1
|
Liang Y, Kong Y, Rao M, Zhou X, Li C, Meng Y, Chen Y, Li H, Luo Z. Inhibition of ESCRT-independent extracellular vesicles biogenesis suppresses enterovirus 71 replication and pathogenesis in mice. Int J Biol Macromol 2024; 267:131453. [PMID: 38588842 DOI: 10.1016/j.ijbiomac.2024.131453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Enterovirus 71 (EV71) causes hand-foot-and-mouth disease (HFMD), neurological complications, and even fatalities in infants. Clinically, the increase of extracellular vesicles (EVs) in EV71 patients' serum was highly associated with the severity of HFMD. EV71 boosts EVs biogenesis in an endosomal sorting complex required for transport (ESCRT)-dependent manner to facilitate viral replication. Yet, the impact of EVs-derived from ESCRT-independent pathway on EV71 replication and pathogenesis is highly concerned. Here, we assessed the effects of EV71-induced EVs from ESCRT-independent pathway on viral replication and pathogenesis by GW4869, a neutral sphingomyelinase inhibitor. Detailly, in EV71-infected mice, blockade of the biogenesis of tissue-derived EVs in the presence of GW4869 restored body weight loss, attenuated clinical scores, and improved survival rates. Furthermore, GW4869 dampens EVs biogenesis to reduce viral load and pathogenesis in multiple tissues of EV71-infected mice. Consistently, GW4869 treatment in a human intestinal epithelial HT29 cells decreased the biogenesis of EVs, in which the progeny EV71 particle was cloaked, leading to the reduction of viral infection and replication. Collectively, GW4869 inhibits EV71-induced EVs in an ESCRT-independent pathway and ultimately suppresses EV71 replication and pathogenesis. Our study provides a novel strategy for the development of therapeutic agents in the treatment for EV71-associated HFMD.
Collapse
Affiliation(s)
- Yicong Liang
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yue Kong
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou 510632, China
| | - Menglan Rao
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xing Zhou
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Chengcheng Li
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi Meng
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yanxi Chen
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hongjian Li
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Bioscience and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.
| | - Zhen Luo
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China.
| |
Collapse
|
2
|
Guercio A, Mira F, Di Bella S, Gucciardi F, Lastra A, Purpari G, Castronovo C, Pennisi M, Di Marco Lo Presti V, Rizzo M, Giudice E. Biomolecular Analysis of Canine Distemper Virus Strains in Two Domestic Ferrets ( Mustela putorius furo). Vet Sci 2023; 10:375. [PMID: 37368761 DOI: 10.3390/vetsci10060375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Canine distemper is a contagious and severe systemic viral disease that affects domestic and wild carnivores worldwide. In this study, two adult female ferrets (Mustela putorius furo) were evaluated for cutaneous lesions. Scab, fur, and swab samples from the external auditory canal, cutaneous lesions, and scrapings were analyzed. Canine distemper virus (CDV)-positive samples underwent RT-PCR/RFLP with the restriction enzyme PsiI, and the hemagglutinin gene sequence was obtained. According to the restriction enzyme and sequence analyses, the viral strains were typed as CDV field strains that are included within the Europe lineage and distinct from those including vaccinal CDV strains. The sequence analysis showed the highest nucleotide identity rates in older Europe lineage CDV strains collected from dogs and a fox in Europe. This study is the first to report on CDV infection in ferrets in southern Italy and contributes to the current knowledge about natural CDV infection in this species. In conclusion, vaccination remains crucial for preventing the disease and counteracting cross-species infection. Molecular biology techniques can enable the monitoring of susceptible wild animals by ensuring the active surveillance of CDV spread.
Collapse
Affiliation(s)
- Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via G. Marinuzzi, 3, 90129 Palermo, Italy
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via G. Marinuzzi, 3, 90129 Palermo, Italy
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy
| | - Santina Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via G. Marinuzzi, 3, 90129 Palermo, Italy
| | - Francesca Gucciardi
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via G. Marinuzzi, 3, 90129 Palermo, Italy
| | - Antonio Lastra
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via G. Marinuzzi, 3, 90129 Palermo, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via G. Marinuzzi, 3, 90129 Palermo, Italy
| | - Calogero Castronovo
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via G. Marinuzzi, 3, 90129 Palermo, Italy
| | - Melissa Pennisi
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy
| | | | - Maria Rizzo
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy
| | - Elisabetta Giudice
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy
| |
Collapse
|
3
|
Nieto-Garai JA, Contreras FX, Arboleya A, Lorizate M. Role of Protein-Lipid Interactions in Viral Entry. Adv Biol (Weinh) 2022; 6:e2101264. [PMID: 35119227 DOI: 10.1002/adbi.202101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Indexed: 12/25/2022]
Abstract
The viral entry consists of several sequential events that ensure the attachment of the virus to the host cell and the introduction of its genetic material for the continuation of the replication cycle. Both cellular and viral lipids have gained a wider focus in recent years in the field of viral entry, as they are found to play key roles in different steps of the process. The specific role is summarized that lipids and lipid membrane nanostructures play in viral attachment, fusion, and immune evasion and how they can be targeted with antiviral therapies. Finally, some of the limitations of techniques commonly used for protein-lipid interactions studies are discussed, and new emerging tools are reviewed that can be applied to this field.
Collapse
Affiliation(s)
- Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain
| | - Francesc-Xabier Contreras
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Aroa Arboleya
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Barrio Sarriena s/n, Leioa, E-48940, Spain
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
| |
Collapse
|
4
|
Dong J, Chen Y, Shi L, Shen B, Sun X, Ruan K, Xia X, Feng H, Feng N. Nanoparticles of conformation-stabilized canine distemper virus hemagglutinin are highly immunogenic and induce robust immunity. Virol J 2021; 18:229. [PMID: 34809642 PMCID: PMC8607554 DOI: 10.1186/s12985-021-01702-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background Canine distemper virus (CDV) infection of ferrets, dogs, and giant pandas causes an acute systemic disease involving multiple organ systems, including the respiratory tract, lymphoid system, and central nervous system. In this study, we tested a new candidate CDV vaccine-CDV nanoparticles-based on hemagglutinin protein. Methods The nanoparticles were generated from conformation-stabilized CDV hemagglutinin tetramers. Immune responses against CDV were evaluated in mice. Immunization was initiated 6 weeks after birth and boosted two times with 4-week intervals. The blood and mucosal samples were collected 2 weeks after each immunization. Results Vaccination with CDV nanoparticles elicited high levels of IgG antibody titers in mice (approximately sevenfold to eightfold higher than that obtained with soluble CDV H protein) and mucosal immune responses and developed increased CDV-specific neutralizing antibody. The mice that received nanoparticles showed significantly higher IFN-γ- and IL-4-secreting cell population in the spleen and lymph node compared with mice immunized with soluble H protein. The co-stimulatory molecular expression of CD80 and CD86 on the surface of DCs was also upregulated. Conclusion The results demonstrate that self-assembly into nanoparticles can increase the immunogenicity of vaccine antigens, and nanoparticles assembled from conformation-stabilized CDV H protein can serve as a new CDV vaccine.
Collapse
Affiliation(s)
- Jingjian Dong
- Medical School of Jiaxing University, Jiahang Road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314001, People's Republic of China
| | - Yan Chen
- Medical School of Jiaxing University, Jiahang Road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314001, People's Republic of China
| | - Lili Shi
- Medical School of Jiaxing University, Jiahang Road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314001, People's Republic of China
| | - Bing Shen
- Medical School of Jiaxing University, Jiahang Road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314001, People's Republic of China
| | - Xianliang Sun
- Medical School of Jiaxing University, Jiahang Road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314001, People's Republic of China
| | - Kaiyi Ruan
- Medical School of Jiaxing University, Jiahang Road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314001, People's Republic of China
| | - Xianzhu Xia
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, 130122, People's Republic of China
| | - Hao Feng
- Medical School of Jiaxing University, Jiahang Road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314001, People's Republic of China.
| | - Na Feng
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, 130122, People's Republic of China.
| |
Collapse
|
5
|
Ceramide and Related Molecules in Viral Infections. Int J Mol Sci 2021; 22:ijms22115676. [PMID: 34073578 PMCID: PMC8197834 DOI: 10.3390/ijms22115676] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 02/08/2023] Open
Abstract
Ceramide is a lipid messenger at the heart of sphingolipid metabolism. In concert with its metabolizing enzymes, particularly sphingomyelinases, it has key roles in regulating the physical properties of biological membranes, including the formation of membrane microdomains. Thus, ceramide and its related molecules have been attributed significant roles in nearly all steps of the viral life cycle: they may serve directly as receptors or co-receptors for viral entry, form microdomains that cluster entry receptors and/or enable them to adopt the required conformation or regulate their cell surface expression. Sphingolipids can regulate all forms of viral uptake, often through sphingomyelinase activation, and mediate endosomal escape and intracellular trafficking. Ceramide can be key for the formation of viral replication sites. Sphingomyelinases often mediate the release of new virions from infected cells. Moreover, sphingolipids can contribute to viral-induced apoptosis and morbidity in viral diseases, as well as virus immune evasion. Alpha-galactosylceramide, in particular, also plays a significant role in immune modulation in response to viral infections. This review will discuss the roles of ceramide and its related molecules in the different steps of the viral life cycle. We will also discuss how novel strategies could exploit these for therapeutic benefit.
Collapse
|
6
|
Ojeda N, Salazar C, Cárdenas C, Marshall SH. Expression of DC-SIGN-like C-Type Lectin Receptors in Salmo salar. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103806. [PMID: 32739503 PMCID: PMC7392198 DOI: 10.1016/j.dci.2020.103806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 05/05/2023]
Abstract
C-Type Lectin Receptors (CTLR) are involved in the activation of innate and adaptative immune responses. Among these receptors, the Dendritic Cell-Specific ICAM-3-Grabbing nonintegrin (DC-SIGN/CD209) has become a hot topic due to its ability to bind and facilitate the infections processes of several pathogens. Although well characterized in mammals, little documentation exists about the receptor in salmonid fishes. Here, we report the sequence and expression analysis of eight DC-SIGN-like genes in Salmo salar. Each receptor displays structural similarities to DC-SIGN molecules described in mammals, including internalization motifs, a neck region with heptad repeats, and a Ca+2-dependent carbohydrate recognition domain. The receptors are expressed in multiple tissues of fish, and fish cell lines, with differential expression upon infection with viral and bacterial pathogens. The identification of DC-SIGN-like receptors in Salmo salar provides new information regarding the structure of the immune system of salmon, potential markers for cell subsets, as well as insights into DC-SIGN conservation across species.
Collapse
Affiliation(s)
- Nicolás Ojeda
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Carolina Salazar
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Constanza Cárdenas
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Sergio H Marshall
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile.
| |
Collapse
|
7
|
Ferren M, Horvat B, Mathieu C. Measles Encephalitis: Towards New Therapeutics. Viruses 2019; 11:E1017. [PMID: 31684034 PMCID: PMC6893791 DOI: 10.3390/v11111017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
Measles remains a major cause of morbidity and mortality worldwide among vaccine preventable diseases. Recent decline in vaccination coverage resulted in re-emergence of measles outbreaks. Measles virus (MeV) infection causes an acute systemic disease, associated in certain cases with central nervous system (CNS) infection leading to lethal neurological disease. Early following MeV infection some patients develop acute post-infectious measles encephalitis (APME), which is not associated with direct infection of the brain. MeV can also infect the CNS and cause sub-acute sclerosing panencephalitis (SSPE) in immunocompetent people or measles inclusion-body encephalitis (MIBE) in immunocompromised patients. To date, cellular and molecular mechanisms governing CNS invasion are still poorly understood. Moreover, the known MeV entry receptors are not expressed in the CNS and how MeV enters and spreads in the brain is not fully understood. Different antiviral treatments have been tested and validated in vitro, ex vivo and in vivo, mainly in small animal models. Most treatments have high efficacy at preventing infection but their effectiveness after CNS manifestations remains to be evaluated. This review describes MeV neural infection and current most advanced therapeutic approaches potentially applicable to treat MeV CNS infection.
Collapse
Affiliation(s)
- Marion Ferren
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| | - Branka Horvat
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| | - Cyrille Mathieu
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| |
Collapse
|
8
|
Derakhshani S, Kurz A, Japtok L, Schumacher F, Pilgram L, Steinke M, Kleuser B, Sauer M, Schneider-Schaulies S, Avota E. Measles Virus Infection Fosters Dendritic Cell Motility in a 3D Environment to Enhance Transmission to Target Cells in the Respiratory Epithelium. Front Immunol 2019; 10:1294. [PMID: 31231395 PMCID: PMC6560165 DOI: 10.3389/fimmu.2019.01294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/21/2019] [Indexed: 12/16/2022] Open
Abstract
Transmission of measles virus (MV) from dendritic to airway epithelial cells is considered as crucial to viral spread late in infection. Therefore, pathways and effectors governing this process are promising targets for intervention. To identify these, we established a 3D respiratory tract model where MV transmission by infected dendritic cells (DCs) relied on the presence of nectin-4 on H358 lung epithelial cells. Access to recipient cells is an important prerequisite for transmission, and we therefore analyzed migration of MV-exposed DC cultures within the model. Surprisingly, enhanced motility toward the epithelial layer was observed for MV-infected DCs as compared to their uninfected siblings. This occurred independently of factors released from H358 cells indicating that MV infection triggered cytoskeletal remodeling associated with DC polarization enforced velocity. Accordingly, the latter was also observed for MV-infected DCs in collagen matrices and was particularly sensitive to ROCK inhibition indicating infected DCs preferentially employed the amoeboid migration mode. This was also implicated by loss of podosomes and reduced filopodial activity both of which were retained in MV-exposed uninfected DCs. Evidently, sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) as produced in response to virus-infection in DCs contributed to enhanced velocity because this was abrogated upon inhibition of sphingosine kinase activity. These findings indicate that MV infection promotes a push-and-squeeze fast amoeboid migration mode via the SphK/S1P system characterized by loss of filopodia and podosome dissolution. Consequently, this enables rapid trafficking of virus toward epithelial cells during viral exit.
Collapse
Affiliation(s)
| | - Andreas Kurz
- Department for Biotechnology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Lukasz Japtok
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Fabian Schumacher
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Lisa Pilgram
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Maria Steinke
- Fraunhofer Institute for Silicate Research ISC, Chair of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Markus Sauer
- Department for Biotechnology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | | | - Elita Avota
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
9
|
Jia L, Zhang R. Comprehensive Bioinformatics Analysis of the Immune Mechanism of Dendritic Cells Against Measles Virus. Med Sci Monit 2019; 25:903-912. [PMID: 30705250 PMCID: PMC6367888 DOI: 10.12659/msm.912949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The purpose of this study was to explore the immune mechanism of dendritic cells (DCs) against measles virus (MV), and to identify potential biomarkers to improve measles prevention and treatment. Material/Methods The gene expression profile of GSE980, which comprised 10 DC samples from human blood infected with MV (RNA was isolated at 3, 6, 12, and 24 h post-infection) and 4 normal DC control samples, was obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between the MV-infected DC samples and the control samples were screened using Genevestigator software. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were performed using GenCLip 2.0 and STRING 10.5 software. The protein–protein interaction (PPI) network was established using Cytoscape 3.4.0. Results The gene expression profiles of MV-infected DCs were obviously changed. Twenty-six common DEGs (0.9%, MV-infected DCs vs. normal DCs) were identified at 4 different time points, including 14 down-regulated and 12 up-regulated genes (P=0.001). GO analysis showed that DEGs were significantly enriched in defense response to virus, type I interferon signaling pathway, et al. ISG15 and CXCL10 were the key genes in the PPI network of the DEGs, and may interact directly with the type I interferon signaling and defense response to virus signaling. Conclusions The DEGs increased gradually with the duration of MV infection. The type I interferon signaling pathway and the defense response to viral processes can be activated against MV by ISG15 and CXCL10 in DCs. These may provide novel targets for the treatment of MV.
Collapse
Affiliation(s)
- Lili Jia
- College of Humanities and Management, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China (mainland)
| | - Rongqiang Zhang
- College of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China (mainland)
| |
Collapse
|
10
|
Carrier Cells for Delivery of Oncolytic Measles Virus into Tumors: Determinants of Efficient Loading. Virol Sin 2018; 33:234-240. [PMID: 29767404 DOI: 10.1007/s12250-018-0033-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/11/2018] [Indexed: 12/22/2022] Open
Abstract
Oncolytic measles virus (OMV) is a promising antitumor agent. However, the presence of anti-measles neutralizing antibodies (NAbs) against the hemagglutinin (H) protein of OMV is a major barrier to the therapeutic application of OMV in clinical practice. In order to overcome this challenge, specific types of cells have been used as carriers for OMV. Differential loading strategies appear to result in different therapeutic outcomes; despite this, only few studies have reported practical ex vivo loading strategies required for effective treatment. To this end, we systematically evaluated the antitumor efficacy of OMV using different loading strategies; this involved varying the in vitro loading duration and loading dose of OMV. We found that improved oncolysis of carrier cells was achieved by a prolonged loading duration in the absence of NAbs. However, the enhanced oncolytic effect was abrogated in the presence of NAbs. Further, we found that the expression of H protein on the surface of carrier cells was predominantly determined by the loading duration rather than the loading dose. Finally, we showed that NAbs blocked viral transfer by targeting H protein prior to the occurrence of cell-to-cell interactions. Our results provide comprehensive information on the determinants of an effective loading strategy for carrier cell-based virotherapy; these results may be useful for guiding the application of OMV as an antitumor agent in clinical practice.
Collapse
|
11
|
Biophysical Properties and Antiviral Activities of Measles Fusion Protein Derived Peptide Conjugated with 25-Hydroxycholesterol. Molecules 2017; 22:molecules22111869. [PMID: 29088094 PMCID: PMC5775476 DOI: 10.3390/molecules22111869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022] Open
Abstract
Measles virus (MV) infection is re-emerging, despite the availability of an effective vaccine. The mechanism of MV entry into a target cell relies on coordinated action between the MV hemagglutinin (H) receptor binding protein and the fusion envelope glycoprotein (F) which mediates fusion between the viral and cell membranes. Peptides derived from the C-terminal heptad repeat (HRC) of F can interfere with this process, blocking MV infection. As previously described, biophysical properties of HRC-derived peptides modulate their antiviral potency. In this work, we characterized a MV peptide fusion inhibitor conjugated to 25-hydroxycholesterol (25HC), a cholesterol derivative with intrinsic antiviral activity, and evaluated its interaction with membrane model systems and human blood cells. The peptide (MV.
Collapse
|
12
|
In Vivo Efficacy of Measles Virus Fusion Protein-Derived Peptides Is Modulated by the Properties of Self-Assembly and Membrane Residence. J Virol 2016; 91:JVI.01554-16. [PMID: 27733647 DOI: 10.1128/jvi.01554-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/04/2016] [Indexed: 01/08/2023] Open
Abstract
Measles virus (MV) infection is undergoing resurgence and remains one of the leading causes of death among young children worldwide despite the availability of an effective measles vaccine. MV infects its target cells by coordinated action of the MV hemagglutinin (H) and fusion (F) envelope glycoproteins; upon receptor engagement by H, the prefusion F undergoes a structural transition, extending and inserting into the target cell membrane and then refolding into a postfusion structure that fuses the viral and cell membranes. By interfering with this structural transition of F, peptides derived from the heptad repeat (HR) regions of F can inhibit MV infection at the entry stage. In previous work, we have generated potent MV fusion inhibitors by dimerizing the F-derived peptides and conjugating them to cholesterol. We have shown that prophylactic intranasal administration of our lead fusion inhibitor efficiently protects from MV infection in vivo We show here that peptides tagged with lipophilic moieties self-assemble into nanoparticles until they reach the target cells, where they are integrated into cell membranes. The self-assembly feature enhances biodistribution and the half-life of the peptides, while integration into the target cell membrane increases fusion inhibitor potency. These factors together modulate in vivo efficacy. The results suggest a new framework for developing effective fusion inhibitory peptides. IMPORTANCE Measles virus (MV) infection causes an acute illness that may be associated with infection of the central nervous system (CNS) and severe neurological disease. No specific treatment is available. We have shown that fusion-inhibitory peptides delivered intranasally provide effective prophylaxis against MV infection. We show here that specific biophysical properties regulate the in vivo efficacy of MV F-derived peptides.
Collapse
|
13
|
Measles Virus Fusion Protein: Structure, Function and Inhibition. Viruses 2016; 8:112. [PMID: 27110811 PMCID: PMC4848605 DOI: 10.3390/v8040112] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/26/2016] [Accepted: 04/14/2016] [Indexed: 01/02/2023] Open
Abstract
Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options.
Collapse
|
14
|
Zachariah P, Stockwell MS. Measles vaccine: Past, present, and future. J Clin Pharmacol 2015; 56:133-40. [DOI: 10.1002/jcph.606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/31/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Philip Zachariah
- Department of Pediatrics; Columbia University Medical Center; New York NY 10032 USA
- NewYork-Presbyterian Morgan Stanley Children's Hospital; New York NY 10032 USA
| | - Melissa S. Stockwell
- Department of Pediatrics; Columbia University Medical Center; New York NY 10032 USA
- NewYork-Presbyterian Morgan Stanley Children's Hospital; New York NY 10032 USA
- Department of Population and Family Health; Columbia University Mailman School of Public Health; New York NY 10032 USA
| |
Collapse
|
15
|
Abstract
UNLABELLED Paramyxoviruses, including the human pathogen measles virus (MV), enter host cells by fusing their viral envelope with the target cell membrane. This fusion process is driven by the concerted actions of the two viral envelope glycoproteins, the receptor binding protein (hemagglutinin [H]) and the fusion (F) protein. H attaches to specific proteinaceous receptors on host cells; once the receptor engages, H activates F to directly mediate lipid bilayer fusion during entry. In a recent MV outbreak in South Africa, several HIV-positive people died of MV central nervous system (CNS) infection. We analyzed the virus sequences from these patients and found that specific intrahost evolution of the F protein had occurred and resulted in viruses that are "CNS adapted." A mutation in F of the CNS-adapted virus (a leucine-to-tryptophan change present at position 454) allows it to promote fusion with less dependence on engagement of H by the two known wild-type (wt) MV cellular receptors. This F protein is activated independently of H or the receptor and has reduced thermal stability and increased fusion activity compared to those of the corresponding wt F. These functional effects are the result of the single L454W mutation in F. We hypothesize that in the absence of effective cellular immunity, such as HIV infection, MV variants bearing altered fusion machinery that enabled efficient spread in the CNS underwent positive selection. IMPORTANCE Measles virus has become a concern in the United States and Europe due to recent outbreaks and continues to be a significant global problem. While live immunization is available, there are no effective therapies or prophylactics to combat measles infection in unprotected people. Additionally, vaccination does not adequately protect immunocompromised people, who are vulnerable to the more severe CNS manifestations of disease. We found that strains isolated from patients with measles virus infection of the CNS have fusion properties different from those of strains previously isolated from patients without CNS involvement. Specifically, the viral entry machinery is more active and the virus can spread, even in the absence of H. Our findings are consistent with an intrahost evolution of the fusion machinery that leads to neuropathogenic MV variants.
Collapse
|
16
|
Prevention of measles virus infection by intranasal delivery of fusion inhibitor peptides. J Virol 2014; 89:1143-55. [PMID: 25378493 DOI: 10.1128/jvi.02417-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Measles virus (MV) infection is undergoing resurgence and remains one of the leading causes of death among young children worldwide despite the availability of an effective measles vaccine. MV infects its target cells by coordinated action of the MV H and the fusion (F) envelope glycoprotein; upon receptor engagement by H, the prefusion F undergoes a structural transition, extending and inserting into the target cell membrane and then refolding into a postfusion structure that fuses the viral and cell membranes. By interfering with this structural transition of F, peptides derived from the heptad-repeat (HR) regions of F can potently inhibit MV infection at the entry stage. We show here that specific features of H's interaction with its receptors modulate the susceptibility of MV F to peptide fusion inhibitors. A higher concentration of inhibitory peptides is required to inhibit F-mediated fusion when H is engaged to its nectin-4 receptor than when H is engaged to its CD150 receptor. Peptide inhibition of F may be subverted by continued engagement of receptor by H, a finding that highlights the ongoing role of H-receptor interaction after F has been activated and that helps guide the design of more potent inhibitory peptides. Intranasal administration of these peptides results in peptide accumulation in the airway epithelium with minimal systemic levels of peptide and efficiently prevents MV infection in vivo in animal models. The results suggest an antiviral strategy for prophylaxis in vulnerable and/or immunocompromised hosts. IMPORTANCE Measles virus (MV) infection causes an acute illness that may be associated with infection of the central nervous system (CNS) and severe neurological disease. No specific treatment is available. We have shown that parenterally delivered fusion-inhibitory peptides protect mice from lethal CNS MV disease. Here we show, using established small-animal models of MV infection, that fusion-inhibitory peptides delivered intranasally provide effective prophylaxis against MV infection. Since the fusion inhibitors are stable at room temperature, this intranasal strategy is feasible even outside health care settings, could be used to protect individuals and communities in case of MV outbreaks, and could complement global efforts to control measles.
Collapse
|
17
|
Hoving JC, Wilson GJ, Brown GD. Signalling C-type lectin receptors, microbial recognition and immunity. Cell Microbiol 2014; 16:185-94. [PMID: 24330199 PMCID: PMC4016756 DOI: 10.1111/cmi.12249] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 12/16/2022]
Abstract
Signalling C‐type lectin receptors (CLRs) are crucial in shaping the immune response to fungal pathogens, but comparably little is known about the role of these receptors in bacterial, viral and parasitic infections. CLRs have many diverse functions depending on the signalling motifs in their cytoplasmic domains, and can induce endocytic, phagocytic, antimicrobial, pro‐inflammatory or anti‐inflammatory responses which are either protective or not during an infection. Understanding the role of CLRs in shaping anti‐microbial immunity offers great potential for the future development of therapeutics for disease intervention. In this review we will focus on the recognition of bacterial, viral and parasitic pathogens by CLRs, and how these receptors influence the outcome of infection. We will also provide a brief update on the role of CLRs in antifungal immunity.
Collapse
Affiliation(s)
- J Claire Hoving
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | | | | |
Collapse
|