1
|
Lactobacillus plantarum and Lactobacillus brevis Alleviate Intestinal Inflammation and Microbial Disorder Induced by ETEC in a Murine Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6867962. [PMID: 34594475 PMCID: PMC8478549 DOI: 10.1155/2021/6867962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
The purpose of this research is to explore the positive effects of Lactobacillus plantarum and Lactobacillus brevis on the tissue damage and microbial community in mice challenged by Enterotoxigenic Escherichia coli (ETEC). Twenty-four mice were divided into four groups randomly: the CON group, ETEC group, LP-ETEC group and LB-ETEC group. Our results demonstrated that, compared with the ETEC group, the LP-ETEC and LB-ETEC groups experienced less weight loss and morphological damage of the jejunum. We measured proinflammatory factors of colonic tissue and found that L. plantarum and L. brevis inhibited the expression of proinflammatory factors such as IL-β, TNF-α, and IL-6 and promoted that of the tight junction protein such as claudin-1, occludin, and ZO-1. Additionally, L. plantarum and L. brevis altered the impact of ETEC on the intestinal microbial community of mice, significantly increased the abundance of probiotics such as Lactobacillus, and reduced that of pathogenic bacteria such as Proteobacteria, Clostridia, Epsilonproteobacteria, and Helicobacter. Therefore, we believe that L. plantarum and L. brevis can stabilize the intestinal microbiota and inhibit the growth of pathogenic bacteria, thus protecting mice from the gut inflammation induced by ETEC.
Collapse
|
2
|
Peirasmaki D, Ma'ayeh SY, Xu F, Ferella M, Campos S, Liu J, Svärd SG. High Cysteine Membrane Proteins (HCMPs) Are Up-Regulated During Giardia-Host Cell Interactions. Front Genet 2020; 11:913. [PMID: 33014015 PMCID: PMC7461913 DOI: 10.3389/fgene.2020.00913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Giardia intestinalis colonizes the upper small intestine of humans and animals, causing the diarrheal disease giardiasis. This unicellular eukaryotic parasite is not invasive but it attaches to the surface of small intestinal epithelial cells (IECs), disrupting the epithelial barrier. Here, we used an in vitro model of the parasite’s interaction with host IECs (differentiated Caco-2 cells) and RNA sequencing (RNAseq) to identify differentially expressed genes (DEGs) in Giardia, which might relate to the establishment of infection and disease induction. Giardia trophozoites interacted with differentiated Caco-2 cells for 1.5, 3, and 4.5 h and at each time point, 61, 89, and 148 parasite genes were up-regulated more than twofold, whereas 209, 265, and 313 parasite genes were down-regulated more than twofold. The most abundant DEGs encode hypothetical proteins and members of the High Cysteine Membrane Protein (HCMP) family. Among the up-regulated genes we also observed proteins associated with proteolysis, cellular redox balance, as well as lipid and nucleic acid metabolic pathways. In contrast, genes encoding kinases, regulators of the cell cycle and arginine metabolism and cytoskeletal proteins were down-regulated. Immunofluorescence imaging of selected, up-regulated HCMPs, using C-terminal HA-tagging, showed localization to the plasma membrane and peripheral vesicles (PVs). The expression of the HCMPs was affected by histone acetylation and free iron-levels. In fact, the latter was shown to regulate the expression of many putative giardial virulence factors in subsequent RNAseq experiments. We suggest that the plasma membrane localized and differentially expressed HCMPs play important roles during Giardia-host cell interactions.
Collapse
Affiliation(s)
- Dimitra Peirasmaki
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Showgy Y Ma'ayeh
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Feifei Xu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Marcela Ferella
- Eukaryotic Single Cell Genomics Platform, Karolinska Institute, Science for Life Laboratory (SciLifeLab), Solna, Sweden
| | - Sara Campos
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jingyi Liu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Jex AR, Svärd S, Hagen KD, Starcevich H, Emery-Corbin SJ, Balan B, Nosala C, Dawson SC. Recent advances in functional research in Giardia intestinalis. ADVANCES IN PARASITOLOGY 2020; 107:97-137. [PMID: 32122532 PMCID: PMC7878119 DOI: 10.1016/bs.apar.2019.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review considers current advances in tools to investigate the functional biology of Giardia, it's coding and non-coding genes, features and cellular and molecular biology. We consider major gaps in current knowledge of the parasite and discuss the present state-of-the-art in its in vivo and in vitro cultivation. Advances in in silico tools, including for the modelling non-coding RNAs and genomic elements, as well as detailed exploration of coding genes through inferred homology to model organisms, have provided significant, primary level insight. Improved methods to model the three-dimensional structure of proteins offer new insights into their function, and binding interactions with ligands, other proteins or precursor drugs, and offer substantial opportunities to prioritise proteins for further study and experimentation. These approaches can be supplemented by the growing and highly accessible arsenal of systems-based methods now being applied to Giardia, led by genomic, transcriptomic and proteomic methods, but rapidly incorporating advanced tools for detection of real-time transcription, evaluation of chromatin states and direct measurement of macromolecular complexes. Methods to directly interrogate and perturb gene function have made major leaps in recent years, with CRISPr-interference now available. These approaches, coupled with protein over-expression, fluorescent labelling and in vitro and in vivo imaging, are set to revolutionize the field and herald an exciting time during which the field may finally realise Giardia's long proposed potential as a model parasite and eukaryote.
Collapse
Affiliation(s)
- Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Staffan Svärd
- Centre for Biomedicine, Uppsala University, Uppsala, Sweden
| | - Kari D Hagen
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Hannah Starcevich
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Chris Nosala
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Scott C Dawson
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| |
Collapse
|
4
|
Emery-Corbin SJ, Grüttner J, Svärd S. Transcriptomic and proteomic analyses of Giardia intestinalis: Intestinal epithelial cell interactions. ADVANCES IN PARASITOLOGY 2019; 107:139-171. [PMID: 32122528 DOI: 10.1016/bs.apar.2019.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Giardia intestinalis is a unicellular protozoan parasite that infects the small intestines of humans and animals. Giardiasis, the disease caused by the parasite, occurs globally across socioeconomic boundaries but is mainly endemic in developing countries and particularly within young children, where pronounced effects manifests in a failure to thrive condition. The molecular pathogenesis of Giardia has been studied using in vitro models of human and rat intestinal epithelial cells (IECs) and parasites from the two major human genotypes or assemblages (A and B). High-quality, genome sequencing of representative isolates from assemblages A (WB) and B (GS) has enabled exploration of these host-parasite models using 'omics' technologies, allowing deep and quantitative analyses of global gene expression changes in IECs and parasites during their interactions, cross-talk and competition. These include a major up-regulation of immune-related genes in the IECs early after the start of interactions, as well as competition between host cells and parasites for nutrients like sugars, amino acids and lipids, which is also reflected in their secretome interactions. Unique parasite proteins dominate these interactions, with many major up-regulated genes being either hypothetical proteins or members of Giardia-specific gene families like the high-cysteine-rich membrane proteins (HCMPs), variable surface proteins (VSPs), alpha-giardins and cysteine proteases. Furthermore, these proteins also dominate in the secretomes, suggesting that they are important virulence factors in Giardia and crucial molecular effectors at the host-parasite interface.
Collapse
Affiliation(s)
- Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Jana Grüttner
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Ding S, Ma Y, Liu G, Yan W, Jiang H, Fang J. Lactobacillus brevis Alleviates DSS-Induced Colitis by Reprograming Intestinal Microbiota and Influencing Serum Metabolome in Murine Model. Front Physiol 2019; 10:1152. [PMID: 31620010 PMCID: PMC6759783 DOI: 10.3389/fphys.2019.01152] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to examine the effects of Lactobacillus brevis on the microbial community and serum metabolome in colitis induced by dextran sulfate sodium (DSS). ICR mice were randomly distributed into three treatment groups: (i) L. brevis treatment alone (control), (ii) DSS administration alone, and (iii) treatment with L. brevis and DSS. Our results demonstrate that L. brevis treatment significantly alleviated DSS-induced body weight loss and colon inflammation. In addition, LC-MS analysis of serum metabolites revealed that L. brevis treatment increased the serum level of metabolites against inflammatory responses or oxidative stressors caused by DSS in the murine model. By detecting colonic microbiota, L. brevis increased colonic microbial diversity after challenging with DSS, and increased the relative abundance of Alloprevotella at genus, but Bacteroidales was reduced (P < 0.05). These result indicated that L. brevis could lower the severity of colitis induced by DSS via improving reprogramming the serum metabolome and intestinal microbiota. These findings suggest that the probiotic L. brevis may prevent tissue damage from colitis.
Collapse
Affiliation(s)
- Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Wenxin Yan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
6
|
Kraft MR, Klotz C, Bücker R, Schulzke JD, Aebischer T. Giardia's Epithelial Cell Interaction In Vitro: Mimicking Asymptomatic Infection? Front Cell Infect Microbiol 2017; 7:421. [PMID: 29018775 PMCID: PMC5622925 DOI: 10.3389/fcimb.2017.00421] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/12/2017] [Indexed: 12/13/2022] Open
Abstract
The protozoan parasite Giardia duodenalis is responsible for more than 280 million cases of gastrointestinal complaints ("giardiasis") every year, worldwide. Infections are acquired orally, mostly via uptake of cysts in contaminated drinking water. After transformation into the trophozoite stage, parasites start to colonize the duodenum and upper jejunum where they attach to the intestinal epithelium and replicate vegetatively. Outcome of Giardia infections vary between individuals, from self-limiting to chronic, and asymptomatic to severely symptomatic infection, with unspecific gastrointestinal complaints. One proposed mechanism for pathogenesis is the breakdown of intestinal barrier function. This has been studied by analyzing trans-epithelial electric resistances (TEER) or by indicators of epithelial permeability using labeled sugar compounds in in vitro cell culture systems, mouse models or human biopsies and epidemiological studies. Here, we discuss the results obtained mainly with epithelial cell models to highlight contradictory findings. We relate published studies to our own findings that suggest a lack of barrier compromising activities of recent G. duodenalis isolates of assemblage A, B, and E in a Caco-2 model system. We propose that this epithelial cell model be viewed as mimicking asymptomatic infection. This view will likely lead to a more informative use of the model if emphasis is shifted from aiming to identify Giardia virulence factors to defining non-parasite factors that arguably appear to be more decisive for disease.
Collapse
Affiliation(s)
- Martin R Kraft
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany.,Institute of Clinical Physiology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Christian Klotz
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Roland Bücker
- Institute of Clinical Physiology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Toni Aebischer
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
7
|
Allain T, Amat CB, Motta JP, Manko A, Buret AG. Interactions of Giardia sp. with the intestinal barrier: Epithelium, mucus, and microbiota. Tissue Barriers 2017; 5:e1274354. [PMID: 28452685 DOI: 10.1080/21688370.2016.1274354] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding how intestinal enteropathogens cause acute and chronic alterations has direct animal and human health perspectives. Significant advances have been made on this field by studies focusing on the dynamic crosstalk between the intestinal protozoan parasite model Giardia duodenalis and the host intestinal mucosa. The concept of intestinal barrier function is of the highest importance in the context of many gastrointestinal diseases such as infectious enteritis, inflammatory bowel disease, and post-infectious gastrointestinal disorders. This crucial function relies on 3 biotic and abiotic components, first the commensal microbiota organized as a biofilm, then an overlaying mucus layer, and finally the tightly structured intestinal epithelium. Herein we review multiple strategies used by Giardia parasite to circumvent these 3 components. We will summarize what is known and discuss preliminary observations suggesting how such enteropathogen directly and/ or indirectly impairs commensal microbiota biofilm architecture, disrupts mucus layer and damages host epithelium physiology and survival.
Collapse
Affiliation(s)
- Thibault Allain
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - Christina B Amat
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - Jean-Paul Motta
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - Anna Manko
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - André G Buret
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| |
Collapse
|
8
|
Ferella M, Davids BJ, Cipriano MJ, Birkeland SR, Palm D, Gillin FD, McArthur AG, Svärd S. Gene expression changes during Giardia-host cell interactions in serum-free medium. Mol Biochem Parasitol 2014; 197:21-3. [PMID: 25286381 DOI: 10.1016/j.molbiopara.2014.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/20/2014] [Accepted: 09/25/2014] [Indexed: 11/28/2022]
Abstract
Serial Analysis of Gene Expression (SAGE) was used to quantify transcriptional changes in Giardia intestinalis during its interaction with human intestinal epithelial cells (IECs, HT-29) in serum free M199 medium. Transcriptional changes were compared to those in trophozoites alone in M199 and in TYI-S-33 Giardia growth medium. In total, 90 genes were differentially expressed, mainly those involved in cellular redox homeostasis, metabolism and small molecule transport but also cysteine proteases and structural proteins of the giardin family. Only 29 genes changed their expression due to IEC interaction and the rest were due to M199 medium. Although our findings generated a small dataset, it was consistent with our earlier microarray studies performed under different interaction conditions. This study has confined the number of genes in Giardia to a small subset that specifically change their expression due to interaction with IECs.
Collapse
Affiliation(s)
- Marcela Ferella
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Barbara J Davids
- Department of Pathology, Division of Infectious Disease, University of California, San Diego, CA, USA
| | | | | | - Daniel Palm
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Frances D Gillin
- Department of Pathology, Division of Infectious Disease, University of California, San Diego, CA, USA
| | | | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Ciccarelli S, Stolfi I, Caramia G. Management strategies in the treatment of neonatal and pediatric gastroenteritis. Infect Drug Resist 2013; 6:133-61. [PMID: 24194646 PMCID: PMC3815002 DOI: 10.2147/idr.s12718] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute gastroenteritis, characterized by the onset of diarrhea with or without vomiting, continues to be a major cause of morbidity and mortality in children in mostly resource-constrained nations. Although generally a mild and self-limiting disease, gastroenteritis is one of the most common causes of hospitalization and is associated with a substantial disease burden. Worldwide, up to 40% of children aged less than 5 years with diarrhea are hospitalized with rotavirus. Also, some microorganisms have been found predominantly in resource-constrained nations, including Shigella spp, Vibrio cholerae, and the protozoan infections. Prevention remains essential, and the rotavirus vaccines have demonstrated good safety and efficacy profiles in large clinical trials. Because dehydration is the major complication associated with gastroenteritis, appropriate fluid management (oral or intravenous) is an effective and safe strategy for rehydration. Continuation of breastfeeding is strongly recommended. New treatments such as antiemetics (ondansetron), some antidiarrheal agents (racecadotril), and chemotherapeutic agents are often proposed, but not yet universally recommended. Probiotics, also known as "food supplement," seem to improve intestinal microbial balance, reducing the duration and the severity of acute infectious diarrhea. The European Society for Paediatric Gastroenterology, Hepatology and Nutrition and the European Society of Paediatric Infectious Diseases guidelines make a stronger recommendation for the use of probiotics for the management of acute gastroenteritis, particularly those with documented efficacy such as Lactobacillus rhamnosus GG, Lactobacillus reuteri, and Saccharomyces boulardii. To date, the management of acute gastroenteritis has been based on the option of "doing the least": oral rehydration-solution administration, early refeeding, no testing, no unnecessary drugs.
Collapse
Affiliation(s)
- Simona Ciccarelli
- Neonatal Intensive Care Unit, Sapienza University of Rome, Rome, Italy
| | | | | |
Collapse
|