1
|
Bunyaviral N Proteins Localize at RNA Processing Bodies and Stress Granules: The Enigma of Cytoplasmic Sources of Capped RNA for Cap Snatching. Viruses 2022; 14:v14081679. [PMID: 36016301 PMCID: PMC9414089 DOI: 10.3390/v14081679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Most cytoplasmic-replicating negative-strand RNA viruses (NSVs) initiate genome transcription by cap snatching. The source of host mRNAs from which the cytoplasmic NSVs snatch capped-RNA leader sequences has remained elusive. Earlier reports have pointed towards cytoplasmic-RNA processing bodies (P body, PB), although several questions have remained unsolved. Here, the nucleocapsid (N) protein of plant- and animal-infecting members of the order Bunyavirales, in casu Tomato spotted wilt virus (TSWV), Rice stripe virus (RSV), Sin nombre virus (SNV), Crimean-Congo hemorrhagic fever virus (CCHFV) and Schmallenberg virus (SBV) have been expressed and localized in cells of their respective plant and animal hosts. All N proteins localized to PBs as well as stress granules (SGs), but extensively to docking stages of PB and SG. TSWV and RSV N proteins also co-localized with Ran GTPase-activating protein 2 (RanGAP2), a nucleo-cytoplasmic shuttling factor, in the perinuclear region, and partly in the nucleus when co-expressed with its WPP domain containing a nuclear-localization signal. Upon silencing of PB and SG components individually or concomitantly, replication levels of a TSWV minireplicon, as measured by the expression of a GFP reporter gene, ranged from a 30% reduction to a four-fold increase. Upon the silencing of RanGAP homologs in planta, replication of the TSWV minireplicon was reduced by 75%. During in vivo cap-donor competition experiments, TSWV used transcripts destined to PB and SG, but also functional transcripts engaged in translation. Altogether, the results implicate a more complex situation in which, besides PB, additional cytoplasmic sources are used during transcription/cap snatching of cytoplasmic-replicating and segmented NSVs.
Collapse
|
2
|
Gallo GL, López N, Loureiro ME. The Virus–Host Interplay in Junín Mammarenavirus Infection. Viruses 2022; 14:v14061134. [PMID: 35746604 PMCID: PMC9228484 DOI: 10.3390/v14061134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Junín virus (JUNV) belongs to the Arenaviridae family and is the causative agent of Argentine hemorrhagic fever (AHF), a severe human disease endemic to agricultural areas in Argentina. At this moment, there are no effective antiviral therapeutics to battle pathogenic arenaviruses. Cumulative reports from recent years have widely provided information on cellular factors playing key roles during JUNV infection. In this review, we summarize research on host molecular determinants that intervene in the different stages of the viral life cycle: viral entry, replication, assembly and budding. Alongside, we describe JUNV tight interplay with the innate immune system. We also review the development of different reverse genetics systems and their use as tools to study JUNV biology and its close teamwork with the host. Elucidating relevant interactions of the virus with the host cell machinery is highly necessary to better understand the mechanistic basis beyond virus multiplication, disease pathogenesis and viral subversion of the immune response. Altogether, this knowledge becomes essential for identifying potential targets for the rational design of novel antiviral treatments to combat JUNV as well as other pathogenic arenaviruses.
Collapse
|
3
|
Lee M, Koma T, Iwasaki M, Urata S. [South American Hemorrhagic Fever viruses and the cutting edge of the vaccine and antiviral development]. Uirusu 2022; 72:7-18. [PMID: 37899233 DOI: 10.2222/jsv.72.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
South American Hemorrhagic Fever is caused by the Arenavirus, which belong to the Family Arenaviridae, genus mammarenavirus, infection at South America. South American Hemorrhagic Fever includes 1. Argentinian Hemorrhagic fever caused by Junin virus, 2. Brazilian hemorrhagic fever caused by Sabia virus, 3. Venezuelan Hemorrhagic fever caused by Guanarito virus, 4. Bolivian Hemorrhagic fever caused by Machupo virus, and 5. Unassigned hemorrhagic fever caused by Chapare virus. These viruses are classified in New World (NW) Arenavirus, which is different from Old World Arenavirus (ex. Lassa virus), based on phylogeny, serology, and geographic differences. In this review, the current knowledge of the biology and the development of the vaccines and antivirals of NW Arenaviruses which cause South American Hemorrhagic Fever will be described.
Collapse
Affiliation(s)
- Meion Lee
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University
| | - Takaaki Koma
- Department of Microbiology, Graduate School of Medicine, Tokushima University
| | - Masaharu Iwasaki
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University
| | - Shuzo Urata
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University
| |
Collapse
|
4
|
Baggio F, Hetzel U, Nufer L, Kipar A, Hepojoki J. A subpopulation of arenavirus nucleoprotein localizes to mitochondria. Sci Rep 2021; 11:21048. [PMID: 34702948 PMCID: PMC8548533 DOI: 10.1038/s41598-021-99887-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/30/2021] [Indexed: 12/02/2022] Open
Abstract
Viruses need cells for their replication and, therefore, ways to hijack cellular functions. Mitochondria play fundamental roles within the cell in metabolism, immunity and regulation of homeostasis due to which some viruses aim to alter mitochondrial functions. Herein we show that the nucleoprotein (NP) of arenaviruses enters the mitochondria of infected cells, affecting the mitochondrial morphology. Reptarenaviruses cause boid inclusion body disease (BIBD) that is characterized, especially in boas, by the formation of cytoplasmic inclusion bodies (IBs) comprising reptarenavirus NP within the infected cells. We initiated this study after observing electron-dense material reminiscent of IBs within the mitochondria of reptarenavirus infected boid cell cultures in an ultrastructural study. We employed immuno-electron microscopy to confirm that the mitochondrial inclusions indeed contain reptarenavirus NP. Mutations to a putative N-terminal mitochondrial targeting signal (MTS), identified via software predictions in both mamm- and reptarenavirus NPs, did not affect the mitochondrial localization of NP, suggesting that it occurs independently of MTS. In support of MTS-independent translocation, we did not detect cleavage of the putative MTSs of arenavirus NPs in reptilian or mammalian cells. Furthermore, in vitro translated NPs could not enter isolated mitochondria, suggesting that the translocation requires cellular factors or conditions. Our findings suggest that MTS-independent mitochondrial translocation of NP is a shared feature among arenaviruses. We speculate that by targeting the mitochondria arenaviruses aim to alter mitochondrial metabolism and homeostasis or affect the cellular defense.
Collapse
Affiliation(s)
- Francesca Baggio
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland. .,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland.
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland.,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Lisbeth Nufer
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland.,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Jussi Hepojoki
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland.,Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| |
Collapse
|
5
|
Sorokin II, Vassilenko KS, Terenin IM, Kalinina NO, Agol VI, Dmitriev SE. Non-Canonical Translation Initiation Mechanisms Employed by Eukaryotic Viral mRNAs. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1060-1094. [PMID: 34565312 PMCID: PMC8436584 DOI: 10.1134/s0006297921090042] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Viruses exploit the translation machinery of an infected cell to synthesize their proteins. Therefore, viral mRNAs have to compete for ribosomes and translation factors with cellular mRNAs. To succeed, eukaryotic viruses adopt multiple strategies. One is to circumvent the need for m7G-cap through alternative instruments for ribosome recruitment. These include internal ribosome entry sites (IRESs), which make translation independent of the free 5' end, or cap-independent translational enhancers (CITEs), which promote initiation at the uncapped 5' end, even if located in 3' untranslated regions (3' UTRs). Even if a virus uses the canonical cap-dependent ribosome recruitment, it can still perturb conventional ribosomal scanning and start codon selection. The pressure for genome compression often gives rise to internal and overlapping open reading frames. Their translation is initiated through specific mechanisms, such as leaky scanning, 43S sliding, shunting, or coupled termination-reinitiation. Deviations from the canonical initiation reduce the dependence of viral mRNAs on translation initiation factors, thereby providing resistance to antiviral mechanisms and cellular stress responses. Moreover, viruses can gain advantage in a competition for the translational machinery by inactivating individual translational factors and/or replacing them with viral counterparts. Certain viruses even create specialized intracellular "translation factories", which spatially isolate the sites of their protein synthesis from cellular antiviral systems, and increase availability of translational components. However, these virus-specific mechanisms may become the Achilles' heel of a viral life cycle. Thus, better understanding of the unconventional mechanisms of viral mRNA translation initiation provides valuable insight for developing new approaches to antiviral therapy.
Collapse
Affiliation(s)
- Ivan I Sorokin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Konstantin S Vassilenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Natalia O Kalinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Vadim I Agol
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute of Poliomyelitis, Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, Moscow, 108819, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
6
|
Kim YJ, Venturini V, de la Torre JC. Progress in Anti-Mammarenavirus Drug Development. Viruses 2021; 13:v13071187. [PMID: 34206216 PMCID: PMC8310104 DOI: 10.3390/v13071187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/12/2021] [Accepted: 06/19/2021] [Indexed: 12/24/2022] Open
Abstract
Mammarenaviruses are prevalent pathogens distributed worldwide, and several strains cause severe cases of human infections with high morbidity and significant mortality. Currently, there is no FDA-approved antiviral drugs and vaccines against mammarenavirus and the potential treatment option is limited to an off-label use of ribavirin that shows only partial protective effect and associates with side effects. For the past few decades, extensive research has reported potential anti-mammarenaviral drugs and their mechanisms of action in host as well as vaccine candidates. This review describes current knowledge about mammarenavirus virology, progress of antiviral drug development, and technical strategies of drug screening.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-J.K.); (V.V.)
| | - Victor Venturini
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-J.K.); (V.V.)
- Department of Biotechnology, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), Carretera Pozuelo-Majadahonda, Km 1,800, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Juan C. de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-J.K.); (V.V.)
- Correspondence:
| |
Collapse
|
7
|
[Arenavirus research and antiviral candidate]. Uirusu 2019; 68:51-62. [PMID: 31105135 DOI: 10.2222/jsv.68.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Arenavirus is a genetic term for viruses belonging to the family Arenaviridae and is presented from lymphocytic choriomeningitis virus (LCMV), which shows almost no pathogenicity to humans, to Lassa virus, Junin virus, Machupo virus, Chapare virus, Lujo virus, Sabia virus, and Guanarito virus, which shows high pathogenicity to humans. These viruses except for LCMV are risk group 4 pathogens specified by World Health Organization. Based on this designation, it is designated as Class I pathogens in Japan. Although there have been no reports excluding one imported case of the Lassa fever patient, it is not surprising whenever imported cases occur in our country. Considering the disease severity and mortality rate, it is an urgent matter to develop vaccines and therapeutic drugs in endemic areas, and maintenances of these are also important in countries other than endemic areas. However, basic research on highly pathogenic arenavirus infections and development of therapeutic drugs are not easily progressed, because handling in highly safe research facilities is indispensable. In this article, we will outline the current knowledge from the recent basic research on arenavirus to the development situation of antivirals against arenaviruses.
Collapse
|
8
|
Chen S, Feng C, Fang Y, Zhou X, Xu L, Wang W, Kong X, P Peppelenbosch M, Pan Q, Yin Y. The Eukaryotic Translation Initiation Factor 4F Complex Restricts Rotavirus Infection via Regulating the Expression of IRF1 and IRF7. Int J Mol Sci 2019; 20:ijms20071580. [PMID: 30934842 PMCID: PMC6480131 DOI: 10.3390/ijms20071580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
The eIF4F complex is a translation initiation factor that closely regulates translation in response to a multitude of environmental conditions including viral infection. How translation initiation factors regulate rotavirus infection remains poorly understood. In this study, the knockdown of the components of the eIF4F complex using shRNA and CRISPR/Cas9 were performed, respectively. We have demonstrated that loss-of-function of the three components of eIF4F, including eIF4A, eIF4E and eIF4G, remarkably promotes the levels of rotavirus genomic RNA and viral protein VP4. Consistently, knockdown of the negative regulator of eIF4F and programmed cell death protein 4 (PDCD4) inhibits the expression of viral mRNA and the VP4 protein. Mechanically, we confirmed that the silence of the eIF4F complex suppressed the protein level of IRF1 and IRF7 that exert potent antiviral effects against rotavirus infection. Thus, these results demonstrate that the eIF4F complex is an essential host factor restricting rotavirus replication, revealing new targets for the development of new antiviral strategies against rotavirus infection.
Collapse
Affiliation(s)
- Sunrui Chen
- Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China.
- Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Cui Feng
- Department of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yan Fang
- College of Basic Medicine, Shannxi University of Chinese Medicine, Xianyang 712046, China.
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Lei Xu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Wenshi Wang
- Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Xiangdong Kong
- Department of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | | | - Qiuwei Pan
- Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China.
- Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Yuebang Yin
- Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Linero F, Sepúlveda C, Christopoulou I, Hulpiau P, Scolaro L, Saelens X. Neutralization of Junín virus by single domain antibodies targeted against the nucleoprotein. Sci Rep 2018; 8:11451. [PMID: 30061671 PMCID: PMC6065417 DOI: 10.1038/s41598-018-29508-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/11/2018] [Indexed: 01/28/2023] Open
Abstract
The syndrome viral haemorrhagic fever (VHF) designates a broad range of diseases that are caused by different viruses including members of the family Arenaviridae. Prophylaxis for Argentine Haemorrhagic Fever (AHF), caused by the arenavirus Junín (JUNV), has been achieved by the use of a live attenuated vaccine, named Candid#1. The standard treatment of AHF is transfusion of convalescent human plasma. Our aim was to develop an alternative and safer treatment for AHF based on the use of virus-neutralizing single domain antibodies (VHHs). We describe the first reported VHHs directed against an arenavirus. These VHHs could neutralize Candid#1 by altering virion binding/fusion. Surprisingly, the neutralizing VHHs appeared to be specific for the viral nucleoprotein (N) that is not known to be involved in arenavirus entry. Candid#1 VHH-escape viruses had acquired a predicted N-glycosylation site in the surface glycoprotein GP1 that is present in highly pathogenic JUNV strains. Accordingly, the Candid#1-neutralizing VHHs could not neutralize pathogenic JUNV strains, but they could still bind to cells infected with a pathogenic strain or the escape mutant viruses. These results show that the attenuated strains of JUNV can be potently neutralized by nucleoprotein-specific VHHs.
Collapse
Affiliation(s)
- Florencia Linero
- VIB Center for Medical Biotechnology, Ghent, B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium
| | - Claudia Sepúlveda
- Laboratory of Virology, Faculty of Sciences, University of Buenos Aires, C1428EGA, Caba, Argentina
| | - Ioanna Christopoulou
- VIB Center for Medical Biotechnology, Ghent, B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium
| | - Paco Hulpiau
- Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium.,VIB Center for Inflammation Research, VIB, Ghent, B-9052, Belgium
| | - Luis Scolaro
- Laboratory of Virology, Faculty of Sciences, University of Buenos Aires, C1428EGA, Caba, Argentina
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, Ghent, B-9052, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium.
| |
Collapse
|
10
|
Highly Pathogenic New World Arenavirus Infection Activates the Pattern Recognition Receptor Protein Kinase R without Attenuating Virus Replication in Human Cells. J Virol 2017; 91:JVI.01090-17. [PMID: 28794024 DOI: 10.1128/jvi.01090-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023] Open
Abstract
The arenavirus family consists of several highly pathogenic viruses, including the Old World (OW) arenavirus Lassa fever virus (LASV) and the New World (NW) Junin virus (JUNV) and Machupo virus (MACV). Host response to infection by these pathogenic arenaviruses is distinct in many aspects. JUNV and MACV infections readily induce an interferon (IFN) response in human cells, while LASV infection usually triggers an undetectable or weak IFN response. JUNV induces an IFN response through RIG-I, suggesting that the host non-self RNA sensor readily detects JUNV viral RNAs (vRNAs) during infection and activates IFN response. Double-stranded-RNA (dsRNA)-activated protein kinase R (PKR) is another host non-self RNA sensor classically known for its vRNA recognition activity. Here we report that infection with NW arenaviruses JUNV and MACV, but not OW LASV, activated PKR, concomitant with elevated phosphorylation of the translation initiation factor α subunit of eukaryotic initiation factor 2 (eIF2α). Host protein synthesis was substantially suppressed in MACV- and JUNV-infected cells but was only marginally reduced in LASV-infected cells. Despite the antiviral activity known for PKR against many other viruses, the replication of JUNV and MACV was not impaired but was slightly augmented in wild-type (wt) cells compared to that in PKR-deficient cells, suggesting that PKR or PKR activation did not negatively affect JUNV and MACV infection. Additionally, we found an enhanced IFN response in JUNV- or MACV-infected PKR-deficient cells, which was inversely correlated with virus replication.IMPORTANCE The detection of viral RNA by host non-self RNA sensors, including RIG-I and MDA5, is critical to the initiation of the innate immune response to RNA virus infection. Among pathogenic arenaviruses, the OW LASV usually does not elicit an interferon response. However, the NW arenaviruses JUNV and MACV readily trigger an IFN response in a RIG-I-dependent manner. Here, we demonstrate for the first time that pathogenic NW arenaviruses JUNV and MACV, but not the OW arenavirus LASV, activated the dsRNA-dependent PKR, another host non-self RNA sensor, during infection. Interestingly, the replication of JUNV and MACV was not restricted but was rather slightly augmented in the presence of PKR. Our data provide new evidence for a distinct interplay between host non-self RNA sensors and pathogenic arenaviruses, which also provides insights into the pathogenesis of arenaviruses and may facilitate the design of vaccines and treatments against arenavirus-caused diseases.
Collapse
|
11
|
A Map of the Arenavirus Nucleoprotein-Host Protein Interactome Reveals that Junín Virus Selectively Impairs the Antiviral Activity of Double-Stranded RNA-Activated Protein Kinase (PKR). J Virol 2017; 91:JVI.00763-17. [PMID: 28539447 DOI: 10.1128/jvi.00763-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/12/2017] [Indexed: 11/20/2022] Open
Abstract
Arenaviruses are enveloped negative-strand RNA viruses that cause significant human disease. These viruses encode only four proteins to accomplish the viral life cycle, so each arenavirus protein likely plays unappreciated accessory roles during infection. Here we used immunoprecipitation and mass spectrometry to identify human proteins that interact with the nucleoproteins (NPs) of the Old World arenavirus lymphocytic choriomeningitis virus (LCMV) and the New World arenavirus Junín virus (JUNV) strain Candid #1. Bioinformatic analysis of the identified protein partners of NP revealed that host translation appears to be a key biological process engaged during infection. In particular, NP associates with the double-stranded RNA (dsRNA)-activated protein kinase (PKR), a well-characterized antiviral protein that inhibits cap-dependent protein translation initiation via phosphorylation of eIF2α. JUNV infection leads to increased expression of PKR as well as its redistribution to viral replication and transcription factories. Further, phosphorylation of PKR, which is a prerequisite for its ability to phosphorylate eIF2α, is readily induced by JUNV. However, JUNV prevents this pool of activated PKR from phosphorylating eIF2α, even following exposure to the synthetic dsRNA poly(I·C), a potent PKR agonist. This blockade of PKR function is highly specific, as LCMV is unable to similarly inhibit eIF2α phosphorylation. JUNV's ability to antagonize the antiviral activity of PKR appears to be complete, as silencing of PKR expression has no impact on viral propagation. In summary, we provide a detailed map of the host machinery engaged by arenavirus NPs and identify an antiviral pathway that is subverted by JUNV.IMPORTANCE Arenaviruses are important human pathogens for which FDA-approved vaccines do not exist and effective antiviral therapeutics are needed. Design of antiviral treatment options and elucidation of the mechanistic basis of disease pathogenesis will depend on an increased basic understanding of these viruses and, in particular, their interactions with the host cell machinery. Identifying host proteins critical for the viral life cycle and/or pathogenesis represents a useful strategy to uncover new drug targets. This study reveals, for the first time, the extensive human protein interactome of arenavirus nucleoproteins and uncovers a potent antiviral host protein that is neutralized during Junín virus infection. In so doing, it shows further insight into the interplay between the virus and the host innate immune response and provides an important data set for the field.
Collapse
|
12
|
Regulation of Tacaribe Mammarenavirus Translation: Positive 5' and Negative 3' Elements and Role of Key Cellular Factors. J Virol 2017; 91:JVI.00084-17. [PMID: 28468879 DOI: 10.1128/jvi.00084-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
Mammarenaviruses are enveloped viruses with a bisegmented negative-stranded RNA genome that encodes the nucleocapsid protein (NP), the envelope glycoprotein precursor (GPC), the RNA polymerase (L), and a RING matrix protein (Z). Viral proteins are synthesized from subgenomic mRNAs bearing a capped 5' untranslated region (UTR) and lacking 3' poly(A) tail. We analyzed the translation strategy of Tacaribe virus (TCRV), a prototype of the New World mammarenaviruses. A virus-like transcript that carries a reporter gene in place of the NP open reading frame and transcripts bearing modified 5' and/or 3' UTR were evaluated in a cell-based translation assay. We found that the presence of the cap structure at the 5' end dramatically increases translation efficiency and that the viral 5' UTR comprises stimulatory signals while the 3' UTR,specifically the presence of a terminal C+G-rich sequence and/or a stem-loop structure, down-modulates translation. Additionally, translation was profoundly reduced in eukaryotic initiation factor (eIF) 4G-inactivated cells, whereas depletion of intracellular levels of eIF4E had less impact on virus-like mRNA translation than on a cell-like transcript. Translation efficiency was independent of NP expression or TCRV infection. Our results indicate that TCRV mRNAs are translated using a cap-dependent mechanism, whose efficiency relies on the interplay between stimulatory signals in the 5' UTR and a negative modulatory element in the 3' UTR. The low dependence on eIF4E suggests that viral mRNAs may engage yet-unknown noncanonical host factors for a cap-dependent initiation mechanism.IMPORTANCE Several members of the Arenaviridae family cause serious hemorrhagic fevers in humans. In the present report, we describe the mechanism by which Tacaribe virus, a prototypic nonpathogenic New World mammarenavirus, regulates viral mRNA translation. Our results highlight the impact of untranslated sequences and key host translation factors on this process. We propose a model that explains how viral mRNAs outcompete cellular mRNAs for the translation machinery. A better understanding of the mechanism of translation regulation of this virus can provide the bases for the rational design of new antiviral tools directed to pathogenic arenaviruses.
Collapse
|
13
|
Abstract
Hemorrhagic fevers caused by viruses were identified in the late 1950s in South America. These viruses have existed in their hosts, the New World rodents, for millions of years. Their emergence as infectious agents in humans coincided with changes in the environment and farming practices that caused explosions in their host rodent populations. Zoonosis into humans likely occurs because the pathogenic New World arenaviruses use human transferrin receptor 1 to enter cells. The mortality rate after infection with these viruses is high, but the mechanism by which disease is induced is still not clear. Possibilities include direct effects of cellular infection or the induction of high levels of cytokines by infected sentinel cells of the immune system, leading to endothelia and thrombocyte dysfunction and neurological disease. Here we provide a review of the ecology and molecular and cellular biology of New World arenaviruses, as well as a discussion of the current animal models of infection. The development of animal models, coupled with an improved understanding of the infection pathway and host response, should lead to the discovery of new drugs for treating infections.
Collapse
Affiliation(s)
- Nicolás Sarute
- Department of Microbiology and Immunology, University of Illinois College of Medicine at Chicago, Chicago, Illinois 60612; ,
| | - Susan R Ross
- Department of Microbiology and Immunology, University of Illinois College of Medicine at Chicago, Chicago, Illinois 60612; ,
| |
Collapse
|
14
|
Venezuelan equine encephalitis virus non-structural protein 3 (nsP3) interacts with RNA helicases DDX1 and DDX3 in infected cells. Antiviral Res 2016; 131:49-60. [PMID: 27105836 PMCID: PMC7113772 DOI: 10.1016/j.antiviral.2016.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/17/2022]
Abstract
The mosquito-borne New World alphavirus, Venezuelan equine encephalitis virus (VEEV) is a Category B select agent with no approved vaccines or therapies to treat infected humans. Therefore it is imperative to identify novel targets that can be targeted for effective therapeutic intervention. We aimed to identify and validate interactions of VEEV nonstructural protein 3 (nsP3) with host proteins and determine the consequences of these interactions to viral multiplication. We used a HA tagged nsP3 infectious clone (rTC-83-nsP3-HA) to identify and validate two RNA helicases: DDX1 and DDX3 that interacted with VEEV-nsP3. In addition, DDX1 and DDX3 knockdown resulted in a decrease in infectious viral titers. Furthermore, we propose a functional model where the nsP3:DDX3 complex interacts with the host translational machinery and is essential in the viral life cycle. This study will lead to future investigations in understanding the importance of VEEV-nsP3 to viral multiplication and apply the information for the discovery of novel host targets as therapeutic options. VEEV nsP3 interacted with the host helicases DDX1 and DDX3 in infected cells. Depletion of DDX1 or DDX3 negatively impacted viral multiplication and decreased infectious viral titers. nsP3 may interact with the host translational machinery through DDX3. The small molecule DDX3 inhibitor RK33 negatively impacted VEEV multiplication.
Collapse
|
15
|
Human hemorrhagic Fever causing arenaviruses: molecular mechanisms contributing to virus virulence and disease pathogenesis. Pathogens 2015; 4:283-306. [PMID: 26011826 PMCID: PMC4493475 DOI: 10.3390/pathogens4020283] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 12/22/2022] Open
Abstract
Arenaviruses include multiple human pathogens ranging from the low-risk lymphocytic choriomeningitis virus (LCMV) to highly virulent hemorrhagic fever (HF) causing viruses such as Lassa (LASV), Junin (JUNV), Machupo (MACV), Lujo (LUJV), Sabia (SABV), Guanarito (GTOV), and Chapare (CHPV), for which there are limited preventative and therapeutic measures. Why some arenaviruses can cause virulent human infections while others cannot, even though they are isolated from the same rodent hosts, is an enigma. Recent studies have revealed several potential pathogenic mechanisms of arenaviruses, including factors that increase viral replication capacity and suppress host innate immunity, which leads to high viremia and generalized immune suppression as the hallmarks of severe and lethal arenaviral HF diseases. This review summarizes current knowledge of the roles of each of the four viral proteins and some known cellular factors in the pathogenesis of arenaviral HF as well as of some human primary cell-culture and animal models that lend themselves to studying arenavirus-induced HF disease pathogenesis. Knowledge gained from these studies can be applied towards the development of novel therapeutics and vaccines against these deadly human pathogens.
Collapse
|
16
|
Abstract
The Arenaviridae are enveloped, negative-sense RNA viruses with several family members that cause hemorrhagic fevers. This work provides immunofluorescence evidence that, unlike those of New World arenaviruses, the replication and transcription complexes (RTC) of lymphocytic choriomeningitis virus (LCMV) colocalize with eukaryotic initiation factor 4E (eIF4E) and that eIF4E may participate in the translation of LCMV mRNA. Additionally, we identify two residues in the LCMV nucleoprotein (NP) that are conserved in every mammalian arenavirus and are required for recombinant LCMV recovery. One of these sites, Y125, was confirmed to be phosphorylated by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). NP Y125 is located in the N-terminal region of NP that is disordered when RNA is bound. The other site, NP T206, was predicted to be a phosphorylation site. Immunofluorescence analysis demonstrated that NP T206 is required for the formation of the punctate RTC that are typically observed during LCMV infection. A minigenome reporter assay using NP mutants, as well as Northern blot analysis, demonstrated that although NP T206A does not form punctate RTC, it can transcribe and replicate a minigenome. However, in the presence of matrix protein (Z) and glycoprotein (GP), translation of the minigenome message with NP T206A was inhibited, suggesting that punctate RTC formation is required to regulate viral replication. Together, these results highlight a significant difference between New and Old World arenaviruses and demonstrate the importance of RTC formation and translation priming in RTC for Old World arenaviruses. Several members of the Arenaviridae cause hemorrhagic fevers and are classified as category A pathogens. Arenavirus replication-transcription complexes (RTC) are nucleated by the viral nucleoprotein. This study demonstrates that the formation of these complexes is required for virus viability and suggests that RTC nucleation is regulated by the phosphorylation of a single nucleoprotein residue. This work adds to the body of knowledge about how these key viral structures are formed and participate in virus replication. Additionally, the fact that Old World arenavirus complexes colocalize with the eukaryotic initiation factor 4E, while New World arenaviruses do not, is only the second notable difference observed between New and Old World arenaviruses, the first being the difference in the glycoprotein receptor.
Collapse
|
17
|
eIF4E as a control target for viruses. Viruses 2015; 7:739-50. [PMID: 25690796 PMCID: PMC4353914 DOI: 10.3390/v7020739] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 01/04/2023] Open
Abstract
Translation is a complex process involving diverse cellular proteins, including the translation initiation factor eIF4E, which has been shown to be a protein that is a point for translational regulation. Viruses require components from the host cell to complete their replication cycles. Various studies show how eIF4E and its regulatory cellular proteins are manipulated during viral infections. Interestingly, viral action mechanisms in eIF4E are diverse and have an impact not only on viral protein synthesis, but also on other aspects that are important for the replication cycle, such as the proliferation of infected cells and stimulation of viral reactivation. This review shows how some viruses use eIF4E and its regulatory proteins for their own benefit in order to spread themselves.
Collapse
|
18
|
Inhibition of the PI3K/Akt pathway by Ly294002 does not prevent establishment of persistent Junín virus infection in Vero cells. Arch Virol 2014; 160:469-75. [PMID: 25488290 PMCID: PMC7087115 DOI: 10.1007/s00705-014-2298-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/25/2014] [Indexed: 11/22/2022]
Abstract
In previous work, we demonstrated that the arenavirus Junín virus (JUNV) is able to activate Akt by means of the phosphatidylinositol-3-kinase (PI3K) survival pathway during virus entry. This work extends our study, emphasizing the relevance of this pathway in the establishment and maintenance of persistent infection in vitro. During the course of infection, JUNV-infected Vero cells showed a typical cytopathic effect that may be ascribed to apoptotic cell death. Treatment of infected cultures with Ly294002, an inhibitor of the PI3K/Akt pathway, produced an apoptotic response similar to that observed for uninfected cells treated with the drug. This result suggests that virus-induced activation of the PI3K/Akt pathway does not deliver a strong enough anti-apoptotic signal to explain the low proportion of apoptotic cells observed during infection. Also, inhibition of the PI3K/Akt pathway during the acute stage of infection did not prevent the establishment of persistence. Furthermore, treatment of persistently JUNV-infected cells with Ly294002 did not alter viral protein expression. These findings indicate that despite the positive modulation of the PI3/Akt pathway during Junín virus entry, this would not play a critical role in the establishment and maintenance of JUNV persistence in Vero cells.
Collapse
|