clinical Laboratory, the Second Affiliated Hospital, Chongqing Medical University, 400000 Chongqing, China
| | - Ruijie Wan
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, 400021 Chongqing, China
| | - Lujue Dong
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, 400021 Chongqing, China
| | - An He
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Deyu Zuo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing Traditional Chinese Medicine Hospital, 400021 Chongqing, China
- Chongqing Precision Medical Industry Technology Research Institute, 400000 Chongqing, China
| | - Zhenyu Dai
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, 400021 Chongqing, China
| |
Collapse
|
2
|
Chen ST, Ran F, Shi WW, Liu CK, Wang PC, Luo HN, Yang ZM. Tryptophan in the mouse diet is essential for embryo implantation and decidualization. Front Endocrinol (Lausanne) 2024; 15:1356914. [PMID: 38752181 PMCID: PMC11094255 DOI: 10.3389/fendo.2024.1356914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Nutritional deficiency occurs frequently during pregnancy and breastfeeding. Tryptophan (Trp), an essential amino acid which is critical for protein synthesis, serves as the precursor for serotonin, melatonin, and kynurenine (Kyn). The imbalance between serotonin and kynurenine pathways in Trp metabolism is closely related to inflammation and depression. This study assessed the effects of Trp deficiency on mouse early pregnancy. Methods Embryo implantation and decidualization were analyzed after female mice had been fed diets containing 0.2% Trp (for the control group), 0.062% Trp (for the low Trp group) and 0% Trp (for the Trp-free group) for two months. The uteri of the mice were collected on days 4, 5, and 8 of pregnancy for further analysis. Results On day 8 of pregnancy, the number of implantation sites were found to be similar between the control and the low Trp groups. However, no implantation sites were detected in the Trp-free group. On day 5 of pregnancy, plane polarity- and decidualization-related molecules showed abnormal expression pattern in the Trp-free group. On day 4 of pregnancy, there was no significant difference in uterine receptivity molecules between the low-Trp group and the control group, but uterine receptivity was abnormal in the Trp-free group. At implantation sites of the Trp-free group, IDO and AHR levels were markedly elevated. This potentially increased levels of Kyn, 2-hydroxy estradiol, and 4-hydroxy estradiol to affect decidualization. Conclusions Trp-free diet may impair decidualization via the IDO-KYN-AHR pathway.
Collapse
Affiliation(s)
- Si-Ting Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, China
| | - Feng Ran
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, China
| | - Wen-Wen Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Cheng-Kan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peng-Chao Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Hui-Na Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Seong CH, Chiba N, Fredy M, Kusuyama J, Ishihata K, Kibe T, Amir MS, Tada R, Ohnishi T, Nakamura N, Matsuguchi T. Early induction of Hes1 by bone morphogenetic protein 9 plays a regulatory role in osteoblastic differentiation of a mesenchymal stem cell line. J Cell Biochem 2023; 124:1366-1378. [PMID: 37565579 DOI: 10.1002/jcb.30452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Bone morphogenic protein 9 (BMP9) is one of the most potent inducers of osteogenic differentiation among the 14 BMP members, but its mechanism of action has not been fully demonstrated. Hes1 is a transcriptional regulator with basic helix-loop-helix (bHLH) domain and is a well-known Notch effector. In this study, we investigated the functional roles of early induction of Hes1 by BMP9 in a mouse mesenchymal stem cell line, ST2. Hes1 mRNA was transiently and periodically induced by BMP9 in ST2, which was inhibited by BMP signal inhibitors but not by Notch inhibitor. Interestingly, Hes1 knockdown in ST2 by siRNA increased the expression of osteogenic differentiation markers such as Sp7 and Ibsp and matrix mineralization in comparison with control siRNA transfected ST2. In contrast, forced expression of Hes1 by using the Tet-On system suppressed the expression of osteogenic markers and matrix mineralization by BMP9. We also found that the early induction of Hes1 by BMP9 suppressed the expression of Alk1, an essential receptor for BMP9. In conclusion, BMP9 rapidly induces the expression of Hes1 via the SMAD pathway in ST2 cells, which plays a negative regulatory role in osteogenic differentiation of mesenchymal stem cells induced by BMP9.
Collapse
Affiliation(s)
- Chang-Hwan Seong
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mardiyantoro Fredy
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Airlangga University, Surabaya, Indonesia
| | - Joji Kusuyama
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Brawijaya University, Malang, Indonesia
| | - Kiyohide Ishihata
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Toshiro Kibe
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Muhammad Subhan Amir
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Biosignals and Inheritance, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryohei Tada
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Norifumi Nakamura
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
4
|
Gao X, Hwang MP, Wright N, Lu A, Ruzbarsky JJ, Huard M, Cheng H, Mullen M, Ravuri S, Wang B, Wang Y, Huard J. The use of heparin/polycation coacervate sustain release system to compare the bone regenerative potentials of 5 BMPs using a critical sized calvarial bone defect model. Biomaterials 2022; 288:121708. [PMID: 36031459 PMCID: PMC10129760 DOI: 10.1016/j.biomaterials.2022.121708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/01/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022]
Abstract
Nonunion following bone fracture and segmental bone defects are challenging clinical conditions. To combat this clinical dilemma, development of new bone tissue engineering therapies using biocompatible materials to deliver bone growth factors is desirable. This aim of this study is to use a heparin/polycation coacervate sustained-release platform to compare 5 bone morphogenetic proteins (BMPs) for promoting bone defect healing in a critical sized calvarial defect model. The in vitro 3D osteogenic pellet cultures assays demonstrated that BMPs 2, 4, 6, 7 and 9 all enhanced mineralization in vitro compared to the control group. BMP2 resulted in higher mineralized volume than BMP4 and BMP6. All BMPs and the control group activated the pSMAD5 signaling pathway and expressed osterix (OSX). The binding of BMP2 with coacervate significantly increased the coacervate average particle size. BMP2, 4, 6, & 7 bound to coacervate significantly increased the Zeta potential of the coacervate while BMP9 binding showed insignificant increase. Furthermore, using a monolayer culture osteogenic assay, it was found that hMDSCs cultured in the coacervate BMP2 osteogenic medium expressed higher levels of RUNX2, OSX, ALP and COX-2 compared to the control and BMPs 4, 6, 7 & 9. Additionally, the coacervate complex can be loaded with up to 2 μg of BMP proteins for sustained release. In vivo, when BMPs were delivered using the coacervate sustained release system, BMP2 was identified to be the most potent BMP promoting bone regeneration and regenerated 10 times of new bone than BMPs 4, 6 & 9. BMP7 also stimulated robust bone regeneration when compared to BMPs 4, 6 & 9. The quality of the newly regenerated bone by all BMPs delivered by coacervate is equivalent to the host bone consisting of bone matrix and bone marrow with normal bone architecture. Although the defect was not completely healed at 6 weeks, coacervate sustain release BMPs, particularly BMP2 and BMP7, could represent a new strategy for treatment of bone defects and non-unions.
Collapse
Affiliation(s)
- Xueqin Gao
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Mintai P Hwang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Nathaniel Wright
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Aiping Lu
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Joseph J Ruzbarsky
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Matthieu Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Haizi Cheng
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, USA
| | - Michael Mullen
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Sudheer Ravuri
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA.
| |
Collapse
|
5
|
Wickramasinghe ML, Dias GJ, Premadasa KMGP. A novel classification of bone graft materials. J Biomed Mater Res B Appl Biomater 2022; 110:1724-1749. [PMID: 35156317 DOI: 10.1002/jbm.b.35029] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Maduni L. Wickramasinghe
- Department of Biomedical Engineering General Sir John Kotelawala Defense University Ratmalana Sri Lanka
| | - George J. Dias
- Department of Anatomy, School of Medical Sciences University of Otago Dunedin New Zealand
| | | |
Collapse
|
6
|
Sales A, Khodr V, Machillot P, Chaar L, Fourel L, Guevara-Garcia A, Migliorini E, Albigès-Rizo C, Picart C. Differential bioactivity of four BMP-family members as function of biomaterial stiffness. Biomaterials 2022; 281:121363. [PMID: 35063741 PMCID: PMC7613911 DOI: 10.1016/j.biomaterials.2022.121363] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
While a soft film itself is not able to induce cell spreading, BMP-2 presented via such soft film (so called "matrix-bound BMP-2") was previously shown to trigger cell spreading, migration and downstream BMP-2 signaling. Here, we used thin films of controlled stiffness presenting matrix-bound BMPs to study the effect of four BMP members (BMP-2, 4, 7, 9) on cell adhesion and differentiation of skeletal progenitors. We performed automated high-content screening of cellular responses, including cell number, cell spreading area, SMAD phosphorylation and alkaline phosphatase activity. We revealed that the cell response to bBMPs is BMP-type specific, and involved certain BMP receptors and beta chain integrins. In addition, this response is stiffness-dependent for several receptors. The basolateral presentation of the BMPs allowed us to discriminate the specificity of cellular response, especiallyd the role of type I and II BMP receptors and of β integrins in a BMP-type and stiffness-dependent manner. Notably, BMP-2 and BMP-4 were found to have distinct roles, while ALK5, previously known as a TGF-β receptor was revealed to be involved in the BMP-pathway.
Collapse
Affiliation(s)
- Adrià Sales
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France.
| | - Valia Khodr
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France
| | - Paul Machillot
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France
| | - Line Chaar
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Laure Fourel
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France; Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Amaris Guevara-Garcia
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France; Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Elisa Migliorini
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France
| | - Corinne Albigès-Rizo
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Catherine Picart
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
7
|
Shi P, Zhou W, Dong J, Li S, Lv P, Liu C. Scaffolds of bioactive glass (Bioglass®) combined with recombinant human bone morphogenetic protein -9 (rhBMP-9) for tooth extraction site preservation. Heliyon 2022; 8:e08796. [PMID: 35097232 PMCID: PMC8783125 DOI: 10.1016/j.heliyon.2022.e08796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/08/2021] [Accepted: 01/13/2022] [Indexed: 12/23/2022] Open
Abstract
Objective The study aimed to investigate the osteogenic ability of bioactive glass (bioglass) combined with recombinant human bone morphogenetic protein-9 (rhBMP-9) on rat bone marrow mesenchymal stem cells (BMSCs) in vitro. The study also compares bone regeneration using rhBMP9 soaked with different carrier systems, including bioglass or collagen membranes (BioGide, BG) in a rat alveolar bone site preservation model in vivo. Methods Scanning electron microscopy was employed to analyze bioglass surface. The absorption and release potential of rhBMP9 from bioglass were researched by ELISA. The cell viability, adhesion, proliferation, and differentiation were assessed for rhBMP9 soaked on bioglass by cck-8 kit, alkaline phosphatase (ALP) activity assay, alizarin red staining, and real-time PCR. Furthermore, prepared grafts (bioglass + BG, bioglass/rhBMP9+BG, and bioglass + BG/rhBMP9) were implanted into the maxillary right first incisor sockets of Sprague Dawley rats for 8 weeks, and new bone formation was quantified by micro-CT and histological analysis. Results Bioglass absorbed rhBMP9 dramatically and released it with a slow and stable speed within ten days by ELISA. When used with cck-8 kit detection, cell viability at 24 h, cell adhesion rate at 8 h, and cell proliferation at 1, 3, and 5 days were decreased in the bioglass alone group versus the control group but slightly increased with the addition of rhBMP9. Similarly, the effect of osteogenic differentiation on bioglass increased significantly when combined with rhBMP9 by upregulating the expression of ALP, mineralized matrix, and osteogenic related genes. Furthermore, both bioglass/rhBMP9+BG samples and bioglass + BG/rhBMP9 samples significantly improved several bone formation parameters compared with bioglass + BG samples. Interestingly, bioglass + BG/rhBMP9 samples demonstrated more bone regeneration in rat site preservation models. Conclusions Both bioglass and BG can be applied in GBR surgery as effective carriers of rhBMP9. However, BG may be more suitable than bioglass for investigating site preservation effect after tooth extraction when associated with rhBMP9 and provides a practical clinical solution to the problem of bone deficiency caused by alveolar bone atrophy.
Collapse
|
8
|
Recombinant Proteins-Based Strategies in Bone Tissue Engineering. Biomolecules 2021; 12:biom12010003. [PMID: 35053152 PMCID: PMC8773742 DOI: 10.3390/biom12010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
The increase in fracture rates and/or problems associated with missing bones due to accidents or various pathologies generates socio-health problems with a very high impact. Tissue engineering aims to offer some kind of strategy to promote the repair of damaged tissue or its restoration as close as possible to the original tissue. Among the alternatives proposed by this specialty, the development of scaffolds obtained from recombinant proteins is of special importance. Furthermore, science and technology have advanced to obtain recombinant chimera’s proteins. This review aims to offer a synthetic description of the latest and most outstanding advances made with these types of scaffolds, particularly emphasizing the main recombinant proteins that can be used to construct scaffolds in their own right, i.e., not only to impregnate them, but also to make scaffolds from their complex structure, with the purpose of being considered in bone regenerative medicine in the near future.
Collapse
|
9
|
Bienz SP, Payer M, Hjerppe J, Hüsler J, Jakse N, Schmidlin PR, Hämmerle CHF, Jung RE, Thoma DS. Primary bone augmentation leads to equally stable marginal tissue conditions comparing the use of xenograft blocks infused with BMP-2 and autogenous bone blocks: A 3D analysis after 3 years. Clin Oral Implants Res 2021; 32:1433-1443. [PMID: 34543475 PMCID: PMC9293361 DOI: 10.1111/clr.13843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 05/26/2021] [Accepted: 07/07/2021] [Indexed: 11/28/2022]
Abstract
Objectives To test whether or not primary bone augmentation using xenograft blocks infused with BMP‐2 or autogenous bone blocks lead to similar results regarding the implant survival and 3D marginal soft tissue contours. Methods Twenty‐four patients with an insufficient ridge width for implant placement in need of primary augmentation were randomly assigned to either a block of deproteinized bovine bone mineral infused with rhBMP‐2 (BMP) or an intraorally harvested block of autogenous bone (ABB). At 4 months, 1–4 dental implants were placed in the regenerated area. After crown insertion and at 3 years, peri‐implant tissue parameters, two‐ and three‐dimensional radiographic parameters, and soft tissue contour changes were evaluated. Explorative mixed model analyses were performed. The level of significance was set at 5%. Results At the 3‐year follow‐up, 23 patients with 40 implants were evaluated. The implant survival rate was 100% in both groups. At baseline, the marginal hard tissue levels amounted to −0.4 ± 0.8 mm (mean ± standard deviation) in the BMP group and −0.7 ± 1.0 mm in the ABB group. At 3 years, these values were −0.2 ± 0.4 mm (BMP) and −0.6 ± 1.0 mm (ABB). At baseline, the thickness of the buccal hard tissue at the level of the implant shoulder measured 1.1 ± 1.1 mm (BMP) and 1.4 ± 1.0 mm (ABB). At 3 years, it measured 0.9 ± 0.9 mm (BMP) and 0.7 ± 0.6 mm (ABB). Conclusions The present study demonstrated excellent implant survival rates and stable marginal hard tissue levels in both augmentation groups, 3 years after crown insertion. In addition, the clinical stability of soft and hard tissues was demonstrated in both groups.
Collapse
Affiliation(s)
- Stefan P Bienz
- Clinic of Reconstructive Dentistry, University of Zurich, Zurich, Switzerland
| | - Michael Payer
- Department of Oral Surgery and Radiology, School of Dentistry, Medical University Graz, Graz, Austria
| | - Jenni Hjerppe
- Clinic of Reconstructive Dentistry, University of Zurich, Zurich, Switzerland
| | - Jürg Hüsler
- Clinic of Reconstructive Dentistry, University of Zurich, Zurich, Switzerland
| | - Norbert Jakse
- Department of Oral Surgery and Radiology, School of Dentistry, Medical University Graz, Graz, Austria
| | - Patrick R Schmidlin
- Clinic of Preventive Dentistry, Periodontology and Cariology, University of Zurich, Zurich, Switzerland
| | | | - Ronald E Jung
- Clinic of Reconstructive Dentistry, University of Zurich, Zurich, Switzerland
| | - Daniel S Thoma
- Clinic of Reconstructive Dentistry, University of Zurich, Zurich, Switzerland.,Department of Periodontology, College of Dentistry, Research Institute for Periodontal Regeneration, Yonsei University, Seoul, Korea
| |
Collapse
|
10
|
Fujioka-Kobayashi M, Marjanowski SD, Kono M, Hino S, Saulacic N, Schaller B. Osteoinductive potential of recombinant BMP-9 in bone defects of mice treated with antiresorptive agents. Int J Oral Maxillofac Surg 2021; 51:566-575. [PMID: 34454793 DOI: 10.1016/j.ijom.2021.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/19/2021] [Accepted: 08/12/2021] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to investigate the effects of recombinant human (rh)BMP-9 on bone regenerative potential in a mouse model of antibody-mediated antiresorptive therapy (AMART). A monoclonal anti-murine receptor activator of nuclear factor-kappa B ligand (RANKL) antibody (mAb) was used to create an AMART model in mice. rhBMP-9 combined with collagen membrane was implanted in calvarial defects in mAb-treated mice. After 4 weeks, the bone formative potential in the defects was evaluated by micro-computed tomography and histological approaches. The groups implanted with rhBMP-9-containing collagen membranes demonstrated substantial osteopromotive potential, with significantly greater new bone volume (Sham + BMP-9 group; 0.86 ± 0.29 mm3 and mAb + BMP-9 group; 0.64 ± 0.16 mm3) than control PBS-membranes (Sham + PBS group; 0.44 ± 0.29 mm3 and mAb + PBS group; 0.24 ± 0.12 mm3) in both sham and mAb-treated mice. In line with in vivo study, bone marrow cells isolated from both sham and mAb-treated mice confirmed greater osteogenic potential upon stimulation with rhBMP-9 in vitro. These findings suggest for the first time that local rhBMP-9 administration might be a strategy to accelerate bone regeneration in the context of AMART.
Collapse
Affiliation(s)
- M Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| | - S D Marjanowski
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - M Kono
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Tokyo, Japan
| | - S Hino
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Oral and Maxillofacial Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - N Saulacic
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - B Schaller
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Murakami T, Matsugami D, Yoshida W, Imamura K, Bizenjima T, Seshima F, Saito A. Healing of Experimental Periodontal Defects Following Treatment with Fibroblast Growth Factor-2 and Deproteinized Bovine Bone Mineral. Biomolecules 2021; 11:biom11060805. [PMID: 34072351 PMCID: PMC8226676 DOI: 10.3390/biom11060805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to investigate the effects of fibroblast growth factor (FGF)-2 used in combination with deproteinized bovine bone mineral (DBBM) on the healing of experimental periodontal defects. Periodontal defects created in rats were treated by FGF-2, DBBM, FGF-2 + DBBM, or left unfilled. Microcomputed tomography, histological, and immunohistochemical examinations were used to evaluate healing. In vitro cell viability/proliferation on DBBM with/without FGF-2 was assessed by WST-1. Cell behavior was analyzed using scanning electron and confocal laser scanning microscopy. Osteogenic differentiation was evaluated by staining with alkaline phosphatase and alizarin red. Bone volume fraction was significantly greater in FGF-2 and FGF-2 + DBBM groups than in other groups at 2 and 4 weeks postoperatively. In histological assessment, newly formed bone in FGF-2 and FGF-2 + DBBM groups appeared to be greater than other groups. Significantly greater levels of proliferating cell nuclear antigen-, vascular endothelial growth factor-, and osterix-positive cells were observed in FGF-2 and FGF-2 + DBBM groups compared to Unfilled group. In vitro, addition of FGF-2 to DBBM promoted cell viability/proliferation, attachment/spreading, and osteogenic differentiation. The combination therapy using FGF-2 and DBBM was similarly effective as FGF-2 alone in the healing of experimental periodontal defects. In certain bone defect configurations, the combined use of FGF-2 and DBBM may enhance healing via promotion of cell proliferation, angiogenesis, and osteogenic differentiation.
Collapse
Affiliation(s)
- Tasuku Murakami
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
| | - Daisuke Matsugami
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan
| | - Wataru Yoshida
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
| | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan
| | - Takahiro Bizenjima
- Chiba Dental Center, Tokyo Dental College, Mihama-ku, Chiba 2618502, Japan;
| | - Fumi Seshima
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan
- Correspondence:
| |
Collapse
|
12
|
Imafuji T, Shirakata Y, Shinohara Y, Nakamura T, Noguchi K. Enhanced bone formation of calvarial bone defects by low-intensity pulsed ultrasound and recombinant human bone morphogenetic protein-9: a preliminary experimental study in rats. Clin Oral Investig 2021; 25:5917-5927. [PMID: 33755786 DOI: 10.1007/s00784-021-03897-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/18/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the combined effects of recombinant human bone morphogenetic protein - 9 (rhBMP-9) loaded onto absorbable collagen sponges (ACS) and low-intensity pulsed ultrasound (LIPUS) on bone formation in rat calvarial defects. MATERIALS AND METHODS Circular calvarial defects were surgically created in 18 Wistar rats, which were divided into LIPUS-applied (+) and LIPUS-non-applied (-) groups. The 36 defects in each group received ACS implantation (ACS group), ACS with rhBMP-9 (rhBMP-9/ACS group), or surgical control (control group), yielding the following six groups: ACS (+/-), rhBMP-9/ACS (+/-), and control (+/-). The LIPUS-applied groups received daily LIPUS exposure starting immediately after surgery. At 4 weeks, animals were sacrificed and their defects were investigated histologically and by microcomputed tomography. RESULTS Postoperative clinical healing was uneventful at all sites. More new bone was observed in the LIPUS-applied groups compared with the LIPUS-non-applied groups. Newly formed bone area (NBA)/total defect area (TA) in the ACS (+) group (46.49 ± 7.56%) was significantly greater than that observed in the ACS (-) (34.31 ± 5.68%) and control (-) (31.13 ± 6.74%) groups (p < 0.05). The rhBMP-9/ACS (+) group exhibited significantly greater bone volume, NBA, and NBA/TA than the rhBMP-9/ACS (-) group (2.46 ± 0.65 mm3 vs. 1.76 ± 0.44 mm3, 1.25 ± 0.31 mm2 vs. 0.88 ± 0.22 mm2, and 62.80 ± 11.87% vs. 42.66 ± 7.03%, respectively) (p < 0.05). Furthermore, the rhBMP-9/ ACS (+) group showed the highest level of bone formation among all groups. CONCLUSION Within their limits, it can be concluded that LIPUS had osteopromotive potential and enhanced rhBMP-9-induced bone formation in calvarial defects of rats. CLINICAL RELEVANCE The use of rhBMP-9 with LIPUS stimulation can be a potential bone regenerative therapy for craniofacial/peri-implant bone defects.
Collapse
Affiliation(s)
- Takatomo Imafuji
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yoshinori Shirakata
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Yukiya Shinohara
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Toshiaki Nakamura
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
13
|
Aprile P, Letourneur D, Simon‐Yarza T. Membranes for Guided Bone Regeneration: A Road from Bench to Bedside. Adv Healthc Mater 2020; 9:e2000707. [PMID: 32864879 DOI: 10.1002/adhm.202000707] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Bone resorption can negatively influence the osseointegration of dental implants. Barrier membranes for guided bone regeneration (GBR) are used to exclude nonosteogenic tissues from influencing the bone healing process. In addition to the existing barrier membranes available on the market, a growing variety of membranes for GBR with tailorable physicochemical properties are under preclinical evaluation. Hence, the aim of this review is to provide a comprehensive description of materials used for GBR and to report the main industrial and regulatory aspects allowing the commercialization of these medical devices (MDs). In particular, a summary of the main attributes defining a GBR membrane is reported along with a description of commercially available and under development membranes. Finally, strategies for the scaling-up of the manufacturing process and the regulatory framework of the main MD producers (USA, EU, Japan, China, and India) are presented. The description of the regulatory approval process of GBR membranes is representative of the typical path that medium- to high-risk MDs have to follow for an effective medical translation, which is of fundamental importance to increase the impact of biomedical research on public health.
Collapse
Affiliation(s)
- Paola Aprile
- LVTS INSERM U1148 X. Bichat Hospital Université de Paris Université Sorbonne Paris Nord Paris F‐75018 France
| | - Didier Letourneur
- LVTS INSERM U1148 X. Bichat Hospital Université de Paris Université Sorbonne Paris Nord Paris F‐75018 France
| | - Teresa Simon‐Yarza
- LVTS INSERM U1148 X. Bichat Hospital Université de Paris Université Sorbonne Paris Nord Paris F‐75018 France
| |
Collapse
|
14
|
Osteoblastic exosomes. A non-destructive quantitative approach of alkaline phosphatase to assess osteoconductive nanomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:110931. [DOI: 10.1016/j.msec.2020.110931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/02/2020] [Accepted: 04/03/2020] [Indexed: 11/18/2022]
|
15
|
Zhou C, Ye C, Zhao C, Liao J, Li Y, Chen H, Huang W. A Composite Tissue Engineered Bone Material Consisting of Bone Mesenchymal Stem Cells, Bone Morphogenetic Protein 9 (BMP9) Gene Lentiviral Vector, and P3HB4HB Thermogel (BMSCs-LV-BMP9-P3HB4HB) Repairs Calvarial Skull Defects in Rats by Expression of Osteogenic Factors. Med Sci Monit 2020; 26:e924666. [PMID: 32894745 PMCID: PMC7496453 DOI: 10.12659/msm.924666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Bone tissue engineering has been proven to be an appropriate approach for treating bone defects. This study aimed to investigate the effects and mechanism of a composite tissue engineered bone material consisting of bone mesenchymal stem cells (BMSCs), bone morphogenetic protein (BMP9) gene lentiviral vector, and P3HB4HB thermogel (BMSCs-LV-BMP9-P3HB4HB) on calvarial skull defects in rats. Material/Methods LV-BMP9 viral vector was structured and infected to BMSCs-P3HB4HB composite scaffold, which was named as BMSCs-P3HB4HB composite bone repair material. Adipogenic differentiation was determined by oil-red O (ORO) and alkaline phosphatase (ALP) staining. Osteogenic differentiation was measured using Alizarin red staining. Cell viability was examined using Cell-Counting Kit-8 (CCK-8) assay. Protein expression of osteogenic factors, including BMP9, runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN), and osterix (OSX), was detected with Western blot assay and immunohistochemistry. mRNA of these osteogenic factors was examined by RT-PCR. Histological changes were examined with hematoxylin and eosin (H&E) and Masson’s trichrome staining. Bone repair was measured using micro-computed tomography (micro-CT). Results BMSCs and LV-BMP9-infected BMSCs demonstrated adipogenic and osteogenic differentiation potential. BMSCs-P3HB4HB scaffold demonstrated good cell-tissue compatibility. BMSCs-LV-BMP9-P3HB4HB exhibited significantly higher osteogenic ability and cell viability of BMSCs compared to BMSCs-LV-P3HB4HB (p<0.05). BMSCs-LV-BMP9-P3HB4HB significantly promoted osteogenic factors (RUNX2, OCN, OPN, and OSX) expression compared to the BMSCs-LV-P3HB4HB group (p<0.05) in both BMSCs and in calvarial defect rats. BMSCs-LV-BMP9-P3HB4HB demonstrated stronger repair ability. BMSCs-LV-BMP9-P3HB4HB significantly alleviated pathological injury and increased collagen fiber production compared to the BMSCs-LV-P3HB4HB group (p<0.05). Conclusions BMSCs-LV-BMP9-P3HB4HB composite bone repair material can effectively repair injured skull tissues of calvarial defect rats through triggering osteogenic factors expression. The present generated bone repair material may have applications in tissue engineering in regeneration of bone defects.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Chuan Ye
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, China (mainland)
| | - Chen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Junyi Liao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Yuwan Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Hong Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
16
|
In Vitro Comparison of Macrophage Polarization and Osteoblast Differentiation Potentials between Granules and Block Forms of Deproteinized Bovine Bone Mineral. MATERIALS 2020; 13:ma13122682. [PMID: 32545502 PMCID: PMC7345324 DOI: 10.3390/ma13122682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/26/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
Deproteinized bovine bone mineral (DBBM) bone grafts are commonly utilized for guided bone regeneration (GBR) techniques in regenerative dentistry. It has been hypothesized that different forms (blocks versus particulates) might demonstrate the varying properties of cell behavior during the regenerative process. Therefore, the aim of the present study was to investigate DBBM granules and blocks for their effects on osteoblasts and macrophages (Mφs). DBBM granules and blocks were filled to the same size (φ6.4 mm in diameter × 2.0 mm in height) in cell culture wells and assessed for cell viability and cell differentiation of human osteoblast-like Saos-2 cells, and Mφs derived from human monocyte THP-1 cells. The two groups were first characterized by micro-CT analysis, which demonstrated that DBBM granules had a two-fold greater material volume and a four-fold larger surface area than the blocks. DBBM blocks showed superior viability for both osteoblasts and Mφs. Osteoblast experiments were then utilized to better characterize the influence of DBBM shapes/forms on osteoblast differentiation. Alkaline phosphatase (ALP) staining on the undecalcified frozen sections was observed throughout the DBBM granule surface, yet this staining was only observed on the upper portion of the DBBM blocks. Furthermore, DBBM blocks showed M1-Mφ polarization trends with higher IL-1 and IL-6 mRNA expression in Mφs, while the conditioned media from Mφs cultured on DBBM granules promoted osteoblast differentiation with higher mRNA levels of Runx 2, ALP and osteocalcin. In conclusion, the DBBM granules showed more regenerative effects, lower M1 marker expression, and higher osteoblast differentiation potential when compared with the blocks, which might be related to the larger material volume, higher surface area and greater ability for the cells to penetrate through the scaffold.
Collapse
|
17
|
Li X, Wang L, Su Q, Ye L, Zhou X, Song D, Huang D. Highly Proliferative Immortalized Human Dental Pulp Cells Retain the Odontogenic Phenotype when Combined with a Beta-Tricalcium Phosphate Scaffold and BMP2. Stem Cells Int 2020; 2020:4534128. [PMID: 32148517 PMCID: PMC7044479 DOI: 10.1155/2020/4534128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 02/05/2023] Open
Abstract
Human dental pulp cells (HDPCs) play a vital role in dentin formation and reparative dentinogenesis, which indicated their potential application in regenerative medicine. However, HDPCs, which can only be obtained from scarce human pulp tissues, also have a limited lifespan in vitro, and stem cells usually lose their original characteristics over a large number of passages. To overcome these challenges, we successfully immortalized human dental pulp cells using the piggyBac system which was employed to efficiently overexpress the SV40 T-Ag, and we then comprehensively described the cell biological behavior. The immortalized human dental pulp cells (iHDPCs) acquired long-term proliferative activity and expressed most HDPC markers. The iHDPCs maintained multiple differentiation potential and could be induced to differentiate into chondrogenic, osteogenic, and adipogenic cells in vitro. We also proved that the iHDPCs gained a stronger ability to migrate than the primary cells, while apoptosis was inhibited. Furthermore, highly proliferative iHDPCs displayed no oncogenicity when subcutaneously implanted into athymic nude mice. Finally, iHDPCs exhibited odontogenic differentiation ability and secreted dentin sialophosphoprotein (DSPP) when combined with a beta-tricalcium phosphate scaffold and bone morphogenetic protein-2 (BMP2) in vivo. Conclusively, the established iHDPCs are a valuable resource for mechanistic study of dental pulp cell differentiation and dental pulp injury repair, as well as for applications in tooth regeneration.
Collapse
Affiliation(s)
- Xiangfen Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Liu Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qin Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Abstract
Bone augmentation is an extremely common procedure in implant dentistry today because of significant advancements with reactive biomaterials, a better understanding of the mechanism of action that is found with growth factors contained in platelets, and improvements in surgical techniques. The expectation is for the surgeon to place the dental implant in the position that best serves the requirements of the prosthetic restorations. With the increasing demands that patients have for ideal prosthetic results, surgeons are expected to predictably augment both hard and soft tissues to provide the anticipated esthetic and functional outcomes. Bone grafting can be performed before, during, and after the implant placement; however, these augmentation procedures come with increased cost, the risk of complications such as infection or failure, and lengthening of the total treatment time. In addition, a plethora of grafting materials are available commercially, where they are often inadequately studied, or there is minimal information regarding their predictability or long-term success, or ability to support dental implants. It is clear that although the surgical field has seen major progress since early implant surgical techniques in the 1980s, major challenges still exist with hard tissue augmentation procedures. This review will discuss these challenges that are increased and often specific to bone graft healing, and which are becoming more common as implant site development often requires bone augmentation to improve volume or contour deficiencies. The risk factors that patients may present with that will affect outcomes with bone augmentation procedures are identified, and recommendations for the prevention of complications or managing complications once they have occurred are provided.
Collapse
Affiliation(s)
- Peter K Moy
- Department of Oral & Maxillofacial Surgery, UCLA, School of Dentistry, Los Angeles, California, USA
| | - Tara Aghaloo
- Department of Oral & Maxillofacial Surgery, UCLA, School of Dentistry, Los Angeles, California, USA
| |
Collapse
|
19
|
Eiraku N, Chiba N, Nakamura T, Amir MS, Seong CH, Ohnishi T, Kusuyama J, Noguchi K, Matsuguchi T. BMP9 directly induces rapid GSK3-β phosphorylation in a Wnt-independent manner through class I PI3K-Akt axis in osteoblasts. FASEB J 2019; 33:12124-12134. [PMID: 31365832 DOI: 10.1096/fj.201900733rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone morphogenetic protein (BMP)9 has been reported to be the most potent BMP to induce bone formation. However, the details of BMP9-transduced intracellular signaling remain ambiguous. Here, we have investigated signal transduction mechanisms of BMP9 in comparison to BMP2, another potent inducer of bone formation, in osteoblasts. In a mouse osteoblast cell line, BMP9 induced higher mRNA levels of alkaline phosphatase (ALP) and runt-related transcription factor 2 (Runx2) than BMP2 within 2 h. Unlike BMP2, BMP9 induced rapid phosphorylation of glycogen synthase kinase 3-β (GSK3-β) and protein kinase B (Akt) and increased the cellular protein content of β-catenin. BMP9 moderately increased mRNA levels of several canonical Wingless-related integration site to lower degrees than BMP2. Furthermore, BMP9-induced GSK3-β phosphorylation was not inhibited by pretreatment with actinomycin D, cycloheximide, or Brefeldin A, indicating it is independent of Wnt protein secretion. BMP9-induced GSK3-β phosphorylation was abrogated by Akt or class I PI3K-specific inhibitors. Moreover, inactivation of GSK3-β by LiCl did not further promote ALP and Runx2 mRNA induction by BMP9 as significantly as that by BMP2. Notably, BMP9-induced GSK3-β phosphorylation was inhibited by small interfering RNA against endoglin and GIPC PDZ domain-containing family, member 1. Taken together, our present findings have indicated that BMP9 directly activates GSK3β-β-catenin signaling pathway through class I PI3K-Akt Axis in osteoblasts, which may be essential for the potent osteoinductive activity of BMP9.-Eiraku, N., Chiba, N., Nakamura, T., Amir, M. S., Seong, C.-H., Ohnishi, T., Kusuyama, J., Noguchi, K., Matsuguchi, T. BMP9 directly induces rapid GSK3-β phosphorylation in a Wnt-independent manner through class I PI3K-Akt axis in osteoblasts.
Collapse
Affiliation(s)
- Nahoko Eiraku
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Toshiaki Nakamura
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Muhammad Subhan Amir
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Chang-Hwan Seong
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Joji Kusuyama
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
20
|
Donos N, Dereka X, Calciolari E. The use of bioactive factors to enhance bone regeneration: A narrative review. J Clin Periodontol 2019; 46 Suppl 21:124-161. [DOI: 10.1111/jcpe.13048] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/08/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Nikos Donos
- Centre for Oral Immunobiology & Regenerative Medicine & Centre for Oral Clinical Research (COCR); Institute of Dentistry, Barts & The London School of Medicine & Dentistry; Queen Mary University of London (QMUL); London UK
| | - Xanthippi Dereka
- Centre for Oral Immunobiology & Regenerative Medicine & Centre for Oral Clinical Research (COCR); Institute of Dentistry, Barts & The London School of Medicine & Dentistry; Queen Mary University of London (QMUL); London UK
- Department of Periodontology; School of Dentistry; National and Kapodistrian University of Athens; Athens Greece
| | - Elena Calciolari
- Centre for Oral Immunobiology & Regenerative Medicine & Centre for Oral Clinical Research (COCR); Institute of Dentistry, Barts & The London School of Medicine & Dentistry; Queen Mary University of London (QMUL); London UK
| |
Collapse
|
21
|
Saulacic N, Schaller B, Muñoz F, Fujioka-Kobayashi M, Kobayashi E, Lang NP, Miron RJ. Recombinant human BMP9 (RhBMP9) in comparison with rhBMP2 for ridge augmentation following tooth extraction: An experimental study in the Beagle dog. Clin Oral Implants Res 2018; 29:1050-1059. [PMID: 30281171 DOI: 10.1111/clr.13371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVES The purpose of this study was to compare the effects of rhBMP2 with rhBMP9 on ridge augmentation following healing of extraction sockets in dogs. MATERIAL AND METHODS Five male Beagle dogs, approximately 12 months of age, were used. The mesial roots of the four maxillary premolars were endodontically treated. The distal roots were extracted, and the buccal bony walls removed. All extraction sockets were filled with deproteinized bovine bone mineral (DBBM). A collagen membrane was soaked with 4 μg or 20 μg of rhBMP9, 20 μg of rhBMP2 or sterile saline and placed over the augmented sites. All animals were euthanized after 8 weeks of healing and investigated by micro-CT and histologic analysis. A one-way ANOVA with Tukey's HSD post hoc test was used to compare the differences between the four groups. RESULTS New bone apposition in all defects was observed from the original bone. RhBMP samples showed an increase in bone formation in the buccal area and better integration of DBBM particles when compared to control sites. Both rhBMP9 defects showed higher values of bone (p = 0.024), bone marrow (p = 0.044), and total augmentation volume (p = 0.033) than the rhBMP2 (20 μg) or control sites. Highest bone area was found in rhBMP9 defects (p = 0.895). CONCLUSIONS Within the limitations of the present study, rhBMP9 sites demonstrated higher bone-inducing potential in combination with DBBM than rhBMP2. While rhBMP9s failed to demonstrate a clear dose-response relationship to the outcomes, future studies are necessary to evaluate the appropriate dose and carrier systems.
Collapse
Affiliation(s)
- Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, University of Berne, Berne, Switzerland
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, University of Berne, Berne, Switzerland
| | - Fernando Muñoz
- Veterinary Faculty Lugo, University of Santiago de Compostela, Lugo, España
| | - Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, University of Berne, Berne, Switzerland
| | - Eizaburo Kobayashi
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Niklaus P Lang
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, University of Berne, Berne, Switzerland
| | - Richard J Miron
- Department of Periodontology, School of Dental Medicine, University of Berne, Berne, Switzerland
| |
Collapse
|
22
|
Tantilertanant Y, Niyompanich J, Everts V, Supaphol P, Pavasant P, Sanchavanakit N. Cyclic tensile force stimulates BMP9 synthesis and in vitro mineralization by human periodontal ligament cells. J Cell Physiol 2018; 234:4528-4539. [PMID: 30206934 DOI: 10.1002/jcp.27257] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/23/2018] [Indexed: 12/18/2022]
Abstract
Periodontal ligament (PDL) cells are mechanosensitive and have the potential to differentiate into osteoblast-like cells under the influence of cyclic tensile force (CTF). CTF modulates the expression of regulatory proteins including bone morphogenetic proteins (BMPs), which are essential for the homeostasis of the periodontium. Among the BMPs, BMP9 is one of the most potent osteogenic BMPs. It is yet unknown whether CTF affects the expression of BMP9 and mineralization. Here, we demonstrated that continuously applied CTF for only the first 6 hr stimulated the synthesis of BMP9 and induced mineral deposition within 14 days by human PDL cells. Stimulation of BMP9 expression depended on ATP and P2Y 1 receptors. Apyrase, an ecto-ATPase, inhibited CTF-mediated ATP-induced BMP9 expression. The addition of ATP increased the expression of BMP9. Loss of function experiments using suramin (a broad-spectrum P2Y antagonist), MRS2179 (a specific P2Y 1 receptor antagonist), MRS 2365 (a specific P2Y 1 agonist), U-73122 (a phospholipase C [PLC] inhibitor), and thapsigargin (enhancer of intracytosolic calcium) revealed the participation of P2Y 1 in regulating the expression of BMP9. This was mediated by an increased level of intracellular Ca 2+ through the PLC pathway. A neutralizing anti-BMP9 antibody decreased mineral deposition, which was stimulated by CTF for almost 45% indicating a role of BMP9 in an in vitro mineralization. Collectively, our findings suggest an essential modulatory role of CTF in the homeostasis and regeneration of the periodontium.
Collapse
Affiliation(s)
- Yanee Tantilertanant
- Department of Anatomy and Research Unit of Mineralized Tissues, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jitti Niyompanich
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pitt Supaphol
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Pavasant
- Department of Anatomy and Research Unit of Mineralized Tissues, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Neeracha Sanchavanakit
- Department of Anatomy and Research Unit of Mineralized Tissues, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
23
|
Fujioka-Kobayashi M, Tsuru K, Nagai H, Fujisawa K, Kudoh T, Ohe G, Ishikawa K, Miyamoto Y. Fabrication and evaluation of carbonate apatite-coated calcium carbonate bone substitutes for bone tissue engineering. J Tissue Eng Regen Med 2018; 12:2077-2087. [PMID: 30058260 DOI: 10.1002/term.2742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022]
Abstract
Carbonate apatite-coated calcium carbonate (CO3 Ap/CaCO3 ) was fabricated through a dissolution-precipitation reaction using CaCO3 granules as a precursor to accelerate bone replacement based on superior osteoconductivity of the CO3 Ap shell, along with Ca2+ release from the CaCO3 core and quicker resorption of the CaCO3 core. In the present study, CaCO3 , 10% CO3 Ap/CaCO3 , 30% CO3 Ap/CaCO3 , and CO3 Ap granules were fabricated and examined histologically to evaluate their potential as bone substitutes. Larger contents of CaCO3 in the granules resulted in higher Ca2+ release and promoted cell proliferation of murine preosteoblasts at 6 days compared with CO3 Ap. Interestingly, in a rabbit femur defect model, 10% CO3 Ap/CaCO3 induced significantly higher new bone formation and higher material resorption compared with CO3 Ap at 8 weeks. Nevertheless, CO3 Ap showed a superior osteoconductive potential compared with 10% CO3 Ap/CaCO3 at 8 weeks. All tested granules were most likely resorbed by cell mediation including multinucleated giant cell functions. Therefore, we conclude that CO3 Ap/CaCO3 has a positive potential for bone tissue engineering based on well-controlled calcium release, bone formation, and material resorption.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kanji Tsuru
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Department of Dental Engineering, Section of Bioengineering, Division of Biomedical Science, Fukuoka Dental College, Fukuoka, Japan
| | - Hirokazu Nagai
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Division of Oral and Maxillofacial Surgery, Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kenji Fujisawa
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Oral Health Sciences, Faculty of Health and Welfare, Tokushima Bunri University, Tokushima, Japan
| | - Takaharu Kudoh
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Go Ohe
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Youji Miyamoto
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
24
|
Fujioka-Kobayashi M, Abd El Raouf M, Saulacic N, Kobayashi E, Zhang Y, Schaller B, Miron RJ. Superior bone-inducing potential of rhBMP9 compared to rhBMP2. J Biomed Mater Res A 2018; 106:1561-1574. [PMID: 29396910 DOI: 10.1002/jbm.a.36359] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 12/31/2022]
Abstract
Recombinant human bone morphogenic protein (rhBMP) 9 has recently been reported to have more osteopromotive potential in vitro when compared to rhBMP2. The aim of the present study was to investigate the bone-inducing potential of rhBMP2 and rhBMP9. We compared rhBMP2, rhBMP7, and rhBMP9 at five different concentrations and showed convincingly that rhBMP9 possesses much greater potential for osteoblast differentiation even at 20 times lower concentrations in vitro. We further show that Noggin, an inhibitor for rhBMP2-induced osteogenesis, did not alter rhBMP9-induced osteogenesis. Thereafter, we show for the first time that rhBMP9 loaded onto atelo-collagen membranes is osteoinductive and has greater potential to form ectopic bone formation when compared to rhBMP2 even at four times lower doses. Similarly new bone formation of rhBMP2 and 9 when loaded on deproteinized bovine bone mineral (DBBM) was investigated in a rabbit calvarial defect. At 8 weeks, both rhBMP2 and rhBMP9 induced significantly higher new bone formation when compared to DBBM alone samples. Interestingly, once again four times lower dose of rhBMP9 group induced comparable or even greater levels of new bone height and new bone area when compared to the rhBMP2 group. The present study revealed that (1) rhBMP9 is capable of inducing ectopic new bone formation in vivo and (2) up to four times lower doses of rhBMP9 may be utilized to regenerate same-size bone defects when compared to rhBMP2. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1561-1574, 2018.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mustafa Abd El Raouf
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Eizaburo Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Fujioka-Kobayashi M, Schaller B, Zhang Y, Pippenger BE, Miron RJ. In vitro evaluation of an injectable biphasic calcium phosphate (BCP) carrier system combined with recombinant human bone morphogenetic protein (rhBMP)-9. Biomed Mater Eng 2017; 28:293-304. [PMID: 28527192 DOI: 10.3233/bme-171675] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bone morphogenetic protein 9 (BMP9) has previously been characterized as the strongest osteoinductive growth factor among the BMP family. The aim of the present study was to evaluate the possibility of combining rhBMP9 with an injectable biphasic calcium phosphate (I-BCP, maxresorb inject®), since I-BCP is an easy to handle biomaterial with ideal properties for bone augmentation procedures. The adsorption potential of rhBMP9 as well as the cell behavior of bone stromal ST2 cells were investigated on cell viability, adhesion, proliferation and osteogenic differentiation for I-BCP combined with/without rhBMP9 in vitro. I-BCP demonstrated excellent adsorption/retention potential of rhBMP9 with a slow and steady release over a 10 day period by ELISA. Cell attachment at 8 hours and cell proliferation at 1, 3 and 5 days was decreased on I-BCP with/without rhBMP9 when compared to control tissue-culture plastic. While I-BCP had little influence on osteoblast differentiation, its combination with rhBMP9 significantly increased ALP activity at 7 days and mRNA levels of osteoblast differentiation markers including ALP and osteocalcin at 14 days. I-BCP served as an excellent carrier for rhBMP9 clearly demonstrating its osteoinductive potential. We therefore confirm the great potential of rhBMP9 to serve as a future regenerative growth factor for bone applications.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| | | | - Richard J Miron
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, FL, USA
| |
Collapse
|
26
|
Nie L, Yang X, Duan L, Huang E, Pengfei Z, Luo W, Zhang Y, Zeng X, Qiu Y, Cai T, Li C. The healing of alveolar bone defects with novel bio-implants composed of Ad-BMP9-transfected rDFCs and CHA scaffolds. Sci Rep 2017; 7:6373. [PMID: 28743897 PMCID: PMC5527078 DOI: 10.1038/s41598-017-06548-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/15/2017] [Indexed: 12/17/2022] Open
Abstract
Cells, scaffolds, and growth factors play important roles in bone regeneration. Bone morphogenetic protein 9 (BMP9), a member of BMP family, could facilitate osteogenesis by regulating growth factors and promoting angiogenesis. Similar to other stem cells, rat dental follicle stem cells (rDFCs), the precursor cells of cementoblasts, osteoblasts and periodontal ligament cells, can self-renew and exhibit multipotential capacity. Coralline hydroxyapatite (CHA) has good biocompatibility and conductivity required for bone tissue engineering. Here, we reported that BMP9 could enhance the osteogenic differentiation of rDFCs in cell culture. Moreover, our results suggested that BMP9 acted through the Smad1/5/8 signaling pathway. We also produced a novel scaffold that encompasses bio-degradable CHA seeded with recombinant adenoviruses expressing BMP9-transfected rDFCs (Ad-BMP9-transfected rDFCs). With this implant, we achieved more alveolar bone regeneration in the alveolar bone defect compared to blank group, CHA group and rDFCs group. Our results provided a novel bio-implants composed of Ad-BMP9-transfected rDFCs and CHA scaffolds and its mechanism is regarding the activation of Smad1/5/8 signaling pathway in BMP9-induced rDFCs osteogenesis.
Collapse
Affiliation(s)
- Li Nie
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Xia Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Liang Duan
- Department of Laboratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Enyi Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Zhou Pengfei
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Wenping Luo
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Yan Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Xingqi Zeng
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Ye Qiu
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Ting Cai
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Conghua Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China.
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| |
Collapse
|
27
|
Fujioka-Kobayashi M, Kobayashi E, Schaller B, Mottini M, Miron RJ, Saulacic N. Effect of recombinant human bone morphogenic protein 9 (rhBMP9) loaded onto bone grafts versus barrier membranes on new bone formation in a rabbit calvarial defect model. J Biomed Mater Res A 2017; 105:2655-2661. [PMID: 28556436 DOI: 10.1002/jbm.a.36125] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/16/2017] [Accepted: 05/23/2017] [Indexed: 12/19/2022]
Abstract
Recent research has demonstrated that recombinant human bone morphogenetic protein 9 (rhBMP9) has been considered the most osteoinductive growth factor of the BMP-family. In the present study, rhBMP9 was investigated for its influence in combination with two biomaterials for bone regenerative medicine. Either porcine-derived collagen membrane (CM) or deproteinized bovine bone mineral (DBM) combined with 20 µg of rhBMP9 were implanted in 6 mm rabbit calvarial defects. Bone augmentation was evaluated by microCT and histomorphometry at 8 weeks post-surgery. Both CM + rhBMP9 and DBM + rhBMP9 groups significantly promoted mineralized tissue volume (microCT) and area, new bone height and area (histomorphometric measurements) when compared to CM and DBM alone groups or control (empty). All specimens in the CM + rhBMP9 group but not all in the DBM + rhBMP9 group induced a complete horizontal bone defect closure. Multinucleated giant cells (MNGCs) were observed directly in contact with DBM surfaces irrespective of rhBMP9, whereas CM was generally not associated to the presence of MNGCs. When combined with rhBMP9, DBM augmented a larger volume of mineralized tissue (including the mineralized bone graft), whereas CM induced greater volume of native host bone. While DBM in combination with rhBMP9 induced higher mineralized tissue mostly associated with the bone grafting material, CM may have presented preferable results based on a higher horizontal defect closure with a faster regeneration of host new bone. The effect of including collagen within the carrier system of rhBMP9 on bone regeneration justifies further evaluation of this combination procedure in larger animal models. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2655-2661, 2017.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Eizaburo Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Oral and Maxillofacial Surgery, School of Life, Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias Mottini
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Richard J Miron
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida.,Cell Therapy Institute, Center for Collaborative Research, Nova Southeastern University, Fort Lauderdale, Florida
| | - Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Saulacic N, Fujioka-Kobayashi M, Kobayashi E, Schaller B, Miron RJ. Guided bone regeneration with recombinant human bone morphogenetic protein 9 loaded on either deproteinized bovine bone mineral or a collagen barrier membrane. Clin Implant Dent Relat Res 2017; 19:600-607. [DOI: 10.1111/cid.12491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery, Inselspital; Bern University Hospital, University of Bern; Bern Switzerland
| | - Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital; Bern University Hospital, University of Bern; Bern Switzerland
| | - Eizaburo Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital; Bern University Hospital, University of Bern; Bern Switzerland
- Department of Oral and Maxillofacial Surgery, School of Life, Dentistry at Niigata; The Nippon Dental University; Niigata Japan
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, Inselspital; Bern University Hospital, University of Bern; Bern Switzerland
| | - Richard J. Miron
- Department of Periodontology; College of Dental Medicine, Nova Southeastern University; Fort Lauderdale Florida
- Cell Therapy Institute, Center for Collaborative Research, Nova Southeastern University; Fort Lauderdale Florida
| |
Collapse
|
29
|
Wang X, Zhang Y, Choukroun J, Ghanaati S, Miron RJ. Effects of an injectable platelet-rich fibrin on osteoblast behavior and bone tissue formation in comparison to platelet-rich plasma. Platelets 2017; 29:48-55. [DOI: 10.1080/09537104.2017.1293807] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xuzhu Wang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| | | | - Shahram Ghanaati
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, Frankfurt Am Main, Germany
| | - Richard J. Miron
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Cell Therapy Institute, Centre for Collaborative Research, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
30
|
Nakamura T, Shirakata Y, Shinohara Y, Miron RJ, Hasegawa-Nakamura K, Fujioka-Kobayashi M, Noguchi K. Comparison of the effects of recombinant human bone morphogenetic protein-2 and -9 on bone formation in rat calvarial critical-size defects. Clin Oral Investig 2017; 21:2671-2679. [PMID: 28197731 DOI: 10.1007/s00784-017-2069-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Among bone morphogenetic protein (BMP) family members, BMP-2 and BMP-9 have demonstrated potent osteoinductive potential. However, in vivo differences in their potential for bone regeneration remain unclear. The present study aimed to compare the effects of recombinant human (rh) BMP-2 and rhBMP-9 on bone formation in rat calvarial critical-size defects (CSD). MATERIALS AND METHODS Twenty-eight Wistar rats surgically received two calvarial defects bilaterally in each parietal bone. Defects (n = 56) were allocated into four groups: absorbable collagen sponge (ACS) alone, rhBMP-2 with ACS (rhBMP-2/ACS), rhBMP-9/ACS, or sham surgery (control), on the condition that the treatments of rhBMP-2/ACS and rhBMP-9/ACS, or the same treatments were not included in the same animal. Animals were sacrificed at 2 and 8 weeks post-surgery. The calvarial defects were analyzed for bone volume (BV) by micro-computed tomography and for percentages of defect closure (DC/DL), newly formed bone area (NBA/TA), bone marrow area (BMA/NBA), adipose tissue area (ATA/NBA), central bone height (CBH), and marginal bone height (MBH) by histomorphometric analysis. RESULTS The BV in the rhBMP-2/ACS group (5.44 ± 3.65 mm3, n = 7) was greater than the other groups at 2 weeks post-surgery, and the rhBMP-2/ACS and rhBMP-9/ACS groups (18.17 ± 2.51 and 16.30 ± 2.46 mm3, n = 7, respectively) demonstrated significantly greater amounts of BV compared with the control and ACS groups (6.02 ± 2.90 and 9.30 ± 2.75 mm3, n = 7, respectively) at 8 weeks post-surgery. The rhBMP-2/ACS and rhBMP-9/ACS groups significantly induced new bone formation compared to the control and ACS groups at 8 weeks post-surgery. However, there were no statistically significant differences found between the rhBMP-2/ACS and rhBMP-9/ACS groups in any of the histomorphometric parameters. The ATA/NBA in the rhBMP-2/ACS group (9.24 ± 3.72%, n = 7) was the highest among the treatment groups at 8 weeks post-surgery. CONCLUSIONS Within the limits of this study, it can be concluded that rhBMP-2/ACS induced a slight early increase in new bone formation at 2 weeks and that rhBMP-9/ACS provided comparable new bone formation to rhBMP-2/ACS with less adipose tissues after a healing period of 8 weeks in rat CSD. CLINICAL RELEVANCE RhBMP-9/ACS treatment provided new bone formation with less adipose tissues compared with rhBMP-2/ACS.
Collapse
Affiliation(s)
- Toshiaki Nakamura
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yoshinori Shirakata
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yukiya Shinohara
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Richard J Miron
- Department of Periodontology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Kozue Hasegawa-Nakamura
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland.,Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| |
Collapse
|
31
|
Fujioka‐Kobayashi M, Schaller B, Saulacic N, Pippenger BE, Zhang Y, Miron RJ. Absorbable collagen sponges loaded with recombinant bone morphogenetic protein 9 induces greater osteoblast differentiation when compared to bone morphogenetic protein 2. Clin Exp Dent Res 2017; 3:32-40. [PMID: 29744176 PMCID: PMC5839213 DOI: 10.1002/cre2.55] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/27/2016] [Accepted: 12/07/2016] [Indexed: 12/29/2022] Open
Abstract
The use of growth factors for the regeneration of soft and hard tissues has been utilized extensively in dental medicine over the past decade. Recently our group found that recombinant human bone morphogenetic protein 9 (rhBMP9) was more osteopromotive than recombinant human bone morphogenetic protein 2 (rhBMP2) when combined with a deprotenized bovine bone mineral bone grafting material. The aim of the present in vitro study was to evaluate the regenerative potential of an absorbable collagen sponge(ACS) specifically designed for extraction socket healing loaded with rhBMP9 when compared to rhBMP2. The adsorption and release kinetics of rhBMP2 and rhBMP9 were first investigated by enzyme-linked immunosorbent assay quantification. Then, the cellular effects of stromal cell line (ST2) preosteoblasts were investigated utilizing four groups including rhBMP2 and rhBMP9 at both low(10 ng/ml) and high(100 ng/ml) concentrations loaded onto ACS. Cellular attachment(8 hours) and proliferation(1, 3, and 5 days) as well as osteoblast differentiation were investigated by real-time polymerase chain reaction (PCR) at 3 and 14 days, alkaline phosphatase (ALP) activity at 7 days, and alizarin red staining at 14 days. ACS fully adsorbed both rhBMP2 and rhBMP9 that were slowly released up to 10 days. Although neither rhBMP2 nor rhBMP9 had any effects on cell attachment or proliferation, pronounced effects were observed on osteoblast differentiation. ALP activity was increased seven-fold with rhBMP2-high, whereas a marked 10-fold and 20-fold increase was observed with rhBMP9-low and high loaded to ACS, respectively. Furthermore, mRNA levels of collagen1, ALP, bone sialoprotein, and osteocalcin were all significantly higher for rhBMP9 when compared to control or rhBMP2 groups. Alizarin red staining further confirmed that rhBMP9-low and high demonstrated marked increases in mineralization potential when compared to rhBMP2-high. The results demonstrate the marked effect of rhBMP9 on osteoblast differentiation when combined with ACS in comparison to rhBMP2 at doses as much as 10 times lower. Further in vivo studies are necessary to investigate whether the regenerative potential is equally as potent.
Collapse
Affiliation(s)
- Masako Fujioka‐Kobayashi
- Department of Periodontology, College of Dental MedicineNova Southeastern UniversityFloridaUSA
- Department of Cranio‐Maxillofacial Surgery, Bern University HospitalInselspitalSwitzerland
- Department of Oral Surgery, Clinical Dentistry, Institute of Biomedical SciencesTokushima University Graduate SchoolJapan
| | - Benoit Schaller
- Department of Cranio‐Maxillofacial Surgery, Bern University HospitalInselspitalSwitzerland
| | - Nikola Saulacic
- Department of Cranio‐Maxillofacial Surgery, Bern University HospitalInselspitalSwitzerland
| | | | - Yufeng Zhang
- Department of Oral ImplantologyUniversity of WuhanChina
| | - Richard J. Miron
- Department of Periodontology, College of Dental MedicineNova Southeastern UniversityFloridaUSA
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryMichiganUSA
| |
Collapse
|
32
|
Hyaluronic Acid Gel-Based Scaffolds as Potential Carrier for Growth Factors: An In Vitro Bioassay on Its Osteogenic Potential. J Clin Med 2016; 5:jcm5120112. [PMID: 27916889 PMCID: PMC5184785 DOI: 10.3390/jcm5120112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/11/2016] [Accepted: 11/24/2016] [Indexed: 12/13/2022] Open
Abstract
Hyaluronic acid (HA) has been utilized for a variety of regenerative medical procedures due to its widespread presence in connective tissue and perceived biocompatibility. The aim of the present study was to investigate HA in combination with recombinant human bone morphogenetic protein 9 (rhBMP9), one of the most osteogenic growth factors of the BMP family. HA was first combined with rhBMP9 and assessed for the adsorption and release of rhBMP9 over 10 days by ELISA. Thereafter, ST2 pre-osteoblasts were investigated by comparing (1) control tissue culture plastic, (2) HA alone, and (3) HA with rhBMP9 (100 ng/mL). Cellular proliferation was investigated by a MTS assay at one, three and five days and osteoblast differentiation was investigated by alkaline phosphatase (ALP) activity at seven days, alizarin red staining at 14 days and real-time PCR for osteoblast differentiation markers. The results demonstrated that rhBMP9 adsorbed within HA scaffolds and was released over a 10-day period in a controlled manner. While HA and rhBMP9 had little effect on cell proliferation, a marked and pronounced effect was observed for cell differentiation. rhBMP9 significantly induced ALP activity, mRNA levels of collagen1α2, and ALP and osteocalcin (OCN) at three or 14 days. HA also demonstrated some ability to induce osteoblast differentiation by increasing mRNA levels of OCN and increasing alizarin red staining at 14 days. In conclusion, the results from the present study demonstrate that (1) HA may serve as a potential carrier for various growth factors, and (2) rhBMP9 is a potent and promising inducer of osteoblast differentiation. Future animal studies are now necessary to investigate this combination approach in vivo.
Collapse
|
33
|
Fujioka-Kobayashi M, Schaller B, Zhang Y, Kandalam U, Hernandez M, Miron RJ. Recombinant human bone morphogenetic protein (rhBMP)9 induces osteoblast differentiation when combined with demineralized freeze-dried bone allografts (DFDBAs) or biphasic calcium phosphate (BCP). Clin Oral Investig 2016; 21:1883-1893. [PMID: 27771827 DOI: 10.1007/s00784-016-1983-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/13/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Recently, recombinant human bone morphogenetic protein 9 (rhBMP9) has been characterized as one of the most osteogenic growth factors among the 15 human BMPs. The aim of the present study was to investigate the effects of rhBMP9 in comparison to the clinically utilized rhBMP2 on in vitro cell behavior when combined with two bone graft materials including demineralized freeze-dried bone allografts (DFDBAs) and biphasic calcium phosphate (BCP). MATERIALS AND METHODS The absorption and release kinetics of rhBMPs from DFDBA and BCP were investigated by ELISA. Moreover, murine bone stromal ST2 cell behavior was investigated on DFDBA or BCP seeded on (1) graft only, (2) rhBMP2 (10 ng/ml), (3) rhBMP2 (100 ng/ml), (4) rhBMP9 (10 ng/ml), and (5) rhBMP9 (100 ng/ml). The effects of rhBMPs on DFDBA and BCP were assessed for cell adhesion, proliferation, and osteoblast differentiation by alkaline phosphatase (ALP) activity, alizarin red staining, and real-time PCR for genes encoding Runx2, ALP, and bone sialoprotein (BSP). RESULTS While both BMPs were gradually released from DFDBA and BCP over time, significantly higher adsorption was observed on BCP when compared to DFDBA. Cell attachment and proliferation was higher on BCP with little influence of either rhBMP2/9. Despite rhBMPs having relatively no effect on cell attachment/proliferation, a pronounced and marked effect was observed on osteoblast differentiation for both rhBMP2/9. Interestingly, it was observed that rhBMP9 induced significantly higher ALP activity, alizarin red staining, and messenger RNA (mRNA) levels of ALP and BSP when compared to rhBMP2. Our results also revealed higher differentiation for rhBMP2/9 with BCP when compared to DFDBA most likely as a result of higher growth factor adsorption. CONCLUSION While both rhBMP2/9 combined with DFDBA or BCP induced osteoblast differentiation, rhBMP9 induced greater osteoblast differentiation when compared to rhBMP2. CLINICAL RELEVANCE rhBMP9 may be a recombinant growth factor with higher potential to induce new bone formation when compared to rhBMP2. Further in vivo studies are necessary to characterize its regenerative potential in various animal models.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| | - Umadevi Kandalam
- Department of Pediatric Dentistry, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Maria Hernandez
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Richard J Miron
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
34
|
Fujioka-Kobayashi M, Mottini M, Kobayashi E, Zhang Y, Schaller B, Miron RJ. An in vitro study of fibrin sealant as a carrier system for recombinant human bone morphogenetic protein (rhBMP)-9 for bone tissue engineering. J Craniomaxillofac Surg 2016; 45:27-32. [PMID: 27840120 DOI: 10.1016/j.jcms.2016.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/27/2016] [Accepted: 10/04/2016] [Indexed: 01/29/2023] Open
Abstract
In the craniofacial bone field, fibrin sealants are used as coagulant and adhesive tools to stabilize grafts during surgery. Despite this, their exact role in osteogenesis is poorly characterized. In the present study, we aimed to characterize the osteogenic potential of TISSEEL fibrin sealant and used its technology to incorporate growth factors within its matrix. We focused on recombinant human bone morphogenetic protein (rhBMP)-9, which has previously been characterized as one of the strongest osteogenetic inducers in the BMP family. TISSEEL displayed an excellent ability to retain rhBMP9, which was gradually released over a 10-day period. Although TISSEEL decreased bone stromal ST2 cell attachment at 8 h, it displayed normal cell proliferation at 1, 3, and 5 days when compared to tissue culture plastic. Interestingly, TISSEEL had little influence on osteoblast differentiation; however its combination with rhBMP9 significantly increased ALP activity at 7 days, Alizarin Red staining at 14 days, and mRNA levels of osteoblast differentiation markers ALP, bone sialoprotein, and osteocalcin. In summary, although fibrin sealants were shown to have little influence on osteogenesis, their combination with bone-inducing growth factors such as rhBMP9 may serve as an attractive carrier/scaffold for future bone regenerative strategies. Future animal studies are now necessary.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery (Chair: Prof. Tateyuki Iizuka, MD, DDS, PhD), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern, Switzerland; Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima, Japan.
| | - Matthias Mottini
- Department of Cranio-Maxillofacial Surgery (Chair: Prof. Tateyuki Iizuka, MD, DDS, PhD), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern, Switzerland
| | - Eizaburo Kobayashi
- Department of Cranio-Maxillofacial Surgery (Chair: Prof. Tateyuki Iizuka, MD, DDS, PhD), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery (Chair: Prof. Tateyuki Iizuka, MD, DDS, PhD), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern, Switzerland
| | - Richard J Miron
- Department of Periodontology, College of Dental Medicine Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, Florida, USA
| |
Collapse
|
35
|
Fujioka-Kobayashi M, Schaller B, Saulacic N, Zhang Y, Miron RJ. Growth factor delivery of BMP9 using a novel natural bovine bone graft with integrated atelo-collagen type I: Biosynthesis, characterization, and cell behavior. J Biomed Mater Res A 2016; 105:408-418. [DOI: 10.1002/jbm.a.35921] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Periodontology, College of Dental Medicine; Nova Southeastern University; Fort Lauderdale Florida
- Department of Cranio-Maxillofacial Surgery; Bern University Hospital; Inselspital Switzerland
- Department of Oral Surgery; Institute of Biomedical Sciences, Tokushima University Graduate School; Tokushima Japan
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery; Bern University Hospital; Inselspital Switzerland
| | - Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery; Bern University Hospital; Inselspital Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology; University of Wuhan; China
| | - Richard J. Miron
- Department of Periodontology, College of Dental Medicine; Nova Southeastern University; Fort Lauderdale Florida
| |
Collapse
|