1
|
Lian S, Luo Y, Chen Z, Wei X, Liu J, Zhu G, Xia P. Deficiency of the flagellin subunit FliC exacerbates the pathogenicity of extraintestinal pathogenic Escherichia coli in BALB/c mice by inducing a more intense inflammation. Int J Biol Macromol 2025; 289:138761. [PMID: 39694390 DOI: 10.1016/j.ijbiomac.2024.138761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/17/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) can cause systemic infections in livestock and poultry. Flagellin, a classical virulence factor, acts as a promoter of cell adhesion and invasion, as well as an inducer of inflammatory responses during intestinal pathogen infection. Further understanding is needed regarding the interaction between flagellin and host within the extra-intestinal ecological niche to facilitate a deeper comprehension of ExPEC infection mechanisms. In this study, we constructed a FliC mutant strain (ΔfliC) of ExPEC XM which exhibited reduced motility and enhanced biofilm formation in vitro assays. The ΔfliC strain also demonstrated diminished adherence and invasion capabilities on hBMEC cells while inducing decreased levels of apoptosis. In vivo experiments with BALB/c mice revealed that the ΔfliC strain displayed enhanced pathogenicity compared to wild-type strains, resulting in an earlier time to death, higher tissue load, severe bacteremia, and more intense inflammatory response observed in serum and tissues. These results suggest that the flagellar protein FliC plays different roles for extraintestinal pathogens compared to enteric pathogens. This study further elucidates the functional role of FliC in ExPEC infection while providing a research basis for exploring pathogenic mechanisms and prevention/control strategies for systemic infectious bacterial diseases.
Collapse
Affiliation(s)
- Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
| | - Yi Luo
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
| | - Ziyue Chen
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
| | - Xing Wei
- Zhenjiang Animal Disease Prevention and Control Center, Zhenjiang 212000, China
| | - Jiaqi Liu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
| | - Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Tian T, Zhu Y, Shi J, Shang K, Yin Z, Shi H, He Y, Ding J, Zhang F. The development of a human Brucella mucosal vaccine: What should be considered? Life Sci 2024; 355:122986. [PMID: 39151885 DOI: 10.1016/j.lfs.2024.122986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Brucellosis is a chronic infectious disease that is zoonotic in nature. Brucella can infect humans through interactions with livestock, primarily via the digestive tract, respiratory tract, and oral cavity. This bacterium has the potential to be utilized as a biological weapon and is classified as a Category B pathogen by the Centers for Disease Control and Prevention. Currently, there is no approved vaccine for humans against Brucella, highlighting an urgent need for the development of a vaccine to mitigate the risks posed by this pathogen. Brucella primarily infects its host by adhering to and penetrating mucosal surfaces. Mucosal immunity plays a vital role in preventing local infections, clearing microorganisms from mucosal surfaces, and inhibiting the spread of pathogens. As mucosal vaccine strategies continue to evolve, the development of a safe and effective mucosal vaccine against Brucella appears promising.This paper reviews the immune mechanism of mucosal vaccines, the infection mechanism of Brucella, successful Brucella mucosal vaccines in animals, and mucosal adjuvants. Additionally, it elucidates targeting and optimization strategies for mucosal vaccines to facilitate the development of human vaccines against Brucella.
Collapse
Affiliation(s)
- Tingting Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yuejie Zhu
- Reproductive Fertility Assistance Center, First Afffliated Hospital of Xinjiang Medical University, China
| | - Juan Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Kaiyu Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Zhengwei Yin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Huidong Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yueyue He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Jianbing Ding
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Fengbo Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China; Department of Clinical laboratory, The First Affiliated hospital of Xinjiang Medical University, China.
| |
Collapse
|
3
|
Zhai Y, Fang J, Zheng W, Hao M, Chen J, Liu X, Zhang M, Qi L, Zhou D, Liu W, Jin Y, Wang A. A potential virulence factor: Brucella flagellin FliK does not affect the main biological properties but inhibits the inflammatory response in RAW264.7 cells. Int Immunopharmacol 2024; 133:112119. [PMID: 38648715 DOI: 10.1016/j.intimp.2024.112119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The bacterial flagellum is an elongated filament that protrudes from the cell and is responsible for bacterial motility. It can also be a pathogen-associated molecular pattern (PAMP) that regulates the host immune response and is involved in bacterial pathogenicity. In contrast to motile bacteria, the Brucella flagellum does not serve a motile purpose. Instead, it plays a role in regulating Brucella virulence and the host's immune response, similar to other non-motile bacteria. The flagellin protein, FliK, plays a key role in assembly of the flagellum and also as a potential virulence factor involved in the regulation of bacterial virulence and pathogenicity. In this study, we generated a Brucella suis S2 flik gene deletion strain and its complemented strain and found that deletion of the flik gene has no significant effect on the main biological properties of Brucella, but significantly enhanced the inflammatory response induced by Brucella infection of RAW264.7 macrophages. Further experiments demonstrated that the FliK protein was able to inhibit LPS-induced cellular inflammatory responses by down-regulating the expression of MyD88 and NF-κB, and by decreasing p65 phosphorylation in the NF-κB pathway; it also inhibited the expression of NLRP3 and caspase-1 in the NLRP3 inflammasome pathway. In conclusion, our study suggests that Brucella FliK may act as a virulence factor involved in the regulation of Brucella pathogenicity and modulation of the host immune response.
Collapse
Affiliation(s)
- Yunyi Zhai
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jiaoyang Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Weifang Zheng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jialu Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - XiaoFang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - MengYu Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Lin Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
4
|
Yu H, Gu X, Wang D, Wang Z. Brucella infection and Toll-like receptors. Front Cell Infect Microbiol 2024; 14:1342684. [PMID: 38533384 PMCID: PMC10963510 DOI: 10.3389/fcimb.2024.1342684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/17/2024] [Indexed: 03/28/2024] Open
Abstract
Brucella consists of gram-negative bacteria that have the ability to invade and replicate in professional and non-professional phagocytes, and its prolonged persistence in the host leads to brucellosis, a serious zoonosis. Toll-like receptors (TLRs) are the best-known sensors of microorganisms implicated in the regulation of innate and adaptive immunity. In particular, TLRs are transmembrane proteins with a typical structure of an extracellular leucine-rich repeat (LRR) region and an intracellular Toll/interleukin-1 receptor (TIR) domain. In this review, we discuss Brucella infection and the aspects of host immune responses induced by pathogens. Furthermore, we summarize the roles of TLRs in Brucella infection, with substantial emphasis on the molecular insights into its mechanisms of action.
Collapse
Affiliation(s)
- Hui Yu
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Xinyi Gu
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Danfeng Wang
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| |
Collapse
|
5
|
Pellegrini JM, Gorvel JP, Mémet S. Immunosuppressive Mechanisms in Brucellosis in Light of Chronic Bacterial Diseases. Microorganisms 2022; 10:1260. [PMID: 35888979 PMCID: PMC9324529 DOI: 10.3390/microorganisms10071260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
Brucellosis is considered one of the major zoonoses worldwide, constituting a critical livestock and human health concern with a huge socio-economic burden. Brucella genus, its etiologic agent, is composed of intracellular bacteria that have evolved a prodigious ability to elude and shape host immunity to establish chronic infection. Brucella's intracellular lifestyle and pathogen-associated molecular patterns, such as its specific lipopolysaccharide (LPS), are key factors for hiding and hampering recognition by the immune system. Here, we will review the current knowledge of evading and immunosuppressive mechanisms elicited by Brucella species to persist stealthily in their hosts, such as those triggered by their LPS and cyclic β-1,2-d-glucan or involved in neutrophil and monocyte avoidance, antigen presentation impairment, the modulation of T cell responses and immunometabolism. Attractive strategies exploited by other successful chronic pathogenic bacteria, including Mycobacteria, Salmonella, and Chlamydia, will be also discussed, with a special emphasis on the mechanisms operating in brucellosis, such as granuloma formation, pyroptosis, and manipulation of type I and III IFNs, B cells, innate lymphoid cells, and host lipids. A better understanding of these stratagems is essential to fighting bacterial chronic infections and designing innovative treatments and vaccines.
Collapse
|
6
|
Hiyoshi H, English BC, Diaz-Ochoa VE, Wangdi T, Zhang LF, Sakaguchi M, Haneda T, Tsolis RM, Bäumler AJ. Virulence factors perforate the pathogen-containing vacuole to signal efferocytosis. Cell Host Microbe 2022; 30:163-170.e6. [PMID: 34951948 PMCID: PMC8831471 DOI: 10.1016/j.chom.2021.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/20/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
Intracellular pathogens commonly reside within macrophages to find shelter from humoral defenses, but host cell death can expose them to the extracellular milieu. We find intracellular pathogens solve this dilemma by using virulence factors to generate a complement-dependent find-me signal that initiates uptake by a new phagocyte through efferocytosis. During macrophage death, Salmonella uses a type III secretion system to perforate the membrane of the pathogen-containing vacuole (PCV), thereby triggering complement deposition on bacteria entrapped in pore-induced intracellular traps (PITs). In turn, complement activation signals neutrophil efferocytosis, a process that shelters intracellular bacteria from the respiratory burst. Similarly, Brucella employs its type IV secretion system to perforate the PCV membrane, which induces complement deposition on bacteria entrapped in PITs. Collectively, this work identifies virulence factor-induced perforation of the PCV as a strategy of intracellular pathogens to generate a find-me signal for efferocytosis.
Collapse
Affiliation(s)
- Hirotaka Hiyoshi
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Bevin C English
- Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Vladimir E Diaz-Ochoa
- Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Tamding Wangdi
- Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Lillian F Zhang
- Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takeshi Haneda
- Laboratory of Microbiology, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Coloma-Rivero RF, Flores-Concha M, Molina RE, Soto-Shara R, Cartes Á, Oñate ÁA. Brucella and Its Hidden Flagellar System. Microorganisms 2021; 10:83. [PMID: 35056531 PMCID: PMC8781033 DOI: 10.3390/microorganisms10010083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella, a Gram-negative bacterium with a high infective capacity and a wide spectrum of hosts in the animal world, is found in terrestrial and marine mammals, as well as amphibians. This broad spectrum of hosts is closely related to the non-classical virulence factors that allow this pathogen to establish its replicative niche, colonizing epithelial and immune system cells, evading the host's defenses and defensive response. While motility is the primary role of the flagellum in most bacteria, in Brucella, the flagellum is involved in virulence, infectivity, cell growth, and biofilm formation, all of which are very important facts in a bacterium that to date has been described as a non-motile organism. Evidence of the expression of these flagellar proteins that are present in Brucella makes it possible to hypothesize certain evolutionary aspects as to where a free-living bacterium eventually acquired genetic material from environmental microorganisms, including flagellar genes, conferring on it the ability to reach other hosts (mammals), and, under selective pressure from the environment, can express these genes, helping it to evade the immune response. This review summarizes relevant aspects of the presence of flagellar proteins and puts into context their relevance in certain functions associated with the infective process. The study of these flagellar genes gives the genus Brucella a very high infectious versatility, placing it among the main organisms in urgent need of study, as it is linked to human health by direct contact with farm animals and by eventual transmission to the general population, where flagellar genes and proteins are of great relevance.
Collapse
Affiliation(s)
| | | | | | | | | | - Ángel A. Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4030000, Chile; (R.F.C.-R.); (M.F.-C.); (R.E.M.); (R.S.-S.); (Á.C.)
| |
Collapse
|
8
|
Undercover Agents of Infection: The Stealth Strategies of T4SS-Equipped Bacterial Pathogens. Toxins (Basel) 2021; 13:toxins13100713. [PMID: 34679006 PMCID: PMC8539587 DOI: 10.3390/toxins13100713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Intracellular bacterial pathogens establish their replicative niches within membrane-encompassed compartments, called vacuoles. A subset of these bacteria uses a nanochannel called the type 4 secretion system (T4SS) to inject effector proteins that subvert the host cell machinery and drive the biogenesis of these compartments. These bacteria have also developed sophisticated ways of altering the innate immune sensing and response of their host cells, which allow them to cause long-lasting infections and chronic diseases. This review covers the mechanisms employed by intravacuolar pathogens to escape innate immune sensing and how Type 4-secreted bacterial effectors manipulate host cell mechanisms to allow the persistence of bacteria.
Collapse
|
9
|
Design of a new multi-epitope vaccine against Brucella based on T and B cell epitopes using bioinformatics methods. Epidemiol Infect 2021; 149:e136. [PMID: 34032200 PMCID: PMC8220514 DOI: 10.1017/s0950268821001229] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Brucellosis is one of the most serious and widespread zoonotic diseases, which seriously threatens human health and the national economy. This study was based on the T/B dominant epitopes of Brucella outer membrane protein 22 (Omp22), outer membrane protein 19 (Omp19) and outer membrane protein 28 (Omp28), with bioinformatics methods to design a safe and effective multi-epitope vaccine. The amino acid sequences of the proteins were found in the National Center for Biotechnology Information (NCBI) database, and the signal peptides were predicted by the SignaIP-5.0 server. The surface accessibility and hydrophilic regions of proteins were analysed with the ProtScale software and the tertiary structure model of the proteins predicted by I-TASSER software and labelled with the UCSF Chimera software. The software COBEpro, SVMTriP and BepiPred were used to predict B cell epitopes of the proteins. SYFPEITHI, RANKpep and IEDB were employed to predict T cell epitopes of the proteins. The T/B dominant epitopes of three proteins were combined with HEYGAALEREAG and GGGS linkers, and carriers sequences linked to the N- and C-terminus of the vaccine construct with the help of EAAAK linkers. Finally, the tertiary structure and physical and chemical properties of the multi-epitope vaccine construct were analysed. The allergenicity, antigenicity and solubility of the multi-epitope vaccine construct were 7.37–11.30, 0.788 and 0.866, respectively. The Ramachandran diagram of the mock vaccine construct showed 96.0% residues within the favoured and allowed range. Collectively, our results showed that this multi-epitope vaccine construct has a high-quality structure and suitable characteristics, which may provide a theoretical basis for future laboratory experiments.
Collapse
|
10
|
Zhou D, Zhi F, Fang J, Zheng W, Li J, Zhang G, Chen L, Jin Y, Wang A. RNA-Seq Analysis Reveals the Role of Omp16 in Brucella-Infected RAW264.7 Cells. Front Vet Sci 2021; 8:646839. [PMID: 33748220 PMCID: PMC7970042 DOI: 10.3389/fvets.2021.646839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Brucellosis is an endemic zoonotic infectious disease in the majority of developing countries, which causes huge economic losses. As immunogenic and protective antigens at the surface of Brucella spp., outer membrane proteins (Omps) are particularly attractive for developing vaccine and could have more relevant role in host–pathogen interactions. Omp16, a homolog to peptidoglycan-associated lipoproteins (Pals), is essential for Brucella survival in vitro. At present, the functions of Omp16 have been poorly studied. Here, the gene expression profile of RAW264.7 cells infected with Brucella suis vaccine strain 2 (B. suis S2) and ΔOmp16 was analyzed by RNA-seq to investigate the cellular response immediately after Brucella entry. The RNA-sequence analysis revealed that a total of 303 genes were significantly regulated by B. suis S2 24 h post-infection. Of these, 273 differentially expressed genes (DEGs) were upregulated, and 30 DEGs were downregulated. These DEGs were mainly involved in innate immune signaling pathways, including pattern recognition receptors (PRRs), proinflammatory cytokines, and chemokines by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. In ΔOmp16-infected cells, the expression of 52 total cells genes was significantly upregulated and that of 9 total cells genes were downregulated compared to B. suis S2-infected RAW264.7 cells. The KEGG pathway analysis showed that several upregulated genes were proinflammatory cytokines and chemokines, such as interleukin (IL)-6, IL-11, IL-12β, C–C motif chemokine (CCL2), and CCL22. All together, we clearly demonstrate that ΔOmp16 can alter macrophage immune-related pathways to increase proinflammatory cytokines and chemokines, which provide insights into illuminating the Brucella pathogenic strategies.
Collapse
Affiliation(s)
- Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Feijie Zhi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Jiaoyang Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Weifang Zheng
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Junmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Guangdong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Lei Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
12
|
Abstract
Brucellosis is a bacterial disease of domestic animals and humans. The pathogenic ability of Brucella organisms relies on their stealthy strategy and their capacity to replicate within host cells and to induce long-lasting infections. Brucella organisms barely induce neutrophil activation and survive within these leukocytes by resisting microbicidal mechanisms. Very few Brucella-infected neutrophils are found in the target organs, except for the bone marrow, early in infection. Still, Brucella induces a mild reactive oxygen species formation and, through its lipopolysaccharide, promotes the premature death of neutrophils, which release chemokines and express "eat me" signals. This effect drives the phagocytosis of infected neutrophils by mononuclear cells that become thoroughly susceptible to Brucella replication and vehicles for bacterial dispersion. The premature death of the infected neutrophils proceeds without NETosis, necrosis/oncosis, or classical apoptosis morphology. In the absence of neutrophils, the Th1 response exacerbates and promotes bacterial removal, indicating that Brucella-infected neutrophils dampen adaptive immunity. This modulatory effect opens a window for bacterial dispersion in host tissues before adaptive immunity becomes fully activated. However, the hyperactivation of immunity is not without a price, since neutropenic Brucella-infected animals develop cachexia in the early phases of the disease. The delay in the immunological response seems a sine qua non requirement for the development of long-lasting brucellosis. This property may be shared with other pathogenic alphaproteobacteria closely related to Brucella We propose a model in which Brucella-infected polymorphonuclear neutrophils (PMNs) function as "Trojan horse" vehicles for bacterial dispersal and as modulators of the Th1 adaptive immunity in infection.
Collapse
|
13
|
Sidhu-Muñoz RS, Tejedor C, Vizcaíno N. The Three Flagellar Loci of Brucella ovis PA Are Dispensable for Virulence in Cellular Models and Mice. Front Vet Sci 2020; 7:441. [PMID: 32851024 PMCID: PMC7410920 DOI: 10.3389/fvets.2020.00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022] Open
Abstract
Brucella ovis is a facultative intracellular bacterium that causes a non-zoonotic ovine brucellosis mainly characterized by male genital lesions and is responsible for important economic losses in sheep farming areas. Studies about the virulence mechanisms of Brucella have been mostly performed with smooth (bearing O-polysaccharide in lipopolysaccharide) zoonotic species, and those performed with B. ovis have revealed similarities but also relevant differences. Except for few strains recently isolated from unconventional hosts, Brucella species are non-motile but contain the genes required to assemble a flagellum, which are organized in three main loci of about 18.5, 6.4, and 7.8 kb. Although these loci contain different pseudogenes depending on the non-motile Brucella species, smooth B. melitensis 16M builds a sheathed flagellum under particular culture conditions and requires flagellar genes for virulence. However, nothing is known in this respect regarding other Brucella strains. In this work, we have constructed a panel of B. ovis PA mutants defective in one, two or the three flagellar loci in order to assess their role in virulence of this rough (lacking O-polysaccharide) Brucella species. No relevant differences in growth, outer membrane-related properties or intracellular behavior in cellular models were observed between flagellar mutants and the parental strain, which is in accordance with previous results with B. melitensis 16M single-gene mutants. However, contrary to these B. melitensis mutants, unable to establish a chronic infection in mice, removal of the three flagellar loci in B. ovis did not affect virulence in the mouse model. These results evidence new relevant differences between B. ovis and B. melitensis, two species highly homologous at the DNA level and that cause ovine brucellosis, but that exhibit differences in the zoonotic potential, pathogenicity and tissue tropism.
Collapse
Affiliation(s)
- Rebeca S Sidhu-Muñoz
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Carmen Tejedor
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Nieves Vizcaíno
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
14
|
Coloma-Rivero RF, Gómez L, Alvarez F, Saitz W, Del Canto F, Céspedes S, Vidal R, Oñate AA. The Role of the Flagellar Protein FlgJ in the Virulence of Brucella abortus. Front Cell Infect Microbiol 2020; 10:178. [PMID: 32411617 PMCID: PMC7198779 DOI: 10.3389/fcimb.2020.00178] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/03/2020] [Indexed: 12/28/2022] Open
Abstract
Brucella abortus is a facultative intracellular pathogen that causes a zoonosis called brucellosis. This disease leads to abortion and infertility in cattle, and diverse complications in humans. B. abortus is a successful intracellular bacterium that has developed the ability to evade the host's immune system and it replicates in professional and non-professional phagocytic cells, persisting in the different tissues, and organs of its hosts. It has been described that Brucella expresses a polar flagellum under certain conditions, but its function is still unknown. In this study we evaluated the role of the FlgJ, a protein, presumably a peptidoglycan hydrolase involved in flagellum formation and in the virulence of B. abortus strain 2308. B. abortus 2308 ΔflgJ mutant and complemented strains were constructed to study the function of the FlgJ protein in the context of the virulence of this pathogen in in vitro and in vivo assays. The results showed that the elimination of the flgJ gene delays the growth rate of B. abortus in culture, reduces its intracellular survival capacity in professional and non-professional phagocytic cells, rendering it unable to escape from the endocytic route and not reaching the endoplasmic reticulum. It also negatively affects their persistence in BALB/c mice. Functionally, the B. abortus 2308 flgJ gene restored motility to an E. coli flgJ mutant gene. Furthermore, it was discovered that the production of FlgJ protein is associated with the bacterial adherence by B. abortus. Therefore, although the specific function of the polar flagellum for Brucella is unknown, the data indicates that the flagellar flgJ gene and its product are required for full virulence of B. abortus 2308, since its deletion significantly reduces the fitness of this pathogen in vitro and in vivo.
Collapse
Affiliation(s)
- Roberto F Coloma-Rivero
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Leonardo Gómez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Francisco Alvarez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Waleska Saitz
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.,Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Felipe Del Canto
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sandra Céspedes
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.,Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roberto Vidal
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Angel A Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
15
|
Sadeghi Z, Fasihi-Ramandi M, Azizi M, Bouzari S. Mannosylated chitosan nanoparticles loaded with FliC antigen as a novel vaccine candidate against Brucella melitensis and Brucella abortus infection. J Biotechnol 2020; 310:89-96. [PMID: 32017955 DOI: 10.1016/j.jbiotec.2020.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/12/2020] [Accepted: 01/30/2020] [Indexed: 12/27/2022]
Abstract
Brucellosis is a worldwide bacterial zoonosis disease. Live attenuated Brucella vaccines have several drawbacks. Thus development of a safe and effective vaccine for brucellosis is a concern of many scientists. FliC protein contributes in virulence of Brucella; hence, it is a promising target for brucellosis vaccine. In this study, Mannosylated Chitosan Nanoparticles (MCN) loaded with FliC protein were synthesized as a targeted vaccine delivery system. The immunogenicity and protective efficacy of FliC and FliC-MCN against Brucella infection were evaluated in BALB/c mice. After cloning, expression and purification, FliC protein was loaded on MCN. The particle size, loading efficiency and in vitro release of the NPs were determined. Our investigation revealed that FliC and FliC-MCN could significantly increase specific IgG response (higher IgG2a titers). Besides, spleen cells from immunized mice produced high level of IFN-γ and IL-2 and low level IL-10 cytokines. Immunization with FliC and FliC-MCN conferred significant degree of protection against B. melitensis 16 M and B. abortus 544 infections. Overall these results indicate that FliC protein would be a novel potential antigen candidate for the development of a subunit vaccine against B. melitensis and B. abortus. Moreover, MCN could be used as an adjuvant and targeted vaccine delivery system.
Collapse
Affiliation(s)
- Zohre Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Azizi
- Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
16
|
Poncin K, Gillet S, De Bolle X. Learning from the master: targets and functions of the CtrA response regulator in Brucella abortus and other alpha-proteobacteria. FEMS Microbiol Rev 2018; 42:500-513. [PMID: 29733367 DOI: 10.1093/femsre/fuy019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/02/2018] [Indexed: 12/27/2022] Open
Abstract
The α-proteobacteria are a fascinating group of free-living, symbiotic and pathogenic organisms, including the Brucella genus, which is responsible for a worldwide zoonosis. One common feature of α-proteobacteria is the presence of a conserved response regulator called CtrA, first described in the model bacterium Caulobacter crescentus, where it controls gene expression at different stages of the cell cycle. Here, we focus on Brucella abortus and other intracellular α-proteobacteria in order to better assess the potential role of CtrA in the infectious context. Comparative genomic analyses of the CtrA control pathway revealed the conservation of specific modules, as well as the acquisition of new factors during evolution. The comparison of CtrA regulons also suggests that specific clades of α-proteobacteria acquired distinct functions under its control, depending on the essentiality of the transcription factor. Other CtrA-controlled functions, for instance motility and DNA repair, are proposed to be more ancestral. Altogether, these analyses provide an interesting example of the plasticity of a regulation network, subject to the constraints of inherent imperatives such as cell division and the adaptations to diversified environmental niches.
Collapse
Affiliation(s)
- Katy Poncin
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| | - Sébastien Gillet
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| | - Xavier De Bolle
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| |
Collapse
|
17
|
The relationship between caspase-1 related inflammasome expression and serum inflammatory cytokine levels during acute brucellosis. North Clin Istanb 2018; 6:117-123. [PMID: 31297476 PMCID: PMC6593912 DOI: 10.14744/nci.2018.96992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/22/2018] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Brucellosis is a zoonotic disease caused by Brucella in domestic and wild animals. It also causes systemic diseases with the involvement of different parts of the human body. An efficient innate immune response is crucial to cure brucellosis with optimum antibiotic treatment. The inflammasomes are innate immune system receptors and sensors that regulate the activation of cysteine-dependent aspartate specific protease-1 (caspase-1) and caspase-1-induced cell death process known as pyroptosis. The aim of the present study was to investigate the expression levels of CASPASE-1 and associated inflammasomes AIM2, NLRP3, and NLRC4 to analyze their relationship with the inflammatory cytokine interleukin (IL)-1β, IL-18, and interferon-gamma (IFN-γ) in peripheral blood samples of patients with acute brucellosis with healthy controls. METHODS Peripheral blood samples were obtained from 20 healthy volunteers and 20 patients with acute brucellosis. RNA and serum samples were isolated to examine the expression levels of AIM2, NLRP3, NLRC4, and CASPASE-1 by real-time polymerase chain reaction, and IL-1β, IL-18, and IFN-γ were measured by enzyme-linked immunosorbent assay. RESULTS In the acute brucellosis group, AIM2 and NLRC4 expressions were significantly higher than in healthy volunteers. A significant increase on caspase-1 expression in patients with acute brucellosis was not observed. Serum IL-18 and IFN-γ levels were significantly higher in patients with acute brucellosis than in healthy controls. CONCLUSION Caspase-1-related inflammasomes are sufficiently activated to induce the secretion of cytokines, such as IFN-γ and IL-18, to induce cellular immune response. Caspase-1 activation level should be investigated at different periods of disease in a group with high number of patients to understand the role of pyroptosis and caspase-1 in brucellosis.
Collapse
|
18
|
Tian M, Bao Y, Li P, Hu H, Ding C, Wang S, Li T, Qi J, Wang X, Yu S. The putative amino acid ABC transporter substrate-binding protein AapJ2 is necessary for Brucella virulence at the early stage of infection in a mouse model. Vet Res 2018; 49:32. [PMID: 29598830 PMCID: PMC5874993 DOI: 10.1186/s13567-018-0527-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/12/2018] [Indexed: 01/17/2023] Open
Abstract
Brucellosis is a zoonotic bacterial disease caused by Brucella spp. The virulence of these bacteria is dependent on their ability to invade and replicate within host cells. In a previous study, a putative gene bab_RS27735 encoding an amino acid ABC transporter substrate-binding protein homologous to AapJ protein was found to be involved in Brucella abortus virulence. In this study, we successfully constructed a bab_RS27735 deletion mutant, Δ27735. Compared with the wild-type strain, the lipopolysaccharide pattern of the mutant was not changed, but the growth ability was slightly defected in the exponential phase. In tolerance tests, sensitivity of the Δ27735 mutant to oxidative stress, bactericidal peptides or low pH was not different from that of the wild-type strain. Cell infection assay showed that the mutant was reduced survival within macrophages but could efficiently escape lysosome degradation. The results of a virulence test showed that the Δ27735 mutant was attenuated in a mouse model at the early stage of infection but recovered its virulence at the late stage of infection. Meanwhile, the development of splenomegaly and histopathological lesions was observed in mice infected with either the wild-type strain or the mutant. These results are in line with the release of IL-12p40 and TNF-α into the peripheral blood of infected mice. Besides, expression of diverse genes was up-regulated in the Δ27735 mutant, which may contribute to the reduced virulence of the mutant. These data elucidated that the bab_RS27735 gene is necessary for B. abortus virulence at the early stage of infection in a mouse model.
Collapse
Affiliation(s)
- Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Yanqing Bao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Peng Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Hai Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Xiaolan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China.
| |
Collapse
|
19
|
Valguarnera E, Spera JM, Czibener C, Fulgenzi FR, Casabuono AC, Altabe SG, Pasquevich KA, Guaimas F, Cassataro J, Couto AS, Ugalde JE. RomA, A Periplasmic Protein Involved in the Synthesis of the Lipopolysaccharide, Tunes Down the Inflammatory Response Triggered by Brucella. J Infect Dis 2018; 217:1257-1266. [DOI: 10.1093/infdis/jiy002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/05/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ezequiel Valguarnera
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde,” IIB-INTECH, CONICET, Universidad Nacional de San Martín, San Martín, Buenos Aires
| | - Juan M Spera
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde,” IIB-INTECH, CONICET, Universidad Nacional de San Martín, San Martín, Buenos Aires
| | - Cecilia Czibener
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde,” IIB-INTECH, CONICET, Universidad Nacional de San Martín, San Martín, Buenos Aires
| | - Fabiana R Fulgenzi
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde,” IIB-INTECH, CONICET, Universidad Nacional de San Martín, San Martín, Buenos Aires
| | - Adriana C Casabuono
- Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica–Consejo Nacional de lnvestigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Universidad de Buenos Aires, Buenos Aires
| | - Silvia G Altabe
- Instituto de Biología Molecular y Celular de Rosario (IBR) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Karina A Pasquevich
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde,” IIB-INTECH, CONICET, Universidad Nacional de San Martín, San Martín, Buenos Aires
| | - Francisco Guaimas
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde,” IIB-INTECH, CONICET, Universidad Nacional de San Martín, San Martín, Buenos Aires
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde,” IIB-INTECH, CONICET, Universidad Nacional de San Martín, San Martín, Buenos Aires
| | - Alicia S Couto
- Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica–Consejo Nacional de lnvestigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Universidad de Buenos Aires, Buenos Aires
| | - Juan E Ugalde
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde,” IIB-INTECH, CONICET, Universidad Nacional de San Martín, San Martín, Buenos Aires
| |
Collapse
|
20
|
Hielpos MS, Ferrero MC, Fernández AG, Falivene J, Vanzulli S, Comerci DJ, Baldi PC. Btp Proteins from Brucella abortus Modulate the Lung Innate Immune Response to Infection by the Respiratory Route. Front Immunol 2017; 8:1011. [PMID: 28970827 PMCID: PMC5609629 DOI: 10.3389/fimmu.2017.01011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/07/2017] [Indexed: 01/18/2023] Open
Abstract
Although inhalation of infected aerosols is a frequent route for Brucella infection in humans, it rarely causes pulmonary clinical manifestations, suggesting a mild or nearly absent local inflammatory response. The goal of this study was to characterize the early innate immune response to intratracheal infection with Brucella abortus in mice and to evaluate whether it is modulated by this pathogen. After infection with 106 CFU of B. abortus, the pulmonary bacterial burden at 7 days post-infection (p.i.) was comparable to the initial inoculum, despite an initial transient decline. Brucella was detected in spleen and liver as early as 1 day p.i. IL-1β and MCP-1 increased at 3 days p.i., whereas IL-12, KC, TNF-α, and IFN-γ only increased at 7 days p.i. Histological examination did not reveal peribronchial or perivascular infiltrates in infected mice. Experiments were conducted to evaluate if the limited inflammatory lung response to B. abortusis caused by a bacterial mechanism of TLR signaling inhibition. Whereas inoculation of E. coli LPS to control mice [phosphate-buffered saline (PBS)/LPS] caused lung inflammation, almost no histological changes were observed in mice preinfected intratracheally with B. abortus (WT/LPS). We speculated that the Brucella TIR-containing proteins (Btps) A and B, which impair TLR signaling in vitro, may be involved in this modulation. After LPS challenge, mice preinfected with the B. abortus btpAbtpB double mutant exhibited a stronger pulmonary polymorphonuclear infiltrate than WT/LPS mice, although milder than that of the PBS/LPS group. In addition, lungs from B. abortus btpAbtpB-infected mice presented a stronger inflammatory infiltrate than those infected with the WT strain, and at day 7 p.i., the pulmonary levels of KC, MCP-1, and IL-12 were higher in mice infected with the mutant. This study shows that B. abortus infection produces a mild proinflammatory response in murine lungs, partially due to immune modulation by its Btp proteins. This may facilitate its survival and dissemination to peripheral organs.
Collapse
Affiliation(s)
- Maria Soledad Hielpos
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Mariana C Ferrero
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Andrea G Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Juliana Falivene
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Silvia Vanzulli
- Laboratorio de Anatomía Patológica, Instituto de Estudios Oncológicos, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Diego J Comerci
- Instituto de Investigaciones Biotecnológicas (IIB, UNSAM-CONICET), San Martín, Argentina
| | - Pablo C Baldi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| |
Collapse
|
21
|
Rossetti CA, Drake KL, Lawhon SD, Nunes JS, Gull T, Khare S, Adams LG. Systems Biology Analysis of Temporal In vivo Brucella melitensis and Bovine Transcriptomes Predicts host:Pathogen Protein-Protein Interactions. Front Microbiol 2017; 8:1275. [PMID: 28798726 PMCID: PMC5529337 DOI: 10.3389/fmicb.2017.01275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/26/2017] [Indexed: 01/13/2023] Open
Abstract
To date, fewer than 200 gene-products have been identified as Brucella virulence factors, and most were characterized individually without considering how they are temporally and coordinately expressed or secreted during the infection process. Here, we describe and analyze the in vivo temporal transcriptional profile of Brucella melitensis during the initial 4 h interaction with cattle. Pathway analysis revealed an activation of the "Two component system" providing evidence that the in vivo Brucella sense and actively regulate their metabolism through the transition to an intracellular lifestyle. Contrarily, other Brucella pathways involved in virulence such as "ABC transporters" and "T4SS system" were repressed suggesting a silencing strategy to avoid stimulation of the host innate immune response very early in the infection process. Also, three flagellum-encoded loci (BMEII0150-0168, BMEII1080-1089, and BMEII1105-1114), the "flagellar assembly" pathway and the cell components "bacterial-type flagellum hook" and "bacterial-type flagellum" were repressed in the tissue-associated B. melitensis, while RopE1 sigma factor, a flagellar repressor, was activated throughout the experiment. These results support the idea that Brucella employ a stealthy strategy at the onset of the infection of susceptible hosts. Further, through systems-level in silico host:pathogen protein-protein interactions simulation and correlation of pathogen gene expression with the host gene perturbations, we identified unanticipated interactions such as VirB11::MAPK8IP1; BtaE::NFKBIA, and 22 kDa OMP precursor::BAD and MAP2K3. These findings are suggestive of new virulence factors and mechanisms responsible for Brucella evasion of the host's protective immune response and the capability to maintain a dormant state. The predicted protein-protein interactions and the points of disruption provide novel insights that will stimulate advanced hypothesis-driven approaches toward revealing a clearer understanding of new virulence factors and mechanisms influencing the pathogenesis of brucellosis.
Collapse
Affiliation(s)
- Carlos A Rossetti
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | | | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Jairo S Nunes
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Tamara Gull
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Sangeeta Khare
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Leslie G Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| |
Collapse
|
22
|
Abstract
Many bacterial pathogens can cause acute infections that are cleared with the onset of adaptive immunity, but a subset of these pathogens can establish persistent, and sometimes lifelong, infections. While bacteria that cause chronic infections are phylogenetically diverse, they share common features in their interactions with the host that enable a protracted period of colonization. This article will compare the persistence strategies of two chronic pathogens from the Proteobacteria, Brucella abortus and Salmonella enterica serovar Typhi, to consider how these two pathogens, which are very different at the genomic level, can utilize common strategies to evade immune clearance to cause chronic intracellular infections of the mononuclear phagocyte system.
Collapse
|
23
|
Al Dahouk S, Köhler S, Occhialini A, Jiménez de Bagüés MP, Hammerl JA, Eisenberg T, Vergnaud G, Cloeckaert A, Zygmunt MS, Whatmore AM, Melzer F, Drees KP, Foster JT, Wattam AR, Scholz HC. Brucella spp. of amphibians comprise genomically diverse motile strains competent for replication in macrophages and survival in mammalian hosts. Sci Rep 2017; 7:44420. [PMID: 28300153 PMCID: PMC5353553 DOI: 10.1038/srep44420] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/07/2017] [Indexed: 12/31/2022] Open
Abstract
Twenty-one small Gram-negative motile coccobacilli were isolated from 15 systemically diseased African bullfrogs (Pyxicephalus edulis), and were initially identified as Ochrobactrum anthropi by standard microbiological identification systems. Phylogenetic reconstructions using combined molecular analyses and comparative whole genome analysis of the most diverse of the bullfrog strains verified affiliation with the genus Brucella and placed the isolates in a cluster containing B. inopinata and the other non-classical Brucella species but also revealed significant genetic differences within the group. Four representative but molecularly and phenotypically diverse strains were used for in vitro and in vivo infection experiments. All readily multiplied in macrophage-like murine J774-cells, and their overall intramacrophagic growth rate was comparable to that of B. inopinata BO1 and slightly higher than that of B. microti CCM 4915. In the BALB/c murine model of infection these strains replicated in both spleen and liver, but were less efficient than B. suis 1330. Some strains survived in the mammalian host for up to 12 weeks. The heterogeneity of these novel strains hampers a single species description but their phenotypic and genetic features suggest that they represent an evolutionary link between a soil-associated ancestor and the mammalian host-adapted pathogenic Brucella species.
Collapse
Affiliation(s)
- Sascha Al Dahouk
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, Berlin, Germany.,RWTH Aachen University, Department of Internal Medicine III, Aachen, Germany
| | - Stephan Köhler
- Université Montpellier, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), Montpellier, France.,CNRS, FRE3689, CPBS, Montpellier, France
| | - Alessandra Occhialini
- Université Montpellier, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), Montpellier, France.,CNRS, FRE3689, CPBS, Montpellier, France
| | - María Pilar Jiménez de Bagüés
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Jens Andre Hammerl
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, Berlin, Germany
| | | | - Gilles Vergnaud
- I2BC, CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Axel Cloeckaert
- ISP, INRA, Université François Rabelais de Tours, UMR1282, Nouzilly, France
| | - Michel S Zygmunt
- ISP, INRA, Université François Rabelais de Tours, UMR1282, Nouzilly, France
| | | | - Falk Melzer
- Friedrich-Loeffler-Institut, German National Reference Laboratory for Animal Brucellosis, Jena, Germany
| | - Kevin P Drees
- University of New Hampshire, Department of Molecular, Cellular, and Biomedical Sciences, Durham, NH, USA
| | - Jeffrey T Foster
- University of New Hampshire, Department of Molecular, Cellular, and Biomedical Sciences, Durham, NH, USA
| | - Alice R Wattam
- Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Holger C Scholz
- Bundeswehr Institute of Microbiology and German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
24
|
Soler-Lloréns PF, Quance CR, Lawhon SD, Stuber TP, Edwards JF, Ficht TA, Robbe-Austerman S, O'Callaghan D, Keriel A. A Brucella spp. Isolate from a Pac-Man Frog ( Ceratophrys ornata) Reveals Characteristics Departing from Classical Brucellae. Front Cell Infect Microbiol 2016; 6:116. [PMID: 27734009 PMCID: PMC5040101 DOI: 10.3389/fcimb.2016.00116] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/15/2016] [Indexed: 12/31/2022] Open
Abstract
Brucella are highly infectious bacterial pathogens responsible for brucellosis, a frequent worldwide zoonosis. The Brucella genus has recently expanded from 6 to 11 species, all of which were associated with mammals; The natural host range recently expanded to amphibians after some reports of atypical strains from frogs. Here we describe the first in depth phenotypic and genetic characterization of a Brucella strains isolated from a frog. Strain B13-0095 was isolated from a Pac-Man frog (Ceratophyrus ornate) at a veterinary hospital in Texas and was initially misidentified as Ochrobactrum anthropi. We found that B13-0095 belongs to a group of early-diverging brucellae that includes Brucella inopinata strain BO1 and the B. inopinata-like strain BO2, with traits that depart significantly from those of the "classical" Brucella spp. Analysis of B13-0095 genome sequence revealed several specific features that suggest that this isolate represents an intermediate between a soil associated ancestor and the host adapted "classical" species. Like strain BO2, B13-0095 does not possess the genes required to produce the perosamine based LPS found in classical Brucella, but has a set of genes that could encode a rhamnose based O-antigen. Despite this, B13-0095 has a very fast intracellular replication rate in both epithelial cells and macrophages. Finally, another major finding in this study is the bacterial motility observed for strains B13-0095, BO1, and BO2, which is remarkable for this bacterial genus. This study thus highlights several novel characteristics in strains belonging to an emerging group within the Brucella genus. Accurate identification tools for such atypical Brucella isolates and careful evaluation of their zoonotic potential, are urgently required.
Collapse
Affiliation(s)
- Pedro F. Soler-Lloréns
- Institut National de la Santé et de la Recherche Médicale, U1047, UFR de MédecineNîmes, France
- Université de Montpellier, U1047Nîmes, France
| | - Chris R. Quance
- Mycobacteria and Brucella Section, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of AgricultureAmes, IA, USA
| | - Sara D. Lawhon
- Clinical Microbiology, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, USA
| | - Tod P. Stuber
- Mycobacteria and Brucella Section, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of AgricultureAmes, IA, USA
| | - John F. Edwards
- Clinical Microbiology, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, USA
| | - Thomas A. Ficht
- Department of Veterinary Pathobiology, Texas A&M UniversityCollege Station, TX, USA
| | - Suelee Robbe-Austerman
- Mycobacteria and Brucella Section, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of AgricultureAmes, IA, USA
| | - David O'Callaghan
- Institut National de la Santé et de la Recherche Médicale, U1047, UFR de MédecineNîmes, France
- Université de Montpellier, U1047Nîmes, France
| | - Anne Keriel
- Institut National de la Santé et de la Recherche Médicale, U1047, UFR de MédecineNîmes, France
- Université de Montpellier, U1047Nîmes, France
| |
Collapse
|
25
|
Stewart MK, Cookson BT. Evasion and interference: intracellular pathogens modulate caspase-dependent inflammatory responses. Nat Rev Microbiol 2016; 14:346-59. [PMID: 27174147 DOI: 10.1038/nrmicro.2016.50] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pathogens have evolved to complete the virulence cycle of colonization, replication and dissemination in intimate association with a complex network of extracellular and intracellular surveillance systems that guard tissue spaces. In this Review, we discuss the strategies used by bacteria and viruses to evade or inhibit intracellular detection that is coupled to pro-inflammatory caspase-dependent protective responses. Such strategies include alterations of lipopolysaccharide (LPS) structures, the regulated expression of components of type III secretion systems, and the utilization of proteins that inhibit inflammasome formation, the enzymatic activity of caspases and cytokine signalling. Inflammation is crucial in response to exposure to pathogens, but is potentially damaging and thus tightly regulated. The threshold for the activation of pro-inflammatory caspases is determined by the immediate stimulus in the context of previous signals. Pathogen, genetic and situational factors modulate this threshold, which determines the ability of the host to resist infection while minimizing harm.
Collapse
Affiliation(s)
- Mary K Stewart
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | - Brad T Cookson
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA.,Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
26
|
Reyes AWB, Arayan LT, Simborio HLT, Hop HT, Min W, Lee HJ, Kim DH, Chang HH, Kim S. Dextran sulfate sodium upregulates MAPK signaling for the uptake and subsequent intracellular survival of Brucella abortus in murine macrophages. Microb Pathog 2016; 91:68-73. [DOI: 10.1016/j.micpath.2015.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/24/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
|
27
|
Wang G, Shi B, Li T, Zuo T, Wang B, Si W, Xin J, Yang K, Shi X, Liu S, Liu H. Linear antigenic mapping of flagellin (FliC) from Salmonella enterica serovar Enteritidis with yeast surface expression system. Vet Microbiol 2016; 184:20-6. [PMID: 26854340 DOI: 10.1016/j.vetmic.2016.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/01/2015] [Accepted: 01/01/2016] [Indexed: 12/21/2022]
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of food-borne illness around the world and can have significant health implications in humans, poultry and other animals. Flagellin (FliC) is the primary component of bacterial flagella. It has been shown that the FliC of S. Enteritidis is a significant antigenic structure and can elicit strong humoral responses against S. Enteritidis infection in chickens. Here, we constructed a FliC antigen library using a yeast surface expression system. Yeast cells expressing FliC peptide antigens were labeled with chicken sera against S. Enteritidis and sorted using FACS. The analyses of FliC peptides revealed that the FliC linear antigenicity in chickens resided on three domains which were able to elicit strong humoral responses in vivo. Animal experiments further revealed that the antibodies elicited by these antigenic domains were able to significantly inhibit the invasion of S. Enteritidis into the liver and spleen of chickens. These findings will facilitate our better understanding of the humoral responses elicited by FliC in chickens upon infection by S. Enteritidis.
Collapse
Affiliation(s)
- Gaoling Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bingtian Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Teng Zuo
- Comprehensive AIDS Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Si
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiuqing Xin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kongbin Yang
- Neurosurgery Department of the First Affiliated Hospital, Harbin Medical University, China
| | - Xuanlin Shi
- Comprehensive AIDS Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Henggui Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
28
|
Abstract
Brucellosis, caused by bacteria of the genus Brucella, is an important zoonotic infection that causes reproductive disease in domestic animals and chronic debilitating disease in humans. An intriguing aspect of Brucella infection is the ability of these bacteria to evade the host immune response, leading to pathogen persistence. Conversely, in the reproductive tract of infected animals, this stealthy pathogen is able to cause an acute severe inflammatory response. In this review, we discuss the different mechanisms used by Brucella to cause disease, with emphasis on its virulence factors and the dichotomy between chronic persistence and reproductive disease.
Collapse
Affiliation(s)
| | - Renee M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California 95616; ,
| |
Collapse
|
29
|
De Bolle X, Crosson S, Matroule JY, Letesson JJ. Brucella abortus Cell Cycle and Infection Are Coordinated. Trends Microbiol 2015; 23:812-821. [PMID: 26497941 DOI: 10.1016/j.tim.2015.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/09/2015] [Accepted: 09/24/2015] [Indexed: 12/29/2022]
Abstract
Brucellae are facultative intracellular pathogens. The recent development of methods and genetically engineered strains allowed the description of cell-cycle progression of Brucella abortus, including unipolar growth and the ordered initiation of chromosomal replication. B. abortus cell-cycle progression is coordinated with intracellular trafficking in the endosomal compartments. Bacteria are first blocked at the G1 stage, growth and chromosome replication being resumed shortly before reaching the intracellular proliferation compartment. The control mechanisms of cell cycle are similar to those reported for the bacterium Caulobacter crescentus, and they are crucial for survival in the host cell. The development of single-cell analyses could also be applied to other bacterial pathogens to investigate their cell-cycle progression during infection.
Collapse
Affiliation(s)
- Xavier De Bolle
- University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Sean Crosson
- University of Chicago, Gordon Center for Integrative Science W125, 929 E. 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
30
|
Vishnu US, Sankarasubramanian J, Gunasekaran P, Rajendhran J. Novel Vaccine Candidates against Brucella melitensis Identified through Reverse Vaccinology Approach. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:722-9. [PMID: 26479901 DOI: 10.1089/omi.2015.0105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Global health therapeutics is a rapidly emerging facet of postgenomics medicine. In this connection, Brucella melitensis is an intracellular bacterium that causes the zoonotic infectious disease, brucellosis. Presently, no licensed vaccines are available for human brucellosis. Here, we report the identification of potential vaccine candidates against B. melitensis using a reverse vaccinology approach. Based on a systematic screening of exoproteome and secretome of B. melitensis 16 M, we identified eight proteins as potential vaccine candidates, including LPS-assembly protein LptD, a polysaccharide export protein, a cell surface protein, heme transporter BhuA, flagellin FliC, 7-alpha-hydroxysteroid dehydrogenase, immunoglobulin-binding protein EIBE, and hemagglutinin. Among these, the roles of BhuA and hemagglutinin in the virulence of Brucella are essential to establish infection. Roles of other proteins in the virulence are yet to be studied. Prediction of protein-protein interactions revealed that these proteins can interact with other proteins involved in virulence, secretion system, metabolism, and transport. From these eight potential vaccine candidates, we predicted three surface exposed novel antigenic epitopes that can induce both B-cell and T-cell immune responses. These peptides can be used for the development of either exclusive peptide vaccines or multi-component vaccines against human brucellosis. Reverse vaccinology is an important strategy for discovery of novel global health therapeutics.
Collapse
Affiliation(s)
- Udayakumar S Vishnu
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University , Madurai, India
| | | | - Paramasamy Gunasekaran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University , Madurai, India
| | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University , Madurai, India
| |
Collapse
|
31
|
Moreno E. Retrospective and prospective perspectives on zoonotic brucellosis. Front Microbiol 2014; 5:213. [PMID: 24860561 PMCID: PMC4026726 DOI: 10.3389/fmicb.2014.00213] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/23/2014] [Indexed: 11/13/2022] Open
Abstract
Members of the genus Brucella are pathogenic bacteria exceedingly well adapted to their hosts. The bacterium is transmitted by direct contact within the same host species or accidentally to secondary hosts, such as humans. Human brucellosis is strongly linked to the management of domesticated animals and ingestion of their products. Since the domestication of ungulates and dogs in the Fertile Crescent and Asia in 12000 and 33000 ya, respectively, a steady supply of well adapted emergent Brucella pathogens causing zoonotic disease has been provided. Likewise, anthropogenic modification of wild life may have also impacted host susceptibility and Brucella selection. Domestication and human influence on wild life animals are not neutral phenomena. Consequently, Brucella organisms have followed their hosts’ fate and have been selected under conditions that favor high transmission rate. The “arm race” between Brucella and their preferred hosts has been driven by genetic adaptation of the bacterium confronted with the evolving immune defenses of the host. Management conditions, such as clustering, selection, culling, and vaccination of Brucella preferred hosts have profound influences in the outcome of brucellosis and in the selection of Brucella organisms. Countries that have controlled brucellosis systematically used reliable smooth live vaccines, consistent immunization protocols, adequate diagnostic tests, broad vaccination coverage and sustained removal of the infected animals. To ignore and misuse tools and strategies already available for the control of brucellosis may promote the emergence of new Brucella variants. The unrestricted use of low-efficacy vaccines may promote a “false sense of security” and works towards selection of Brucella with higher virulence and transmission potential.
Collapse
Affiliation(s)
- Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional Heredia, Costa Rica ; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José, Costa Rica
| |
Collapse
|
32
|
Terwagne M, Mirabella A, Lemaire J, Deschamps C, De Bolle X, Letesson JJ. Quorum sensing and self-quorum quenching in the intracellular pathogen Brucellamelitensis. PLoS One 2013; 8:e82514. [PMID: 24349302 PMCID: PMC3859601 DOI: 10.1371/journal.pone.0082514] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/24/2013] [Indexed: 11/19/2022] Open
Abstract
Brucella quorum sensing has been described as an important regulatory system controlling crucial virulence determinants such as the VirB type IV secretion system and the flagellar genes. However, the basis of quorum sensing, namely the production of autoinducers in Brucella has been questioned. Here, we report data obtained from the use of a genetic tool allowing the in situ detection of long-chain N-acyl-homoserine lactones (AHL) activity at single bacterium level in Brucella melitensis. These data are consistent with an intrinsic production of AHL by B. melitensis in low concentration both during in vitro growth and macrophage infection. Moreover, we identified a protein, named AibP, which is homologous to the AHL-acylases of various bacterial species. In vitro and during infection, expression of aibP coincided with a decrease in endogenous AHL activity within B. melitensis, suggesting that AibP could efficiently impair AHL accumulation. Furthermore, we showed that deletion of aibP in B. melitensis resulted in enhanced virB genes expression and VirB8 production as well as in a reduced flagellar genes expression and production of FlgE (hook protein) and FliC (flagellin) in vitro. Altogether, these results suggest that AHL-dependent quorum sensing and AHL-quorum quenching coexist in Brucella, at least to regulate its virulence.
Collapse
Affiliation(s)
| | | | - Julien Lemaire
- URBM, Department of Biology, University of Namur, Namur, Belgium
| | | | - Xavier De Bolle
- URBM, Department of Biology, University of Namur, Namur, Belgium
| | | |
Collapse
|
33
|
Van der Henst C, de Barsy M, Zorreguieta A, Letesson JJ, De Bolle X. The Brucella pathogens are polarized bacteria. Microbes Infect 2013; 15:998-1004. [PMID: 24141086 DOI: 10.1016/j.micinf.2013.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 11/30/2022]
Abstract
Brucella pathogens are responsible for brucellosis, a worldwide zoonosis. They are facultative intracellular pathogens characterized by their asymmetric division and their unipolar growth. This growth modality generates poles with specialized functions (through polar recruitment of polar adhesins or of cell cycle regulators) and progeny cells with potentially different fates.
Collapse
Affiliation(s)
- Charles Van der Henst
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Kim HS, Caswell CC, Foreman R, Roop RM, Crosson S. The Brucella abortus general stress response system regulates chronic mammalian infection and is controlled by phosphorylation and proteolysis. J Biol Chem 2013; 288:13906-16. [PMID: 23546883 DOI: 10.1074/jbc.m113.459305] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Virulence of pathogenic bacteria is often determined by their ability to adapt to stress. RESULTS The Brucella abortus general stress response (GSR) system is required for chronic mammalian infection and is regulated by phosphorylation and proteolysis. CONCLUSION The B. abortus GSR signaling pathway has multiple layers of post-translational control and is a determinant of chronic infection. SIGNIFICANCE This study provides new, molecular level insight into chronic Brucella infection. Brucella spp. are adept at establishing a chronic infection in mammals. We demonstrate that core components of the α-proteobacterial general stress response (GSR) system, PhyR and σ(E1), are required for Brucella abortus stress survival in vitro and maintenance of chronic murine infection in vivo. ΔphyR and ΔrpoE1 null mutants exhibit decreased survival under acute oxidative and acid stress but are not defective in infection of primary murine macrophages or in initial colonization of BALB/c mouse spleens. However, ΔphyR and ΔrpoE1 mutants are attenuated in spleens beginning 1 month postinfection. Thus, the B. abortus GSR system is dispensable for colonization but is required to maintain chronic infection. A genome-scale analysis of the B. abortus GSR regulon identified stress response genes previously linked to virulence and genes that affect immunomodulatory components of the cell envelope. These data support a model in which the GSR system affects both stress survival and the interface between B. abortus and the host immune system. We further demonstrate that PhyR proteolysis is a unique feature of GSR control in B. abortus. Proteolysis of PhyR provides a mechanism to avoid spurious PhyR protein interactions that inappropriately activate GSR-dependent transcription. We conclude that the B. abortus GSR system regulates acute stress adaptation and long term survival within a mammalian host and that PhyR proteolysis is a novel regulatory feature in B. abortus that ensures proper control of GSR transcription.
Collapse
Affiliation(s)
- Hye-Sook Kim
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|