1
|
Ibrahim A, Aminu S, Nzelibe HC, Chechet GD, Ibrahim MA. Mitigation of Trypanosoma congolense-Associated Anemia and Expression of Trans-sialidase (TconTS) Gene Variants by Eugenol. Acta Parasitol 2024; 69:384-395. [PMID: 38147296 DOI: 10.1007/s11686-023-00750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/13/2023] [Indexed: 12/27/2023]
Abstract
PURPOSE African Animal Trypanosomosis (AAT) caused by Trypanosoma congolense is a parasitic disease affecting the livestock industry in sub-Saharan Africa and usually results in severe anemia, organ damage, and ultimately the death of the infected host. The present study was designed to investigate the possible chemotherapeutic effect of eugenol on T. congolense infections and its inhibitory effect on the trans-sialidase (TconTS) gene expression. METHODS Animals were infected with T. congolense and treated with 15 and 30 mg/kg body weight (BW) of eugenol for ten (10) days. RESULTS The eugenol (15 mg/kg BW) significantly (P < 0.05) reduced the T. congolense proliferation, increased animal survival, and reduced serum urea level. However, both dosages of eugenol significantly (P < 0.05) ameliorated T. congolense-induced anemia, renal hypertrophy, splenomegaly, and reduced total damage score in the liver and kidney of infected animals. In addition, the compound significantly (P < 0.05) downregulated the expression levels of TconTS1, TconTS2, TconTS3, and TconTS4 but the effect was more pronounced (sevenfold reduction) on TconTS1. CONCLUSIONS The oral administration of eugenol suppressed T. congolense proliferation and prevented some major pathologies associated with trypanosomiasis infection. The reversal of renal hypertrophy and splenomegaly by the compound in addition to the reduction in the expression level of the TconTS gene variants could explain the observed anemia ameliorative potential of the compound.
Collapse
Affiliation(s)
- Aisha Ibrahim
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Suleiman Aminu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | - Gloria Dada Chechet
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
| | - Mohammed Auwal Ibrahim
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
| |
Collapse
|
2
|
Morrison LJ, Steketee PC, Tettey MD, Matthews KR. Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts. Virulence 2023; 14:2150445. [PMID: 36419235 DOI: 10.1080/21505594.2022.2150445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
African trypanosomes are vector-borne protozoa, which cause significant human and animal disease across sub-Saharan Africa, and animal disease across Asia and South America. In humans, infection is caused by variants of Trypanosoma brucei, and is characterized by varying rate of progression to neurological disease, caused by parasites exiting the vasculature and entering the brain. Animal disease is caused by multiple species of trypanosome, primarily T. congolense, T. vivax, and T. brucei. These trypanosomes also infect multiple species of mammalian host, and this complexity of trypanosome and host diversity is reflected in the spectrum of severity of disease in animal trypanosomiasis, ranging from hyperacute infections associated with mortality to long-term chronic infections, and is also a main reason why designing interventions for animal trypanosomiasis is so challenging. In this review, we will provide an overview of the current understanding of trypanosome determinants of infection progression and severity, covering laboratory models of disease, as well as human and livestock disease. We will also highlight gaps in knowledge and capabilities, which represent opportunities to both further our fundamental understanding of how trypanosomes cause disease, as well as facilitating the development of the novel interventions that are so badly needed to reduce the burden of disease caused by these important pathogens.
Collapse
Affiliation(s)
- Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pieter C Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Mabel D Tettey
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Aminu S, Chechet GD, Alkhalil SS, Sobeh M, Daoud R, Simelane MB, Onyike E, Ibrahim MA. Therapeutic efficacy of β-sitosterol treatment on Trypanosoma congolense infection, anemia development, and trans-sialidase ( TconTS1) gene expression. Front Microbiol 2023; 14:1282257. [PMID: 37886075 PMCID: PMC10598747 DOI: 10.3389/fmicb.2023.1282257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
Background African animal trypanosomiasis hinders sustainable livestock productivity in sub-Saharan Africa. About 17 million infected cattle are treated with trypanocides annually but most of the drugs are associated with drawbacks, necessitating the search for a promising chemotherapeutic agent. Objectives In this study, the effects of β-sitosterol on Trypanosoma congolense infection were investigated along with its effect on the trans-sialidase gene expressions. Results Oral treatment with β-sitosterol at 15 and 30 mg/kg body weight (BW) for 14 days significantly (p < 0.05) reduced parasitemia and ameliorated the parasite-induced anemia. Also, the parasite-induced increase in serum urea level and renal histopathological damage scores in addition to renal hypertrophy was significantly (p < 0.05) reverted following treatment with 30 mg/kg BW β-sitosterol. The compound also significantly (p < 0.05) down-regulated the expression of TconTS1 but not TconTS2, TconTS3, and TconTS4. Correlation analysis between free serum sialic acid with the TconTS1 and TconTS2 gene variants revealed negative correlations in the β-sitosterol-treated groups although they were non-significant (p > 0.05) in the group treated with 15 mg/kg BW β-sitosterol. Similarly, a non-significant negative (p > 0.05) correlation between the biomolecule and the TconTS3 and TconTS4 gene variants was observed in the β-sitosterol-treated groups while positive correlations were observed in the infected untreated control group. Conclusion The observed effect of β-sitosterol on T. congolense infection could make the compound a possible template for the design of novel trypanocides.
Collapse
Affiliation(s)
- Suleiman Aminu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
- Chemical and Biochemical Sciences-Green Processing Engineering, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Gloria Dada Chechet
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
- African Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Saudi Arabia
| | - Mansour Sobeh
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Rachid Daoud
- Chemical and Biochemical Sciences-Green Processing Engineering, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | | | - Elewechi Onyike
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Mohammed Auwal Ibrahim
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
- African Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
4
|
Abstract
African trypanosomes are bloodstream protozoan parasites that infect mammals including humans, where they cause sleeping sickness. Long-lasting infection is required to favor parasite transmission between hosts. Therefore, trypanosomes have developed strategies to continuously escape innate and adaptive responses of the immune system, while also preventing premature death of the host. The pathology linked to infection mainly results from inflammation and includes anemia and brain dysfunction in addition to loss of specificity and memory of the antibody response. The serum of humans contains an efficient trypanolytic factor, the membrane pore-forming protein apolipoprotein L1 (APOL1). In the two human-infective trypanosomes, specific parasite resistance factors inhibit APOL1 activity. In turn, many African individuals express APOL1 variants that counteract these resistance factors, enabling them to avoid sleeping sickness. However, these variants are associated with chronic kidney disease, particularly in the context of virus-induced inflammation such as coronavirus disease 2019. Vaccination perspectives are discussed.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Université Libre de Bruxelles, Gosselies, Belgium;
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium;
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; .,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Rosenau J, Grothaus IL, Yang Y, Kumar ND, Ciacchi LC, Kelm S, Waespy M. N-glycosylation modulates enzymatic activity of Trypanosoma congolense trans-sialidase. J Biol Chem 2022; 298:102403. [PMID: 35995210 PMCID: PMC9493392 DOI: 10.1016/j.jbc.2022.102403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Trypanosomes cause the devastating disease trypanosomiasis, in which the action of trans-sialidase (TS) enzymes harbored on their surface is a key virulence factor. TS enzymes are N-glycosylated, but the biological functions of their glycans have remained elusive. In this study, we investigated the influence of N-glycans on the enzymatic activity and structural stability of TconTS1, a recombinant TS from the African parasite Trypanosoma congolense. We expressed the enzyme in Chinese hamster ovary Lec1 cells, which produce high-mannose type N-glycans similar to the TS N-glycosylation pattern in vivo. Our MALDI-TOF mass spectrometry data revealed that up to eight putative N-glycosylation sites were glycosylated. In addition, we determined that N-glycan removal via endoglycosidase Hf treatment of TconTS1 led to a decrease in substrate affinity relative to the untreated enzyme but had no impact on the conversion rate. Furthermore, we observed no changes in secondary structure elements of hypoglycosylated TconTS1 in CD experiments. Finally, our molecular dynamics simulations provided evidence for interactions between monosaccharide units of the highly flexible N-glycans and some conserved amino acids located at the catalytic site. These interactions led to conformational changes, possibly enhancing substrate accessibility and enzyme–substrate complex stability. The here-observed modulation of catalytic activity via N-glycans represents a so-far-unknown structure–function relationship potentially inherent in several members of the TS enzyme family.
Collapse
Affiliation(s)
- Jana Rosenau
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany
| | - Isabell Louise Grothaus
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany; University of Bremen, Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, 28359 Bremen, Germany
| | - Yikun Yang
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany
| | - Nilima Dinesh Kumar
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany
| | - Lucio Colombi Ciacchi
- University of Bremen, Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, 28359 Bremen, Germany
| | - Sørge Kelm
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany
| | - Mario Waespy
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany.
| |
Collapse
|
6
|
de Lederkremer RM, Giorgi ME, Agusti R. trans-Sialylation: a strategy used to incorporate sialic acid into oligosaccharides. RSC Chem Biol 2022; 3:121-139. [PMID: 35360885 PMCID: PMC8827155 DOI: 10.1039/d1cb00176k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/20/2021] [Indexed: 01/02/2023] Open
Abstract
Sialic acid, as a component of cell surface glycoconjugates, plays a crucial role in recognition events. Efficient synthetic methods are necessary for the supply of sialosides in enough quantities for biochemical and immunological studies. Enzymatic glycosylations obviate the steps of protection and deprotection of the constituent monosaccharides required in a chemical synthesis. Sialyl transferases with CMP-Neu5Ac as an activated donor were used for the construction of α2-3 or α2-6 linkages to terminal galactose or N-acetylgalactosamine units. trans-Sialidases may transfer sialic acid from a sialyl glycoside to a suitable acceptor and specifically construct a Siaα2-3Galp linkage. The trans-sialidase of Trypanosoma cruzi (TcTS), which fulfills an important role in the pathogenicity of the parasite, is the most studied one. The recombinant enzyme was used for the sialylation of β-galactosyl oligosaccharides. One of the main advantages of trans-sialylation is that it circumvents the use of the high energy nucleotide. Easily available glycoproteins with a high content of sialic acid such as fetuin and bovine κ-casein-derived glycomacropeptide (GMP) have been used as donor substrates. Here we review the trans-sialidase from various microorganisms and describe their application for the synthesis of sialooligosaccharides.
Collapse
Affiliation(s)
- Rosa M de Lederkremer
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) Buenos Aires Argentina
| | - María Eugenia Giorgi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) Buenos Aires Argentina
| | - Rosalía Agusti
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) Buenos Aires Argentina
| |
Collapse
|
7
|
Jacobs SH, Dóró E, Hammond FR, Nguyen-Chi ME, Lutfalla G, Wiegertjes GF, Forlenza M. Occurrence of foamy macrophages during the innate response of zebrafish to trypanosome infections. eLife 2021; 10:64520. [PMID: 34114560 PMCID: PMC8238505 DOI: 10.7554/elife.64520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
A tightly regulated innate immune response to trypanosome infections is critical to strike a balance between parasite control and inflammation-associated pathology. In this study, we make use of the recently established Trypanosoma carassii infection model in larval zebrafish to study the early response of macrophages and neutrophils to trypanosome infections in vivo. We consistently identified high- and low-infected individuals and were able to simultaneously characterise their differential innate response. Not only did macrophage and neutrophil number and distribution differ between the two groups, but also macrophage morphology and activation state. Exclusive to high-infected zebrafish, was the occurrence of foamy macrophages characterised by a strong pro-inflammatory profile and potentially associated with an exacerbated immune response as well as susceptibility to the infection. To our knowledge, this is the first report of the occurrence of foamy macrophages during an extracellular trypanosome infection.
Collapse
Affiliation(s)
- Sem H Jacobs
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands.,Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Eva Dóró
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Ffion R Hammond
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | | | | | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands.,Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
8
|
Chávez-Larrea MA, Medina-Pozo ML, Cholota-Iza CE, Jumbo-Moreira JR, Saegerman C, Proaño-Pérez F, Ron-Román J, Reyna-Bello A. First report and molecular identification of Trypanosoma (Duttonella) vivax outbreak in cattle population from Ecuador. Transbound Emerg Dis 2020; 68:2422-2428. [PMID: 33131161 DOI: 10.1111/tbed.13906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 11/30/2022]
Abstract
The bovine trypanosomosis is responsible for economic losses from tropical and subtropical areas of Africa and Latin America. This disease is characterized by fever, anaemia, loss of production and even death. Few studies have been carried out in Ecuador regarding Trypanosoma spp. presence but the species has not been determined in cattle and those have only determined the presence of genus, but not the species. The aim of this study was to identify and characterize the trypanosome species involved in the suspected bovine trypanosomosis outbreak reported in Convento Village in Manabí Province located in the coastal region of Ecuador. Twenty cattle from three farms were sampled. Three samples were positive for T. vivax, using an end-point polymerase chain reaction (PCR) to amplify a fragment of the cathepsin L-like cysteine protease (CatL-like) gene. A phylogenetic tree analysis of these three Ecuadorian isolates showed a close relationship with isolates from South America (Colombia, Brazil and Venezuela) and West Africa (Nigeria). This is the first report of T. vivax in Ecuadorian cattle.
Collapse
Affiliation(s)
- María Augusta Chávez-Larrea
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas - ESPE, Sangolquí, Ecuador.,Research Unit of Epidemiology and Risk analysis applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Michell Lorena Medina-Pozo
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas - ESPE, Sangolquí, Ecuador
| | - Cristina E Cholota-Iza
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas - ESPE, Sangolquí, Ecuador
| | - Jimmy R Jumbo-Moreira
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas - ESPE, Sangolquí, Ecuador
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk analysis applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Freddy Proaño-Pérez
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas - ESPE, Sangolquí, Ecuador.,Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Jorge Ron-Román
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas - ESPE, Sangolquí, Ecuador
| | - Armando Reyna-Bello
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas - ESPE, Sangolquí, Ecuador
| |
Collapse
|
9
|
Saad SB, Ibrahim MA, Jatau ID, Shuaibu MN. The therapeutic potential of phytol towards Trypanosoma congolense infection and the inhibitory effects against trypanosomal sialidase. Exp Parasitol 2020; 216:107943. [PMID: 32598890 DOI: 10.1016/j.exppara.2020.107943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/04/2020] [Accepted: 06/19/2020] [Indexed: 11/30/2022]
Abstract
The search for novel therapeutic candidates against animal trypanosomiasis is an ongoing scientific endevour because of the negative impacts of the disease to the African livestock industry. In this study, the in vivo therapeutic potentials of phytol toward Trypanosoma congolense infection and the inhibitory effects on trypanosomal sialidase were investigated. Rats were infected with T. congolense and administered daily oral treatment of 50 and 100 mg/kg BW of phytol. Within the first 10 days of the treatment, no antitrypanosomal activity was recorded but a moderate trypanostatic activity was observed from day 17-day 21 pi. However, at 100 mg/kg BW, phytol demonstrated a significant (p < 0.05) ameliorative potentials toward T. congolense-induced host-associated pathological damages such as anaemia, hepatic and renal damages; and the data was comparable to diminazine aceturate. Moreover, the T. congolense caused a significant (p < 0.05) increase in free serum sialic acid level which was significantly (p < 0.05) prevented in the presence of phytol (100 mg/kg BW). In an in vitro analysis, phytol inhibited partially purified T. congolense sialidase using an uncompetitive inhibition pattern with inhibition binding constant of 261.24 μmol/mL. Subsequently, molecular docking revealed that the compound binds to homology modelled trypanosomal sialidase with a binding free energy of -6.7 kcal/mol which was mediated via a single hydrogen bond while Trp324 and Pro274 were the critical binding residues. We concluded that phytol has moderate trypanostatic activity but with a great potential in mitigating the host-associated cellular damages while the anaemia amelioration was mediated, in part, through the inhibition of sialidase.
Collapse
Affiliation(s)
- Saad Bello Saad
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; Department of Biochemistry, Yusuf Maitama Sule University, Kano, Nigeria
| | | | - Isa Danladi Jatau
- Department of Veterinary Parasitology and Entomology, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|
10
|
Abstract
Parasitic diseases, such as sleeping sickness, Chagas disease and malaria, remain a major cause of morbidity and mortality worldwide, but particularly in tropical, developing countries. Controlling these diseases requires a better understanding of host-parasite interactions, including a deep appreciation of parasite distribution in the host. The preferred accumulation of parasites in some tissues of the host has been known for many years, but recent technical advances have allowed a more systematic analysis and quantifications of such tissue tropisms. The functional consequences of tissue tropism remain poorly studied, although it has been associated with important aspects of disease, including transmission enhancement, treatment failure, relapse and clinical outcome. Here, we discuss current knowledge of tissue tropism in Trypanosoma infections in mammals, describe potential mechanisms of tissue entry, comparatively discuss relevant findings from other parasitology fields where tissue tropism has been extensively investigated, and reflect on new questions raised by recent discoveries and their potential impact on clinical treatment and disease control strategies.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Sandra Trindade
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
11
|
Saad SB, Ibrahim MA, Jatau ID, Shuaibu MN. Trypanostatic activity of geranylacetone: Mitigation of Trypanosoma congolense-associated pathological pertubations and insight into the mechanism of anaemia amelioration using in vitro and in silico models. Exp Parasitol 2019; 201:49-56. [PMID: 31029700 DOI: 10.1016/j.exppara.2019.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023]
Abstract
Trypanosoma congolense is an important pathogen that wreaks havoc in the livestock industry of the African continent. This study evaluated the in vivo antitrypanosomal activity of geranylacetone and its ameliorative effect on the disease-induced anaemia and organ damages as well as its inhibitory effects against trypanosomal sialidase using in vitro and in silico techniques. Geranylacetone was used to treat T. congolense infected rats, at a dose of 50 and 100 mg/kg BW, for 14 days where it was found to reduce the parasite burden in the infected animals. Moreover, 100 mg/kg BW of geranylacetone significantly (p < 0.05) ameliorated the anaemia, hepatic and renal damages caused by the parasite. This is in addition to the alleviation of the parasite-induced hepatosplenomegaly and upsurge in free serum sialic acid levels in the infected animals which were associated with the observed anaemia amelioration by the compound. Consequently, bloodstream T. congolense sialidase was partially purified on DEAE cellulose column and inhibition kinetic studies revealed that the enzyme was inhibited by geranylacetone via an uncompetitive inhibition pattern. In silico analysis using molecular docking with Autodock Vina indicated that geranylacetone binds to trypanosomal sialidase with a minimum free binding energy of -5.8 kcal/mol which was mediated by 26 different kinds of non-covalent interactions excluding hydrogen bond whilst Asp163 and Phe421 had the highest number of the interactions. The data suggests that geranylacetone has trypanostatic activity and could protect animals against the T. congolense-induced anaemia through the inhibition of sialidase and/or the protection of the parasite-induced hepatosplenomegaly.
Collapse
Affiliation(s)
- Saad Bello Saad
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; Department of Biochemistry, Yusuf Maitama Sule University, Kano, Nigeria
| | | | - Isa Danladi Jatau
- Department of Veterinary Parasitology and Entomology, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|
12
|
Abstract
Parasites undergo complex life cycles that comprise a wide variety of cellular differentiation events in different host compartments and transmission across multiple hosts. As parasites depend on host resources, it is not surprising they have developed efficient mechanisms to sense alterations and adapt to the available resources in a wide range of environments. Here we provide an overview of the nutritional needs of different parasites throughout their diverse life stages and highlight recent insights into strategies that both hosts and parasites have developed to meet these nutritional requirements needed for defense, survival, and replication. These studies will provide the foundation for a systems-level understanding of host-parasite interactions, which will require the integration of molecular, epidemiologic, and mechanistic data and the application of interdisciplinary approaches to model parasite regulatory networks that are triggered by alterations in host resources.
Collapse
|
13
|
Ramirez-Barrios R, Reyna-Bello A, Parra O, Valeris R, Tavares-Marques L, Brizard JP, Demettre E, Seveno M, Martinez-Moreno A, Holzmuller P. Trypanosoma vivax infection in sheep: Different patterns of virulence and pathogenicity associated with differentially expressed proteomes. Vet Parasitol 2019; 276S:100014. [PMID: 32904712 PMCID: PMC7458391 DOI: 10.1016/j.vpoa.2019.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 11/18/2022]
Abstract
Trypanosoma vivax strains exhibit different virulence and pathogenicity patterns. TvMT1 strain showed low virulence and high pathogenicity. TvLIEM176 strain showed high virulence and moderate pathogenicity. Protein expression varies in high virulence/moderate pathogenicity strain vs low virulence/high pathogenicity strain.
Cattle trypanosomosis caused by Trypanosoma vivax is a widely distributed disease in Africa and Latin America. It causes significant losses in the livestock industry and is characterized by fluctuating parasitemia, anemia, fever, lethargy, and weight loss. In this study we evaluated the virulence (capacity to multiply inside the host and to modulate the host response) and pathogenicity (ability to produce disease and/or mortality) patterns of two T. vivax strains (TvMT1 and TvLIEM176) in experimentally-infected sheep and determined the proteins differentially expressed in the proteomes of these two strains. Hematological and clinical parameters were monitored in experimentally-infected versus non-infected sheep for 60 days. All the infected animals developed discernable parasitemia at 3 days post-infection (dpi), and the first parasitemia peak was observed at 6 dpi. The maximum average value of parasitemia was 1.3 × 107 (95% CI, 7.9 × 105–2 × 108) parasites/ml in TvLIEM176-infected animals, and 2.5 × 106 (95% CI, 1.6 × 105–4 × 107) parasites/ml in TvMT1-infected ones. Anemia and clinical manifestations were more severe in the animals infected by TvMT1 strain than in those infected by TvLIEM176. In the proteomic analysis, a total of 29 proteins were identified, of which 14 exhibited significant differences in their expression levels between strains. Proteins with higher expression in TvLIEM176 were: alpha tubulin, beta tubulin, arginine kinase, glucose-regulated protein 78, paraflagellar protein 3, and T-complex protein 1 subunit theta. Proteins with higher expression in TvMT1 were: chaperonin HSP60, T-complex protein 1 subunit alpha, heat shock protein 70, pyruvate kinase, glycerol kinase, inosine-5'-monophosphate dehydrogenase, 73 kDa paraflagellar rod protein, and vacuolar ATP synthase. There was a difference in the virulence and pathogenicity between the T. vivax strains: TvLIEM176 showed high virulence and moderate pathogenicity, whereas TvMT1 showed low virulence and high pathogenicity. The proteins identified in this study are discussed for their potential involvement in strains’ virulence and pathogenicity, to be further defined as biomarkers of severity in T. vivax infections.
Collapse
|
14
|
Radwanska M, Vereecke N, Deleeuw V, Pinto J, Magez S. Salivarian Trypanosomosis: A Review of Parasites Involved, Their Global Distribution and Their Interaction With the Innate and Adaptive Mammalian Host Immune System. Front Immunol 2018; 9:2253. [PMID: 30333827 PMCID: PMC6175991 DOI: 10.3389/fimmu.2018.02253] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/11/2018] [Indexed: 01/27/2023] Open
Abstract
Salivarian trypanosomes are single cell extracellular parasites that cause infections in a wide range of hosts. Most pathogenic infections worldwide are caused by one of four major species of trypanosomes including (i) Trypanosoma brucei and the human infective subspecies T. b. gambiense and T. b. rhodesiense, (ii) Trypanosoma evansi and T. equiperdum, (iii) Trypanosoma congolense and (iv) Trypanosoma vivax. Infections with these parasites are marked by excessive immune dysfunction and immunopathology, both related to prolonged inflammatory host immune responses. Here we review the classification and global distribution of these parasites, highlight the adaptation of human infective trypanosomes that allow them to survive innate defense molecules unique to man, gorilla, and baboon serum and refer to the discovery of sexual reproduction of trypanosomes in the tsetse vector. With respect to the immunology of mammalian host-parasite interactions, the review highlights recent findings with respect to the B cell destruction capacity of trypanosomes and the role of T cells in the governance of infection control. Understanding infection-associated dysfunction and regulation of both these immune compartments is crucial to explain the continued failures of anti-trypanosome vaccine developments as well as the lack of any field-applicable vaccine based anti-trypanosomosis intervention strategy. Finally, the link between infection-associated inflammation and trypanosomosis induced anemia is covered in the context of both livestock and human infections.
Collapse
Affiliation(s)
- Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Nick Vereecke
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Violette Deleeuw
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joar Pinto
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
15
|
Gomes AC, Moreira AC, Mesquita G, Gomes MS. Modulation of Iron Metabolism in Response to Infection: Twists for All Tastes. Pharmaceuticals (Basel) 2018; 11:ph11030084. [PMID: 30200471 PMCID: PMC6161156 DOI: 10.3390/ph11030084] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022] Open
Abstract
Iron is an essential nutrient for almost all living organisms, but is not easily made available. Hosts and pathogens engage in a fight for the metal during an infection, leading to major alterations in the host’s iron metabolism. Important pathological consequences can emerge from the mentioned interaction, including anemia. Several recent reports have highlighted the alterations in iron metabolism caused by different types of infection, and several possible therapeutic strategies emerge, based on the targeting of the host’s iron metabolism. Here, we review the most recent literature on iron metabolism alterations that are induced by infection, the consequent development of anemia, and the potential therapeutic approaches to modulate iron metabolism in order to correct iron-related pathologies and control the ongoing infection.
Collapse
Affiliation(s)
- Ana Cordeiro Gomes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Ana C Moreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Gonçalo Mesquita
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Maria Salomé Gomes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
16
|
Qadri SM, Donkor DA, Nazy I, Branch DR, Sheffield WP. Bacterial neuraminidase-mediated erythrocyte desialylation provokes cell surface aminophospholipid exposure. Eur J Haematol 2018; 100:502-510. [PMID: 29453885 DOI: 10.1111/ejh.13047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Surface desialylation is associated with erythrocyte aging and mediates phagocytic recognition and clearance of senescent erythrocytes. Neuraminidases, a family of glycohydrolytic enzymes, cleave the glycosidic linkages between sialic acid and mucopolysaccharides and have previously been implicated in erythrocyte dysfunction associated with sepsis. Erythrocytes in septic patients further display a phenotype of accelerated eryptosis characterized by membrane phospholipid scrambling resulting in phosphatidylserine (PS) externalization. Herein, we examined the impact of artificial erythrocyte desialylation on eryptosis. METHODS Using flow cytometry and/or fluorescence microscopy, we analyzed desialylation patterns and eryptotic alterations in erythrocytes exposed to Clostridium perfringens-derived neuraminidase. RESULTS Exogenous bacterial neuraminidase significantly augmented membrane PS exposure and cytosolic Ca2+ levels in a dose- and time-dependent manner. Neuraminidase treatment significantly reduced fluorescence-tagged agglutinin binding, an effect temporally preceding the increase in PS externalization. Neuraminidase-induced PS exposure was significantly curtailed by pretreatment with the pan-sialidase inhibitor N-acetyl-2,3-dehydro-2-deoxyneuraminic acid. Neuraminidase treatment further induced hemolysis but did not significantly impact erythrocyte volume, ceramide abundance, or the generation of reactive oxygen species. CONCLUSION Collectively, our data reveal that alteration of erythrocyte sialylation status by bacterial neuraminidase favors eryptotic cell death, an effect potentially contributing to reduced erythrocyte lifespan and anemia in sepsis.
Collapse
Affiliation(s)
- Syed M Qadri
- Canadian Blood Services, Centre for Innovation, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - David A Donkor
- Canadian Blood Services, Centre for Innovation, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Ishac Nazy
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Centre for Transfusion Research, Hamilton, ON, Canada
| | - Donald R Branch
- Canadian Blood Services, Centre for Innovation, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - William P Sheffield
- Canadian Blood Services, Centre for Innovation, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
17
|
Plants of Brazilian restingas with tripanocide activity against Trypanosoma cruzi strains. J Bioenerg Biomembr 2017; 49:473-483. [PMID: 29147831 DOI: 10.1007/s10863-017-9733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Chagas disease is caused by the Trypanosoma cruzi affecting millions of people, and widespread throughout Latin America. This disease exhibits a problematic chemotherapy. Benznidazole, which is the drug currently used as standard treatment, lamentably evokes several adverse reactions. Among other options, natural products have been tested to discover a novel therapeutic drug for this disease. A lot of plants from the Brazilian flora did not contain studies about their biological effects. Restinga de Jurubatiba from Brazil is a sandbank ecosystem poorly studied in relation to plant biological activity. Thus, three plant species from Restinga de Jurubatiba were tested against in vitro antiprotozoal activity. Among six extracts obtained from leaves and stem parts and 2 essential oils derived from leave parts, only 3 extracts inhibited epimastigote proliferation. Substances present in the extracts with activity were isolated (quercetin, myricetin, and ursolic acid), and evaluated in relation to antiprotozoal activity against epimastigote Y and Dm28 Trypanosoma cruzi strains. All isolated substances were effective to reduce protozoal proliferation. Essentially, quercetin and myricetin did not cause mammalian cell toxicity. In summary, myricetin and quercetin molecule can be used as a scaffold to develop new effective drugs against Chagas's disease.
Collapse
|
18
|
Aminu R, Ibrahim MA, Rahman MA, Dash R, Umar IA. Trypanosuppresive effects of ellagic acid and amelioration of the trypanosome-associated pathological features coupled with inhibitory effects on trypanosomal sialidase in vitro and in silico. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 30:67-73. [PMID: 28545671 DOI: 10.1016/j.phymed.2017.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/27/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The search for novel antitrypanosomal agents had previously led to the isolation of ellagic acid as a bioactive antitrypanosomal compound using in vitro studies. However, it is not known whether this compound will elicit antitrypanosomal activity in in vivo condition which is usually the next step in the drug discovery process. PURPOSE Herein, we investigated the in vivo activity of ellagic acid against bloodstream form of Trypanosoma congolense and its ameliorative effects on trypanosome-induced anemia and organ damage as well as inhibitory effects on trypanosomal sialidase. METHODS Rats were infected with T. congolense and were treated with 100 and 200mg/kg body weight (BW) of ellagic acid for fourteen days. The levels of parasitemia, packed cell volume and biochemical parameters were measured. Subsequently, T. congolense sialidase was partially purified on DEAE cellulose column and the mode of inhibition of ellagic acid on the T. congolense sialidase determined. Molecular docking study was also conducted to determine the mode of interaction of the ellagic acid to the catalytic domain of T. rangeli sialidase. RESULTS At a dose of 100 and 200mg/kg (BW), ellagic acid demonstrated significant (P < 0.05) trypanosuppressive effect for most of the 24 days experimental period. Further, the ellagic acid significantly (P < 0.05) ameliorated the trypanosome-induced anemia, hepatic and renal damages as well as hepatomegaly, splenomegaly and renal hypertrophy. The trypanosome-associated free serum sialic acid upsurge alongside the accompanied membrane bound sialic acid reduction were also significantly (P < 0.05) prevented by the ellagic acid treatment. The T. congolense sialidase was purified to a fold of 6.6 with a yield of 83.8%. The enzyme had a KM and Vmax of 70.12mg/ml and 0.04µmol/min respectively, and was inhibited in a non-competitive pattern by ellagic acid with an inhibition binding constant of 1986.75μM. However, in molecular docking study, ellagic acid formed hydrogen bonding interaction with major residues R39, R318, and W124 at the active site of T. rangeli sialidase with a predicted binding free energy of -25.584kcal/mol. CONCLUSION We concluded that ellagic acid possesses trypanosuppressive effects and could ameliorate the trypanosome-induced pathological alterations.
Collapse
Affiliation(s)
- Raphael Aminu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | - Md Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Raju Dash
- Molecular Modeling and Drug Design Laboratory, Bangladesh Council for Scientific and Industrial Research, Chittagong, Bangladesh
| | | |
Collapse
|
19
|
Stigmasterol retards the proliferation and pathological features of Trypanosoma congolense infection in rats and inhibits trypanosomal sialidase in vitro and in silico. Biomed Pharmacother 2017; 89:482-489. [DOI: 10.1016/j.biopha.2017.02.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/11/2017] [Accepted: 02/20/2017] [Indexed: 11/18/2022] Open
|
20
|
Trypanosoma vivax Adhesion to Red Blood Cells in Experimentally Infected Sheep. PATHOLOGY RESEARCH INTERNATIONAL 2016; 2016:4503214. [PMID: 27293960 PMCID: PMC4884851 DOI: 10.1155/2016/4503214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/30/2016] [Indexed: 02/04/2023]
Abstract
Trypanosomosis, a globally occurring parasitic disease, poses as a major obstacle to livestock production in tropical and subtropical regions resulting in tangible economic losses. In Latin America including Venezuela, trypanosomosis of ruminants is mainly caused by Trypanosoma vivax. Biologically active substances produced from trypanosomes, as well as host-trypanosome cellular interactions, contribute to the pathogenesis of anemia in an infection. The aim of this study was to examine with a scanning electron microscope the cellular interactions and alterations in ovine red blood cells (RBC) experimentally infected with T. vivax. Ovine infection resulted in changes of RBC shape as well as the formation of surface holes or vesicles. A frequent observation was the adhesion to the ovine RBC by the trypanosome's free flagellum, cell body, or attached flagellum in a process mediated by the filopodia emission from the trypanosome surface. The observed RBC alterations are caused by mechanical and biochemical damage from host-parasite interactions occurring in the bloodstream. The altered erythrocytes are prone to mononuclear phagocytic removal contributing to the hematocrit decrease during infection.
Collapse
|
21
|
Fidelis Junior OL, Sampaio PH, Machado RZ, André MR, Marques LC, Cadioli FA. Evaluation of clinical signs, parasitemia, hematologic and biochemical changes in cattle experimentally infected with Trypanosoma vivax. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2016; 25:69-81. [DOI: 10.1590/s1984-29612016013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/03/2016] [Indexed: 11/21/2022]
Abstract
Abstract Infections by Trypanosoma vivax cause great losses to livestock in Africa and Central and South Americas. Outbreaks due this parasite have been occurred with increasing frequency in Brazil. Knowledge of changes caused byT. vivax during the course of this disease can be of great diagnostic value. Thus, clinical signs, parasitemia, hematologic and biochemical changes of cattle experimentally infected by this hemoparasite were evaluated. Two distinct phases were verified during the infection – an acute phase where circulating parasites were seen and then a chronic phase where fluctuations in parasitemia were detected including aparasitemic periods. A constant reduction in erythrocytes, hemoglobin and packed cell volume (PVC) were observed. White blood cells (WBC) showed pronounced changes such as severe neutropenia and lymphopenia during the acute phase of the illness. Decreases in cholesterol, albumin, aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and increases in glucose, globulin, protein, and alkaline phosphatase (ALP) were observed. The “Lins” isolate of T. vivax showed pathogenicity for cattle, and intense parasitemia was detected in the early stages of infection. Circulating parasites were detected for about two months. The most evident laboratory abnormalities were found in WBC parameters, including thrombocytopenia.
Collapse
|
22
|
Haynes CLF, Ameloot P, Remaut H, Callewaert N, Sterckx YGJ, Magez S. Production, purification and crystallization of a trans-sialidase from Trypanosoma vivax. Acta Crystallogr F Struct Biol Commun 2015; 71:577-85. [PMID: 25945712 PMCID: PMC4427168 DOI: 10.1107/s2053230x15002496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/05/2015] [Indexed: 11/10/2022] Open
Abstract
Sialidases and trans-sialidases play important roles in the life cycles of various microorganisms. These enzymes can serve nutritional purposes, act as virulence factors or mediate cellular interactions (cell evasion and invasion). In the case of the protozoan parasite Trypanosoma vivax, trans-sialidase activity has been suggested to be involved in infection-associated anaemia, which is the major pathology in the disease nagana. The physiological role of trypanosomal trans-sialidases in host-parasite interaction as well as their structures remain obscure. Here, the production, purification and crystallization of a recombinant version of T. vivax trans-sialidase 1 (rTvTS1) are described. The obtained rTvTS1 crystals diffracted to a resolution of 2.5 Å and belonged to the orthorhombic space group P212121, with unit-cell parameters a = 57.3, b = 78.4, c = 209.0 Å.
Collapse
Affiliation(s)
- Carole L. F. Haynes
- Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050 Brussels, Belgium
- Department for Molecular Biomedical Research (DMBR), UGent, Ghent, Belgium
| | - Paul Ameloot
- Department for Molecular Biomedical Research (DMBR), UGent, Ghent, Belgium
| | - Han Remaut
- Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural and Molecular Microbiology (SMM), VUB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Nico Callewaert
- Department for Molecular Biomedical Research (DMBR), UGent, Ghent, Belgium
| | - Yann G.-J. Sterckx
- Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Stefan Magez
- Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
23
|
Stijlemans B, Cnops J, Naniima P, Vaast A, Bockstal V, De Baetselier P, Magez S. Development of a pHrodo-based assay for the assessment of in vitro and in vivo erythrophagocytosis during experimental trypanosomosis. PLoS Negl Trop Dis 2015; 9:e0003561. [PMID: 25742307 PMCID: PMC4352936 DOI: 10.1371/journal.pntd.0003561] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/23/2015] [Indexed: 01/20/2023] Open
Abstract
Extracellular trypanosomes can cause a wide range of diseases and pathological complications in a broad range of mammalian hosts. One common feature of trypanosomosis is the occurrence of anemia, caused by an imbalance between erythropoiesis and red blood cell clearance of aging erythrocytes. In murine models for T. brucei trypanosomosis, anemia is marked by a very sudden non-hemolytic loss of RBCs during the first-peak parasitemia control, followed by a short recovery phase and the subsequent gradual occurrence of an ever-increasing level of anemia. Using a newly developed quantitative pHrodo based in vitro erythrophagocytosis assay, combined with FACS-based ex vivo and in vivo results, we show that activated liver monocytic cells and neutrophils as well as activated splenic macrophages are the main cells involved in the occurrence of the early-stage acute anemia. In addition, we show that trypanosomosis itself leads to a rapid alteration of RBC membrane stability, priming the cells for accelerated phagocytosis.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- * E-mail: (BS); (JC)
| | - Jennifer Cnops
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- * E-mail: (BS); (JC)
| | - Peter Naniima
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | - Axel Vaast
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | - Viki Bockstal
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| |
Collapse
|
24
|
Beschin A, Van Den Abbeele J, De Baetselier P, Pays E. African trypanosome control in the insect vector and mammalian host. Trends Parasitol 2014; 30:538-47. [DOI: 10.1016/j.pt.2014.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 12/21/2022]
|
25
|
Hemophagocytic lymphohistiocytosis (HLH): A heterogeneous spectrum of cytokine-driven immune disorders. Cytokine Growth Factor Rev 2014; 26:263-80. [PMID: 25466631 DOI: 10.1016/j.cytogfr.2014.10.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/17/2014] [Indexed: 01/02/2023]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) comprises a group of life-threatening immune disorders classified into primary or secondary HLH. The former is caused by mutations in genes involved in granule-mediated cytotoxicity, the latter occurs in a context of infections, malignancies or autoimmune/autoinflammatory disorders. Both are characterized by systemic inflammation, severe cytokine storms and immune-mediated organ damage. Despite recent advances, the pathogenesis of HLH remains incompletely understood. Animal models resembling different subtypes of HLH are therefore of great value to study this disease and to uncover novel treatment strategies. In this review, all known animal models of HLH will be discussed, highlighting findings on cell types, cytokines and signaling pathways involved in disease pathogenesis and extrapolating therapeutic implications for the human situation.
Collapse
|
26
|
Garcia HA, Rodrigues AC, Rodrigues CM, Bengaly Z, Minervino AH, Riet-Correa F, Machado RZ, Paiva F, Batista JS, Neves L, Hamilton PB, Teixeira MM. Microsatellite analysis supports clonal propagation and reduced divergence of Trypanosoma vivax from asymptomatic to fatally infected livestock in South America compared to West Africa. Parasit Vectors 2014; 7:210. [PMID: 24885708 PMCID: PMC4023172 DOI: 10.1186/1756-3305-7-210] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mechanical transmission of the major livestock pathogen Trypanosoma vivax by other biting flies than tsetse allows its spread from Africa to the New World. Genetic studies are restricted to a small number of isolates and based on molecular markers that evolve too slowly to resolve the relationships between American and West African populations and, thus, unable us to uncover the recent history of T. vivax in the New World. METHODS T. vivax genetic diversity, population structure and the source of outbreaks was investigated through the microsatellite multiloci (7 loci) genotype (MLGs) analysis in South America (47isolates from Brazil, Venezuela and French Guiana) and West Africa (12 isolates from The Gambia, Burkina Faso, Ghana, Benin and Nigeria). Relationships among MLGs were explored using phylogenetic, principal component and STRUCTURE analyses. RESULTS Although closely phylogenetically related, for the first time, genetic differences were detected between T. vivax isolates from South America (11 genotypes/47 isolates) and West Africa (12 genotypes/12 isolates) with no MLGs in common. Diversity was far greater across West Africa than in South America, where genotypes from Brazil (MLG1-6), Venezuela (MLG7-10) and French Guiana (MLG11) shared similar but not identical allele composition. No MLG was exclusive to asymptomatic (endemic areas) or sick (outbreaks in non-endemic areas) animals, but only MLGs1, 2 and 3 were responsible for severe haematological and neurological disorders. CONCLUSIONS Our results revealed closely related genotypes of T. vivax in Brazil and Venezuela, regardless of endemicity and clinical conditions of the infected livestock. The MLGs analysis from T. vivax across SA and WA support clonal propagation, and is consistent with the hypothesis that the SA populations examined here derived from common ancestors recently introduced from West Africa. The molecular markers defined here are valuable to assess the genetic diversity, to track the source and dispersion of outbreaks, and to explore the epidemiological and pathological significance of T. vivax genotypes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Marta Mg Teixeira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
27
|
Biochemical diversity in the Trypanosoma congolense trans-sialidase family. PLoS Negl Trop Dis 2013; 7:e2549. [PMID: 24340108 PMCID: PMC3855035 DOI: 10.1371/journal.pntd.0002549] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/04/2013] [Indexed: 02/01/2023] Open
Abstract
Trans-sialidases are key enzymes in the life cycle of African trypanosomes in both, mammalian host and insect vector and have been associated with the disease trypanosomiasis, namely sleeping sickness and nagana. Besides the previously reported TconTS1, we have identified three additional active trans-sialidases, TconTS2, TconTS3 and TconTS4, and three trans-sialidase like genes in Trypanosoma congolense. At least TconTS1, TconTS2 and TconTS4 are found in the bloodstream of infected animals. We have characterised the enzymatic properties of recombinant proteins expressed in eukaryotic fibroblasts using fetuin as model blood glycoprotein donor substrate. One of the recombinant trans-sialidases, TconTS2, had the highest specific activity reported thus far with very low sialidase activity. The active trans-sialidases share all the amino acids critical for the catalytic reaction with few variations in the predicted binding site for the leaving or acceptor glycan. However, these differences cannot explain the orders of magnitudes between their transfer activities, which must be due to other unidentified structural features of the proteins or substrates selectivity. Interestingly, the phylogenetic relationships between the lectin domains correlate with their specific trans-sialylation activities. This raises the question whether and how the lectin domains regulate the trans-sialidase reaction. The identification and enzymatic characterisation of the trans-sialidase family in T. congolense will contribute significantly towards the understanding of the roles of these enzymes in the pathogenesis of Animal African Trypanosomiasis. Trypanosomiasis is a disease also known as sleeping sickness in humans (Human African Trypanosomiasis) and nagana in animals (Animal African Trypanosomiasis). This disease is caused by protozoan parasites of the genus Trypanosoma. Tsetse flies are responsible for the transmission of these parasites. Trypanosoma congolense is the main causative agent of nagana in cattle. The clinical signs of the disease have been linked to the presence of an enzyme called trans-sialidase. Interestingly, the enzyme alternates in different forms in the mammalian and the insect vector. Previous knowledge had shown that the parasite requires the enzyme for survival in the fly vector. Our current work has revealed other forms of the enzyme that could be essential for the persistence of the disease in mammalian and vector hosts. These enzymes, though similar in structural architecture, show differences in their activities that could be key in delineating their individual roles in the pathophysiology of the disease.
Collapse
|
28
|
Balogun EO, Balogun JB, Yusuf S, Inuwa HM, Ndams IS, Sheridan P, Inaoka DK, Shiba T, Harada S, Kita K, Esievo KAN, Nok AJ. Anemia amelioration by lactose infusion during trypanosomosis could be associated with erythrocytes membrane de-galactosylation. Vet Parasitol 2013; 199:259-63. [PMID: 24238624 DOI: 10.1016/j.vetpar.2013.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 12/28/2022]
Abstract
African trypanosomosis is a potentially fatal disease that is caused by extracellular parasitic protists known as African trypanosomes. These parasites inhabit the blood stream of their mammalian hosts and produce a number of pathological features, amongst which is anemia. Etiology of the anemia has been partly attributed to an autoimmunity-like mediated erythrophagocytosis of de-sialylated red blood cells (dsRBCs) by macrophages. Lactose infusion to infected animals has proven effective at delaying progression of the anemia. However, the mechanism of this anemia prevention is yet to be well characterized. Here, the hypothesis of a likely induced further modification of the dsRBCs was investigated. RBC membrane galactose (RBC m-GAL) and packed cell volume (PCV) were measured during the course of experimental trypanosomosis in mice infected with Trypanosoma congolense (stb 212). Intriguingly, while the membrane galactose on the RBCs of infected and lactose-treated mice (group D) decreased as a function of parasitemia, that of the lactose-untreated infected group (group C) remained relatively constant, as was recorded for the uninfected lactose-treated control (group B) animals. At the peak of infection, the respective cumulative percent decrease in PCV and membrane galactose were 30 and 185 for group D, and 84 and 13 for group C. From this observed inverse relationship between RBCs membrane galactose and PCV, it is logical to rationalize that the delay of anemia progression during trypanosomosis produced by lactose might have resulted from an induction of galactose depletion from dsRBCs, thereby preventing their recognition by the macrophages.
Collapse
Affiliation(s)
- E O Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria 2222, Nigeria; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan.
| | - J B Balogun
- Department of Biological Sciences, Federal University Dutse, P.M.B. 7156, Dutse, Jigawa State, Nigeria
| | - S Yusuf
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Uganda
| | - H M Inuwa
- Department of Biochemistry, Ahmadu Bello University, Zaria 2222, Nigeria
| | - I S Ndams
- Department of Biological Sciences, Ahmadu Bello University, Zaria 2222, Nigeria
| | - P Sheridan
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - D K Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - T Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - S Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - K Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - K A N Esievo
- Department of Veterinary Pathology and Microbiology, Ahmadu Bello University, Zaria 2222, Nigeria
| | - A J Nok
- Department of Biochemistry, Ahmadu Bello University, Zaria 2222, Nigeria
| |
Collapse
|
29
|
Identification of trans-sialidases as a common mediator of endothelial cell activation by African trypanosomes. PLoS Pathog 2013; 9:e1003710. [PMID: 24130501 PMCID: PMC3795030 DOI: 10.1371/journal.ppat.1003710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/30/2013] [Indexed: 12/31/2022] Open
Abstract
Understanding African Trypanosomiasis (AT) host-pathogen interaction is the key to an "anti-disease vaccine", a novel strategy to control AT. Here we provide a better insight into this poorly described interaction by characterizing the activation of a panel of endothelial cells by bloodstream forms of four African trypanosome species, known to interact with host endothelium. T. congolense, T. vivax, and T. b. gambiense activated the endothelial NF-κB pathway, but interestingly, not T. b. brucei. The parasitic TS (trans-sialidases) mediated this NF-κB activation, remarkably via their lectin-like domain and induced production of pro-inflammatory molecules not only in vitro but also in vivo, suggesting a considerable impact on pathogenesis. For the first time, TS activity was identified in T. b. gambiense BSF which distinguishes it from the subspecies T. b. brucei. The corresponding TS were characterized and shown to activate endothelial cells, suggesting that TS represent a common mediator of endothelium activation among trypanosome species with divergent physiopathologies.
Collapse
|