1
|
Yin W, Wan M, Zhang Y, Meng H, Pan Z, Jiao X, Gu D. Role of the TPR family protein VPA1365 in regulating type III secretion system 2 and virulence in Vibrio parahaemolyticus. Appl Environ Microbiol 2025; 91:e0220124. [PMID: 40130841 PMCID: PMC12016518 DOI: 10.1128/aem.02201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/23/2025] [Indexed: 03/26/2025] Open
Abstract
Vibrio parahaemolyticus is a notable seafood-borne pathogen capable of colonizing the intestines of hosts and inducing acute gastroenteritis. The intestinal colonization and enterotoxicity of V. parahaemolyticus are highly reliant on the type III secretion system 2 (T3SS2), encoded within the pathogenicity island (Vp-PAI). The expression of Vp-PAI is strictly regulated by bile acid signals and transcriptional regulators VtrA/VtrB. In this study, we identified a tetratricopeptide repeat (TPR) family protein named VPA1365, which regulates the expression of T3SS2 and is indispensable for the intestinal colonization of V. parahaemolyticus. The expression and secretion of the T3SS2-dependent protein VopD2 were significantly reduced in Δvpa1365 compared to that of the wild type (WT), suggesting that VPA1365 positively regulates the function of T3SS2. Further research indicated that VPA1365 directly binds to the promoters of vtrA, thereby increasing the expression levels of T3SS2-associated genes. Additionally, the deletion of vpa1365 markedly reduced the cytotoxicity, adhesion ability, biofilm formation, and hemolytic activity of V. parahaemolyticus. VPA1365 was found to control the expression levels of these virulence-associated genes by binding to the promoters of scrG, pilA, and mshA. In a zebrafish infection model, the Δvpa1365 infected groups demonstrated a higher survival rate compared to the zebrafish infected with WT. In conclusion, this study identified a TPR family protein VPA1365, which regulates the expression levels of T3SS2 and virulence-associated genes in V. parahaemolyticus, further broadening our understanding of its virulence factors. IMPORTANCE The type III secretion system 2 (T3SS2) is of crucial significance for the pathogenicity of Vibrio parahaemolyticus; nevertheless, the biological functions of many genes within the T3SS2 gene cluster and the transcriptional regulatory network of T3SS2 remain ambiguous. In this study, we identified VPA1365, a tetratricopeptide repeat family regulator encoded in the T3SS2 gene cluster, which differs from other known T3SS2 regulatory factors, such as OmpR, ToxR, or LysR family proteins. VPA1365 not only positively regulated the expression and secretion of T3SS2-related proteins but also enhanced the virulence in infant rabbits and zebrafish. Moreover, we identified several novel functions of VPA1365, such as its contribution to hemolytic activity, biofilm formation, cytotoxicity, and adhesion ability, uncovering its global physiological role in V. parahaemolyticus. The putative VPA1365-binding site was predicted and identified through the MEME-Suite tool and electrophoretic mobility shift analysis. Collectively, these results broaden our understanding of the regulatory pathways of T3SS2 and virulence.
Collapse
Affiliation(s)
- Wenliang Yin
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mengyan Wan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Youkun Zhang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongmei Meng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dan Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Plaza N, Pérez-Reytor D, Corsini G, García K, Urrutia ÍM. Contribution of the Type III Secretion System (T3SS2) of Vibrio parahaemolyticus in Mitochondrial Stress in Human Intestinal Cells. Microorganisms 2024; 12:813. [PMID: 38674757 PMCID: PMC11051933 DOI: 10.3390/microorganisms12040813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Vibrio parahaemolyticus is an important human pathogen that is currently the leading cause of shellfish-borne gastroenteritis in the world. Particularly, the pandemic strain has the capacity to induce cytotoxicity and enterotoxicity through its Type 3 Secretion System (T3SS2) that leads to massive cell death. However, the specific mechanism by which the T3SS2 induces cell death remains unclear and its contribution to mitochondrial stress is not fully understood. In this work, we evaluated the contribution of the T3SS2 of V. parahaemolyticus in generating mitochondrial stress during infection in human intestinal HT-29 cells. To evaluate the contribution of the T3SS2 of V. parahaemolyticus in mitochondrial stress, infection assays were carried out to evaluate mitochondrial transition pore opening, mitochondrial fragmentation, ATP quantification, and cell viability during infection. Our results showed that the Δvscn1 (T3SS2+) mutant strain contributes to generating the sustained opening of the mitochondrial transition pore. Furthermore, it generates perturbations in the ATP production in infected cells, leading to a significant decrease in cell viability and loss of membrane integrity. Our results suggest that the T3SS2 from V. parahaemolyticus plays a role in generating mitochondrial stress that leads to cell death in human intestinal HT-29 cells. It is important to highlight that this study represents the first report indicating the possible role of the V. parahaemolyticus T3SS2 and its effector proteins involvement in generating mitochondrial stress, its impact on the mitochondrial pore, and its effect on ATP production in human cells.
Collapse
Affiliation(s)
| | | | | | | | - Ítalo M. Urrutia
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile; (N.P.); (D.P.-R.); (G.C.); (K.G.)
| |
Collapse
|
3
|
Wu X, Zhou L, Ye C, Zha Z, Li C, Feng C, Zhang Y, Jin Q, Pan J. Destruction of self-derived PAMP via T3SS2 effector VopY to subvert PAMP-triggered immunity mediates Vibrio parahaemolyticus pathogenicity. Cell Rep 2023; 42:113261. [PMID: 37847589 DOI: 10.1016/j.celrep.2023.113261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/20/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Cyclic di-guanosine monophosphate (c-di-GMP) is a unique bacterial second messenger but is hijacked by host cells during bacterial infection as a pathogen-associated molecular pattern (PAMP) to trigger STING-dependent immune responses. Here, we show that upon infection, VopY, an effector of Vibrio parahaemolyticus, is injected into host cells by type III secretion system 2 (T3SS2), a secretion system unique to its pathogenic strains and indispensable for enterotoxicity. VopY is an EAL-domain-containing phosphodiesterase and is capable of hydrolyzing c-di-GMP. VopY expression in host cells prevents the activation of STING and STING-dependent downstream signaling triggered by c-di-GMP and, consequently, suppresses type I interferon immune responses. The presence of VopY in V. parahaemolyticus enables it to cause both T3SS2-dependent enterotoxicity and cytotoxicity. These findings uncover the destruction of self-derived PAMPs by injecting specific effectors to suppress PAMP-triggered immune responses as a unique strategy for bacterial pathogens to subvert immunity and cause disease.
Collapse
Affiliation(s)
- Xuan Wu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lantian Zhou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chen Ye
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhenzhong Zha
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chuchu Li
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chao Feng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yue Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qian Jin
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianyi Pan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Meng YY, Peng JH, Qian J, Fei FL, Guo YY, Pan YJ, Zhao Y, Liu HQ. The two-component system expression patterns and immune regulatory mechanism of Vibrio parahaemolyticus with different genotypes at the early stage of infection in THP-1 cells. mSystems 2023; 8:e0023723. [PMID: 37432027 PMCID: PMC10469919 DOI: 10.1128/msystems.00237-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023] Open
Abstract
Vibrio parahaemolyticus must endure various challenging circumstances while being swallowed by phagocytes of the innate immune system. Moreover, bacteria should recognize and react to environmental signals quickly in host cells. Two-component system (TCS) is an important way for bacteria to perceive external environmental signals and transmit them to the interior to trigger the associated regulatory mechanism. However, the regulatory function of V. parahaemolyticus TCS in innate immune cells is unclear. Here, the expression patterns of TCS in V. parahaemolyticus-infected THP-1 cell-derived macrophages at the early stage were studied for the first time. Based on protein-protein interaction network analysis, we mined and analyzed seven critical TCS genes with excellent research value in the V. parahaemolyticus regulating macrophages, as shown below. VP1503, VP1502, VPA0021, and VPA0182 could regulate the ATP-binding-cassette (ABC) transport system. VP1735, uvrY, and peuR might interact with thermostable hemolysin proteins, DNA cleavage-related proteins, and TonB-dependent siderophore enterobactin receptor, respectively, which may assist V. parahaemolyticus in infected macrophages. Subsequently, the potential immune escape pathways of V. parahaemolyticus regulating macrophages were explored by RNA-seq. The results showed that V. parahaemolyticus might infect macrophages by controlling apoptosis, actin cytoskeleton, and cytokines. In addition, we found that the TCS (peuS/R) could enhance the toxicity of V. parahaemolyticus to macrophages and might contribute to the activation of macrophage apoptosis. IMPORTANCE This study could offer crucial new insights into the pathogenicity of V. parahaemolyticus without tdh and trh genes. In addition, we also provided a novel direction of inquiry into the pathogenic mechanism of V. parahaemolyticus and suggested several TCS key genes that may assist V. parahaemolyticus in innate immune regulation and interaction.
Collapse
Affiliation(s)
- Yuan-Yuan Meng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun-Hui Peng
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai, China
| | - Jiang Qian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Fu-Lin Fei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ying-Ying Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ying-Jie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Hai-Quan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
5
|
Meng Y, Mu L, Li Y, Yu M, Liu H, Pan Y, Zhao Y. Expression patterns and influence of the two-component system in Vibrio parahaemolyticus of different genotypes. Gene 2023; 859:147187. [PMID: 36627093 DOI: 10.1016/j.gene.2023.147187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Vibrio parahaemolyticus is a foodborne pathogen that threatens global food security and human health. The two-component system (TCS) is a primary method for bacteria self-regulate and adapt to the environment. Previous studies have shown that V. parahaemolyticus has four hemolytic genotypes with diverse biological phenotypes and environmental adaptability, but the mechanism is unclear. In this study, we investigated TCS expression patterns in V. parahaemolyticus with different genotypes for the first time and explored the differences in TCS between strains. The results showed similarities in the TCS expression pattern between VPC17 (tdh+/trh-) and VPC44 (tdh-/trh-), while VPC85(tdh-/trh+) had the least similar TCS expression pattern to the other three strains. Analysis of biological information revealed that different regulations of C4 dicarboxylate transport, tetrathionate uptake, antibiotic resistance, and flagellar synthesis involved in the TCS might influence strains' growth, antibiotic resistance, biofilm, and virulence. The different TCS regulatory abilities of strains might be one of the reasons for diverse biological characteristics and different environmental adaptations. This work provides a theoretical basis and a new research direction for the strain variability of V. parahaemolyticus.
Collapse
Affiliation(s)
- Yuanyuan Meng
- College of Food Science and Technology, Shanghai Ocean University, 999#, Hu Cheng Huan Road, Shanghai 201306, China
| | - Lili Mu
- College of Food Science and Technology, Shanghai Ocean University, 999#, Hu Cheng Huan Road, Shanghai 201306, China
| | - Yinhui Li
- College of Food Science and Technology, Shanghai Ocean University, 999#, Hu Cheng Huan Road, Shanghai 201306, China
| | - Man Yu
- College of Food Science and Technology, Shanghai Ocean University, 999#, Hu Cheng Huan Road, Shanghai 201306, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, 999#, Hu Cheng Huan Road, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, 999#, Hu Cheng Huan Road, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999#, Hu Cheng Huan Road, Shanghai 201306, China; Engineering Research Center of Food Thermal-processing Technology, 999#, Hu Cheng Huan Road, Shanghai 201306, China; Food Industry Chain Ecological Recycling Research Institute of Food Science and Technology College, 999#, Hu Cheng Huan Road, Shanghai 201306, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, 999#, Hu Cheng Huan Road, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, 999#, Hu Cheng Huan Road, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999#, Hu Cheng Huan Road, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, 999#, Hu Cheng Huan Road, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, 999#, Hu Cheng Huan Road, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999#, Hu Cheng Huan Road, Shanghai 201306, China.
| |
Collapse
|
6
|
Gavilan RG, Caro-Castro J, Blondel CJ, Martinez-Urtaza J. Vibrio parahaemolyticus Epidemiology and Pathogenesis: Novel Insights on an Emerging Foodborne Pathogen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:233-251. [PMID: 36792879 DOI: 10.1007/978-3-031-22997-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The epidemiological dynamics of V. parahaemolyticus´ infections have been characterized by the abrupt appearance of outbreaks in remote areas where these diseases had not been previously detected, without knowing the routes of entry of the pathogens in the new area. However, there are recent studies that show the link between the appearance of epidemic outbreaks of Vibrio and environmental factors such as oceanic transport of warm waters, which has provided a possible mechanism for the dispersion of Vibrio diseases globally. Despite this evidence, there is little information on the possible routes of entry and transport of infectious agents from endemic countries to the entire world. In this sense, the recent advances in genomic sequencing tools are making it possible to infer possible biogeographical patterns of diverse pathogens with relevance in public health like V. parahaemolyticus. In this chapter, we will address several general aspects about V. parahaemolyticus, including their microbiological and genetic detection, main virulence factors, and the epidemiology of genotypes involved in foodborne outbreaks globally.
Collapse
Affiliation(s)
- Ronnie G Gavilan
- Instituto Nacional de Salud, Lima, Peru. .,Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru.
| | | | - Carlos J Blondel
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Lafrance AE, Chimalapati S, Garcia Rodriguez N, Kinch LN, Kaval KG, Orth K. Enzymatic Specificity of Conserved Rho GTPase Deamidases Promotes Invasion of Vibrio parahaemolyticus at the Expense of Infection. mBio 2022; 13:e0162922. [PMID: 35862776 PMCID: PMC9426531 DOI: 10.1128/mbio.01629-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Vibrio parahaemolyticus is among the leading causes of bacterial seafood-borne acute gastroenteritis. Like many intracellular pathogens, V. parahaemolyticus invades host cells during infection by deamidating host small Rho GTPases. The Rho GTPase deamidating activity of VopC, a type 3 secretion system (T3SS) translocated effector, drives V. parahaemolyticus invasion. The intracellular pathogen uropathogenic Escherichia coli (UPEC) invades host cells by secreting a VopC homolog, the secreted toxin cytotoxic necrotizing factor 1 (CNF1). Because of the homology between VopC and CNF1, we hypothesized that topical application of CNF1 during V. parahaemolyticus infection could supplement VopC activity. Here, we demonstrate that CNF1 improves the efficiency of V. parahaemolyticus invasion, a bottleneck in V. parahaemolyticus infection, across a range of doses. CNF1 increases V. parahaemolyticus invasion independent of both VopC and the T3SS altogether but leaves a disproportionate fraction of intracellular bacteria unable to escape the endosome and complete their infection cycle. This phenomenon holds true in the presence or absence of VopC but is particularly pronounced in the absence of a T3SS. The native VopC, by contrast, promotes a far less efficient invasion but permits the majority of internalized bacteria to escape the endosome and complete their infection cycle. These studies highlight the significance of enzymatic specificity during infection, as virulence factors (VopC and CNF1 in this instance) with similarities in function (bacterial uptake), catalytic activity (deamidation), and substrates (Rho GTPases) are not sufficiently interchangeable for mediating a successful invasion for neighboring bacterial pathogens. IMPORTANCE Many species of intracellular bacterial pathogens target host small Rho GTPases to initiate invasion, including the human pathogens Vibrio parahaemolyticus and uropathogenic Escherichia coli (UPEC). The type three secretion system (T3SS) effector VopC of V. parahaemolyticus promotes invasion through the deamidation of Rac1 and CDC42 in the host, whereas the secreted toxin cytotoxic necrotizing factor 1 (CNF1) drives UPEC's internalization through the deamidation of Rac1, CDC42, and RhoA. Despite these similarities in the catalytic activity of CNF1 and VopC, we observed that the two enzymes were not interchangeable. Although CNF1 increased V. parahaemolyticus endosomal invasion, most intracellular V. parahaemolyticus aborted their infection cycle and remained trapped in endosomes. Our findings illuminate how the precise biochemical fine-tuning of T3SS effectors is essential for efficacious pathogenesis. Moreover, they pave the way for future investigations into the biochemical mechanisms underpinning V. parahaemolyticus endosomal escape and, more broadly, the regulation of successful pathogenesis.
Collapse
Affiliation(s)
- Alexander E. Lafrance
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Suneeta Chimalapati
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nalleli Garcia Rodriguez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lisa N. Kinch
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Karan Gautam Kaval
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Abstract
Conventional bacterial genome annotation provides information about coding sequences but ignores untranslated regions and operons. However, untranslated regions contain important regulatory elements as well as targets for many regulatory factors, such as small RNAs. Operon maps are also essential for functional gene analysis. In the last decade, considerable progress has been made in the study of bacterial transcriptomes through transcriptome sequencing (RNA-seq). Given the compact nature of bacterial genomes, many challenges still cannot be resolved through short reads generated using classical RNA-seq because of fragmentation and loss of the full-length information. Direct RNA sequencing is a technology that sequences the native RNA directly without information loss or bias. Here, we employed direct RNA sequencing to annotate the Vibrio parahaemolyticus transcriptome with its full features, including transcription start sites (TSSs), transcription termination sites, and operon maps. A total of 4,103 TSSs were identified. In comparison to short-read sequencing, full-length information provided a deeper view of TSS classification, showing that most internal and antisense TSSs were actually a result of gene overlap. Sequencing the transcriptome of V. parahaemolyticus grown with bile allowed us to study the landscape of pathogenicity island Vp-PAI. Some genes in this region were reannotated, providing more accurate annotation to increase precision in their characterization. Quantitative detection of operons in V. parahaemolyticus showed high complexity in some operons, shedding light on a greater extent of regulation within the same operon. Our study using direct RNA sequencing provides a quantitative and high-resolution landscape of the V. parahaemolyticus transcriptome. IMPORTANCEVibrio parahaemolyticus is a halophilic bacterium found in the marine environment. Outbreaks of gastroenteritis resulting from seafood poisoning by these pathogens have risen over the past 2 decades. Upon ingestion by humans—often through the consumption of raw or undercooked seafood—V. parahaemolyticus senses the host environment and expresses numerous genes, the products of which synergize to synthesize and secrete toxins that can cause acute gastroenteritis. To understand the regulation of such adaptive response, mRNA transcripts must be mapped accurately. However, due to the limitations of common sequencing methods, not all features of bacterial transcriptomes are always reported. We applied direct RNA sequencing to analyze the V. parahaemolyticus transcriptome. Mapping the full features of the transcriptome is anticipated to enhance our understanding of gene regulation in this bacterium and provides a data set for future work. Additionally, this study reveals a deeper view of a complicated transcriptome landscape, demonstrating the importance of applying such methods to other bacterial models.
Collapse
|
9
|
Pazhani GP, Chowdhury G, Ramamurthy T. Adaptations of Vibrio parahaemolyticus to Stress During Environmental Survival, Host Colonization, and Infection. Front Microbiol 2021; 12:737299. [PMID: 34690978 PMCID: PMC8530187 DOI: 10.3389/fmicb.2021.737299] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023] Open
Abstract
Vibrio parahaemolyticus (Vp) is an aquatic Gram-negative bacterium that may infect humans and cause gastroenteritis and wound infections. The first pandemic of Vp associated infection was caused by the serovar O3:K6 and epidemics caused by the other serovars are increasingly reported. The two major virulence factors, thermostable direct hemolysin (TDH) and/or TDH-related hemolysin (TRH), are associated with hemolysis and cytotoxicity. Vp strains lacking tdh and/or trh are avirulent and able to colonize in the human gut and cause infection using other unknown factors. This pathogen is well adapted to survive in the environment and human host using several genetic mechanisms. The presence of prophages in Vp contributes to the emergence of pathogenic strains from the marine environment. Vp has two putative type-III and type-VI secretion systems (T3SS and T6SS, respectively) located on both the chromosomes. T3SS play a crucial role during the infection process by causing cytotoxicity and enterotoxicity. T6SS contribute to adhesion, virulence associated with interbacterial competition in the gut milieu. Due to differential expression, type III secretion system 2 (encoded on chromosome-2, T3SS2) and other genes are activated and transcribed by interaction with bile salts within the host. Chromosome-1 encoded T6SS1 has been predominantly identified in clinical isolates. Acquisition of genomic islands by horizontal gene transfer provides enhanced tolerance of Vp toward several antibiotics and heavy metals. Vp consists of evolutionarily conserved targets of GTPases and kinases. Expression of these genes is responsible for the survival of Vp in the host and biochemical changes during its survival. Advanced genomic analysis has revealed that various genes are encoded in Vp pathogenicity island that control and expression of virulence in the host. In the environment, the biofilm gene expression has been positively correlated to tolerance toward aerobic, anaerobic, and micro-aerobic conditions. The genetic similarity analysis of toxin/antitoxin systems of Escherichia coli with VP genome has shown a function that could induce a viable non-culturable state by preventing cell division. A better interpretation of the Vp virulence and other mechanisms that support its environmental fitness are important for diagnosis, treatment, prevention and spread of infections. This review identifies some of the common regulatory pathways of Vp in response to different stresses that influence its survival, gut colonization and virulence.
Collapse
Affiliation(s)
- Gururaja Perumal Pazhani
- School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Goutam Chowdhury
- ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
10
|
S-nitrosylation-mediated activation of a histidine kinase represses the type 3 secretion system and promotes virulence of an enteric pathogen. Nat Commun 2020; 11:5777. [PMID: 33188170 PMCID: PMC7666205 DOI: 10.1038/s41467-020-19506-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-borne diarrheal diseases. Experimental overproduction of a type 3 secretion system (T3SS1) in this pathogen leads to decreased intestinal colonization, which suggests that T3SS1 repression is required for maximal virulence. However, the mechanisms by which T3SS1 is repressed in vivo are unclear. Here, we show that host-derived nitrite modifies the activity of a bacterial histidine kinase and mediates T3SS1 repression. More specifically, nitrite activates histidine kinase sensor VbrK through S-nitrosylation on cysteine 86, which results in downregulation of the entire T3SS1 operon through repression of its positive regulator exsC. Replacement of cysteine 86 with a serine (VbrK C86S mutant) leads to increased expression of inflammatory cytokines in infected Caco-2 cells. In an infant rabbit model of infection, the VbrK C86S mutant induces a stronger inflammatory response at the early stage of infection, and displays reduced intestinal colonization and virulence at the later stage of infection, in comparison with the parent strain. Our results indicate that the pathogen V. parahaemolyticus perceives nitrite as a host-derived signal and responds by downregulating a proinflammatory factor (T3SS1), thus enhancing intestinal colonization and virulence. Vibrio parahaemolyticus causes seafood-borne diarrheal diseases. Here, the authors show that the pathogen uses a histidine kinase to sense host-derived nitrite and downregulate a proinflammatory type 3 secretion system, thus enhancing intestinal colonization and virulence.
Collapse
|
11
|
Kotelevets L, Chastre E. Rac1 Signaling: From Intestinal Homeostasis to Colorectal Cancer Metastasis. Cancers (Basel) 2020; 12:cancers12030665. [PMID: 32178475 PMCID: PMC7140047 DOI: 10.3390/cancers12030665] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022] Open
Abstract
The small GTPase Rac1 has been implicated in a variety of dynamic cell biological processes, including cell proliferation, cell survival, cell-cell contacts, epithelial mesenchymal transition (EMT), cell motility, and invasiveness. These processes are orchestrated through the fine tuning of Rac1 activity by upstream cell surface receptors and effectors that regulate the cycling Rac1-GDP (off state)/Rac1-GTP (on state), but also through the tuning of Rac1 accumulation, activity, and subcellular localization by post translational modifications or recruitment into molecular scaffolds. Another level of regulation involves Rac1 transcripts stability and splicing. Downstream, Rac1 initiates a series of signaling networks, including regulatory complex of actin cytoskeleton remodeling, activation of protein kinases (PAKs, MAPKs) and transcription factors (NFkB, Wnt/β-catenin/TCF, STAT3, Snail), production of reactive oxygen species (NADPH oxidase holoenzymes, mitochondrial ROS). Thus, this GTPase, its regulators, and effector systems might be involved at different steps of the neoplastic progression from dysplasia to the metastatic cascade. After briefly placing Rac1 and its effector systems in the more general context of intestinal homeostasis and in wound healing after intestinal injury, the present review mainly focuses on the several levels of Rac1 signaling pathway dysregulation in colorectal carcinogenesis, their biological significance, and their clinical impact.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| | - Eric Chastre
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| |
Collapse
|
12
|
Matsuda S, Hiyoshi H, Tandhavanant S, Kodama T. Advances on
Vibrio parahaemolyticus
research in the postgenomic era. Microbiol Immunol 2020; 64:167-181. [DOI: 10.1111/1348-0421.12767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/08/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Shigeaki Matsuda
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
| | - Hirotaka Hiyoshi
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
- Department of Medical Microbiology and Immunology, School of MedicineUniversity of California Davis California, USA
| | - Sarunporn Tandhavanant
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
- Department of Microbiology and Immunology, Faculty of Tropical MedicineMahidol University Bangkok Thailand
| | - Toshio Kodama
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
| |
Collapse
|
13
|
A Novel Mouse Model of Enteric Vibrio parahaemolyticus Infection Reveals that the Type III Secretion System 2 Effector VopC Plays a Key Role in Tissue Invasion and Gastroenteritis. mBio 2019; 10:mBio.02608-19. [PMID: 31848276 PMCID: PMC6918077 DOI: 10.1128/mbio.02608-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Gram-negative marine bacterium Vibrio parahaemolyticus is a common cause of infectious gastroenteritis due to the ingestion of contaminated seafood. Most virulent V. parahaemolyticus strains encode two type III secretion systems (T3SS1 and T3SS2); however, the roles they and their translocated effectors play in causing intestinal disease remain unclear. While studies have identified T3SS1 effectors as responsible for killing epithelial cells in culture, the T3SS2 effectors caused massive epithelial cell disruption in a rabbit ileal loop model. Additional models are thus needed to clarify the pathogen-host interactions that drive V. parahaemolyticus-associated gastroenteritis. Germfree mice were infected with a pathogenic clinical isolate of V. parahaemolyticus, RIMD2210633 (RIMD). The pathogen was found to adhere to as well as invade the cecal mucosa, accompanied by severe inflammation and dramatic mucosal damage, including widespread sloughing of infected epithelial cells. Mice infected with a V. parahaemolyticus strain lacking the T3SS1 (POR2) also developed severe pathology, similar to that seen with RIMD. In contrast, the ΔT3SS2 strain (POR3) appeared unable to invade the intestinal mucosa or cause any mucosal pathology. Confirming a role for TS332 effectors, a strain expressing the T3SS2 but lacking VopC (POR2ΔvopC), a T3SS2 effector implicated in epithelial cell invasion in culture, was strongly attenuated in invading the intestinal mucosa and in causing gastroenteritis, although infection with this mutant resulted in more pathology than the ΔT3SS2 strain. We thus present an experimental system that enables further characterization of T3SS effectors as well as the corresponding host inflammatory response involved in the gastroenteritis caused by invasive V. parahaemolyticus IMPORTANCE Vibrio parahaemolyticus causes severe gastroenteritis following consumption of contaminated seafood. Global warming has allowed this pathogen to spread worldwide, contributing to recent outbreaks. Clinical isolates are known to harbor an array of virulence factors, including T3SS1 and T3SS2; however, the precise role these systems play in intestinal disease remains unclear. There is an urgent need to improve our understanding of how V. parahaemolyticus infects hosts and causes disease. We present a novel mouse model for this facultative intracellular pathogen and observe that the T3SS2 is essential to pathogenicity. Moreover, we show that the T3SS2 effector VopC, previously shown to be a Rac and Cdc42 deamidase that facilitates bacterial uptake by nonphagocytic cells, also plays a key role in the ability of V. parahaemolyticus to invade the intestinal mucosa and cause gastroenteritis. This experimental model thus provides a valuable tool for future elucidation of virulence mechanisms used by this facultative intracellular pathogen during in vivo infection.
Collapse
|
14
|
Matsuda S, Okada R, Tandhavanant S, Hiyoshi H, Gotoh K, Iida T, Kodama T. Export of a Vibrio parahaemolyticus toxin by the Sec and type III secretion machineries in tandem. Nat Microbiol 2019; 4:781-788. [DOI: 10.1038/s41564-019-0368-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/10/2019] [Indexed: 12/25/2022]
|
15
|
Miller KA, Tomberlin KF, Dziejman M. Vibrio variations on a type three theme. Curr Opin Microbiol 2019; 47:66-73. [PMID: 30711745 DOI: 10.1016/j.mib.2018.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/06/2018] [Accepted: 12/16/2018] [Indexed: 11/18/2022]
Abstract
Mounting evidence suggests that Type 3 Secretion Systems (T3SS) are widespread among Vibrio species, and are present in strains isolated from diverse sources such as human clinical infections, environmental reservoirs, and diseased marine life. Experiments evaluating Vibrio parahaemolyticus and Vibrio cholerae T3SS mediated virulence suggest that Vibrio T3SS pathogenicity islands have a tripartite composition. A conserved 'core' region encodes functions essential for colonization and disease in vivo, including modulation of innate immune signaling pathways and actin dynamics, whereas regions flanking core sequences are variable among strains and encode effector proteins performing a diverse array of activities. Characterizing novel functions associated with Vibrio-specific effectors is, therefore, essential for understanding how vibrios employ T3SS mechanisms to cause disease in a broad range of hosts and how T3SS island composition potentially defines species-specific disease.
Collapse
Affiliation(s)
- Kelly A Miller
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Katharine F Tomberlin
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| |
Collapse
|
16
|
Vibrio parahaemolyticus Senses Intracellular K + To Translocate Type III Secretion System 2 Effectors Effectively. mBio 2018; 9:mBio.01366-18. [PMID: 30042203 PMCID: PMC6058294 DOI: 10.1128/mbio.01366-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many Gram-negative bacterial symbionts and pathogens employ a type III secretion system (T3SS) to live in contact with eukaryotic cells. Because T3SSs inject bacterial proteins (effectors) directly into host cells, the switching of secretory substrates between translocators and effectors in response to host cell attachment is a crucial step for the effective delivery of effectors. Here, we show that the protein secretion switch of Vibrio parahaemolyticus T3SS2, which is a main contributor to the enteropathogenicity of a food poisoning bacterium, is regulated by two gatekeeper proteins, VgpA and VgpB. In the absence of these gatekeepers, effector secretion was activated, but translocator secretion was abolished, causing the loss of virulence. We found that the K+ concentration, which is high inside the host cell but low outside, is a key factor for VgpA- and VgpB-mediated secretion switching. Exposure of wild-type bacteria to K+ ions provoked both gatekeeper and effector secretions but reduced the level of secretion of translocators. The secretion protein profile of wild-type bacteria cultured with 0.1 M KCl was similar to that of gatekeeper mutants. Furthermore, depletion of K+ ions in host cells diminished the efficiency of T3SS2 effector translocation. Thus, T3SS2 senses the high intracellular concentration of K+ of the host cell so that T3SS2 effectors can be effectively injected. The pathogenesis of many Gram-negative bacterial pathogens arises from a type III secretion system (T3SS), whereby bacterial proteins (effectors) are directly injected into host cells. The injected effectors then modify host cell functions. For effective delivery of effector proteins, bacteria need to both recognize host cell attachment and switch the type of secreted proteins. Here, we identified gatekeeper proteins that play important roles in a T3SS2 secretion switch of Vibrio parahaemolyticus, a causative agent of food-borne gastroenteritis. We also found that K+, which is present in high concentrations inside the host cell but in low concentrations outside, is a key factor for the secretion switch. Thus, V. parahaemolyticus senses the high intracellular K+ concentration, triggering the effective injection of effectors.
Collapse
|
17
|
Zhang Q, Ji C, Ren J, Zhang Q, Dong X, Zu Y, Jia L, Li W. Differential transcriptome analysis of zebrafish (Danio rerio) larvae challenged by Vibrio parahaemolyticus. JOURNAL OF FISH DISEASES 2018; 41:1049-1062. [PMID: 29572872 DOI: 10.1111/jfd.12796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
Zebrafish embryo and larva represent a useful in vivo model for identification of host innate immune responses to bacterial infection. Vibrio parahaemolyticus is a typical zoonotic pathogen worldwide that causes acute gastroenteritis in humans and vibriosis in fishes. However, the mechanism of the innate immune response in the zebrafish larvae infected by V. parahaemolyticus has not been clear. We analysed the transcriptomic profile of 3 days post-fertilization (dpf) zebrafish larvae immersed in V. parahaemolyticus 13 (Vp13) strain suspension for 2 hr. A total of 602 differentially expressed genes (DEGs) were identified in the infection group, of which 175 (29.07%) genes were upregulated and 427 (70.93%) genes were downregulated. These altered genes encoded complement and coagulation cascades, chemokine, TNF signalling pathway, NF-κB signalling pathway and JAK-STAT signalling pathway. Some significant DEGs, such as mmp13, cxcr4a, ccl20, hsp70, gngt, serpina1l, il8, cofilin and il11, were subjected to quantitative gene expression analysis, and the results were consistent with those of the transcriptome profile. These results clearly demonstrated that exposure to V. parahaemolyticus for 2 hr could activate innate immune response in 3dpf larvae by altered expression of downstream signalling pathway genes of pattern recognition receptors (PRRs). Our results also provide a useful reference for future analysis of signal transduction pathways and pathogenesis mechanisms underlying the systemic innate immune response to the external bacteria of V. parahaemolyticus.
Collapse
Affiliation(s)
- Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Ce Ji
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Jianfeng Ren
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Qiuyue Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Xuehong Dong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yao Zu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Liang Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Weiming Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
18
|
Liu M, Yang S, Zheng C, Luo X, Bei W, Cai P. Binding to type I collagen is essential for the infectivity of Vibrio parahaemolyticus to host cells. Cell Microbiol 2018; 20:e12856. [PMID: 29763968 DOI: 10.1111/cmi.12856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 01/20/2023]
Abstract
Vibrio parahaemolyticus is a globally present marine bacterium that often leads to acute gastroenteritis. Two type III secretion systems (T3SSs), T3SS1 and T3SS2, are important for host infection. Type I collagen is a component of the extracellular matrix and is abundant in the small intestine. However, whether type I collagen serves as the cellular receptor for V. parahaemolyticus infection of host cells remains enigmatic. In this study, we discovered that type I collagen is not only important for the attachment of V. parahaemolyticus to host cells but is also involved in T3SS1-dependent cytotoxicity. In addition, 2 virulence factors, MAM7 and VpadF enable V. parahaemolyticus to interact with type I collagen and mediate T3SS2-dependent host cell invasion. Type I collagen, the collagen receptor α1 integrin, and its downstream factor phosphatidylinositol 3-kinase (PI3K) are responsible for V. parahaemolyticus invasion of host cells. Further biochemical studies revealed that VpadF mainly relies on the C-terminal region for type I collagen binding and MAM7 relies on mce domains to bind to type I collagen. As MAM7 and/or VpadF homologues are widely distributed in the genus Vibrio, we propose that Vibrios have evolved a unique strategy to infect host cells by binding to type I collagen.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Shanshan Yang
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Chengkun Zheng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuesong Luo
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Weicheng Bei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
de Souza Santos M, Salomon D, Orth K. T3SS effector VopL inhibits the host ROS response, promoting the intracellular survival of Vibrio parahaemolyticus. PLoS Pathog 2017. [PMID: 28640881 PMCID: PMC5481031 DOI: 10.1371/journal.ppat.1006438] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The production of antimicrobial reactive oxygen species by the nicotinamide dinucleotide phosphate (NADPH) oxidase complex is an important mechanism for control of invading pathogens. Herein, we show that the gastrointestinal pathogen Vibrio parahaemolyticus counteracts reactive oxygen species (ROS) production using the Type III Secretion System 2 (T3SS2) effector VopL. In the absence of VopL, intracellular V. parahaemolyticus undergoes ROS-dependent filamentation, with concurrent limited growth. During infection, VopL assembles actin into non-functional filaments resulting in a dysfunctional actin cytoskeleton that can no longer mediate the assembly of the NADPH oxidase at the cell membrane, thereby limiting ROS production. This is the first example of how a T3SS2 effector contributes to the intracellular survival of V. parahaemolyticus, supporting the establishment of a protective intracellular replicative niche.
Collapse
Affiliation(s)
- Marcela de Souza Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dor Salomon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Hiyoshi H. Actin cytoskeleton-modulating T3SS2 effectors and their contribution to the Vibrio parahaemolyticus-induced diarrhea. Nihon Saikingaku Zasshi 2016; 71:199-208. [PMID: 27980291 DOI: 10.3412/jsb.71.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To understand how bacterial pathogens cause diseases is the most important step in order to prevent the infection and develop an effective treatment. However, the past proceeding studies make us aware of quite-complicated interactions between the host and pathogenic bacteria. Vibrio parahaemolyticus, a food-born pathogen that is a subject of our study, causes inflammatory diarrhea in human upon ingestion of contaminated raw or undercooked seafood. Many virulence factors has been proposed since its discovery in Osaka around 70 years ago, while our research group has revealed that one of these virulence factors, type 3 secretion system 2 (T3SS2), is necessary for diarrhea induced by this bacterium. In addition, we recently found two novel T3SS2 effectors (VopO and VopV) that manipulate the actin cytoskeleton in infected host cells. In this article, I would like to show our findings with regard to biological activities of the effectors and their contributions to the T3SS2-induced enterotoxicity.
Collapse
Affiliation(s)
- Hirotaka Hiyoshi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis
| |
Collapse
|
21
|
Peng W, Shi Y, Li GF, He LG, Liang YS, Zhang Y, Zhou LB, Lin HR, Lu DQ. Tetraodon nigroviridis: A model of Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2016; 56:388-396. [PMID: 27426523 DOI: 10.1016/j.fsi.2016.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/30/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023]
Abstract
Vibriosis is the most common bacterial diseases and brings great economic loss on aquaculture. Vibrio parahaemolyticus (V. parahaemolyticus), a gram-negative bacterium, has been identified as one main pathogens of Vibriosis. The pathogenic mechanism of V. parahaemolyticus is not entirely clear now. In our study, a model of V. parahaemolyticus infection of green-spotted puffer fish (Tetraodon nigroviridis) was established. T. nigroviridis were injected intraperitoneally (i.p.) with 200 μL of V. parahaemolyticus (8 × 10(10) CFU/mL). V. parahaemolyticus infection caused 64% mortality and infected some organs of T. nigroviridis. Histopathology studies revealed V. parahaemolyticus infection induced tissue structural changes, including adipose hollow space in the liver. Immunohistochemistry showed V. parahaemolyticus were present in infected tissue such as liver, head kidney and spleen. In livers of T. nigroviridis infected by V. parahaemolyticus, the alkaline phosphatases (ALP) activity first gradually increased and then backed to normal level, a trend that was on the contrary to the expression profile of the miR-29b. Quantitative real-time PCR analysis showed that the expression level of TLR1, TLR2, TLR5, TLR9, TLR21, NOD1, NOD2 and IL-6 in response to V. parahaemolyticus infection decreased compared to that of non-infected fish. The establishment of the T. nigroviridis model of V. parahaemolyticus infection further confirmed V. parahaemolyticus spreads through the blood circulation system primary as an extracellular pathogen. Meanwhile, liver is an important target organ when infected by V. parahaemolyticus. miR-29b in liver was involved in the progress of liver steatosis during V. parahaemolyticus infection. Moreover, V. parahaemolyticus infection in vivo may have an effect of immunosuppression on host.
Collapse
Affiliation(s)
- Wan Peng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Gao-Fei Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liang-Ge He
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yao-Si Liang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Li-Bin Zhou
- Department of Life Sciences, Huizhou University, Huizhou, 516007, China
| | - Hao-Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dan-Qi Lu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
22
|
Shimizu T, Fujinaga Y, Takaya A, Ashida H, Kodama T, Hatakeyama M. [Molecular targets of bacterial effectors and toxins that underlie vulnerability to diseases]. Nihon Saikingaku Zasshi 2016; 70:319-28. [PMID: 26028212 DOI: 10.3412/jsb.70.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pathogenic bacteria produce a variety of effectors and/or toxins, which subvert target cell/tissue functions in the infected hosts. Some of those effectors/toxins also perturb host defense mechanism, thereby making up more complicated pathophysiological conditions. Such bacterial effectors/toxins may have been positively selected during evolution because they directly strike vulnerable points in the host system. In turn, this indicates that systemic exploration of molecules and signaling pathways targeted by bacterial effectors/toxins provides a powerful tool in digging up an unexpected Achilles' heel(s), malfunctioning of which gives rise to disorders not restricted to infectious diseases. Based on this viewpoint, this review shows molecular basis underlying host susceptibility and vulnerability to diseases through the studies of host molecules targeted by bacterial effectors and toxins.
Collapse
|
23
|
Abstract
Bacterial pathogens encode a wide variety of effectors and toxins that hijack host cell structure and function. Of particular importance are virulence factors that target actin cytoskeleton dynamics critical for cell shape, stability, motility, phagocytosis, and division. In addition, many bacteria target organelles of the general secretory pathway (e.g., the endoplasmic reticulum and the Golgi complex) and recycling pathways (e.g., the endolysosomal system) to establish and maintain an intracellular replicative niche. Recent research on the biochemistry and structural biology of bacterial effector proteins and toxins has begun to shed light on the molecular underpinnings of these host-pathogen interactions. This exciting work is revealing how pathogens gain control of the complex and dynamic host cellular environments, which impacts our understanding of microbial infectious disease, immunology, and human cell biology.
Collapse
Affiliation(s)
- Alyssa Jimenez
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Didi Chen
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| |
Collapse
|
24
|
Trh (tdh−/trh+) gene analysis of clinical, environmental and food isolates of Vibrio parahaemolyticus as a tool for investigating pathogenicity. Int J Food Microbiol 2016; 225:43-53. [DOI: 10.1016/j.ijfoodmicro.2016.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 01/28/2023]
|
25
|
Characterization of trh2 harbouring Vibrio parahaemolyticus strains isolated in Germany. PLoS One 2015; 10:e0118559. [PMID: 25799574 PMCID: PMC4370738 DOI: 10.1371/journal.pone.0118559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/11/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Vibrio parahaemolyticus is a recognized human enteropathogen. Thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) as well as the type III secretion system 2 (T3SS2) are considered as major virulence factors. As tdh positive strains are not detected in coastal waters of Germany, we focused on the characterization of trh positive strains, which were isolated from mussels, seawater and patients in Germany. RESULTS Ten trh harbouring V. parahaemolyticus strains from Germany were compared to twenty-one trh positive strains from other countries. The complete trh sequences revealed clustering into three different types: trh1 and trh2 genes and a pseudogene Ψtrh. All German isolates possessed alleles of the trh2 gene. MLST analysis indicated a close relationship to Norwegian isolates suggesting that these strains belong to the autochthonous microflora of Northern Europe seawaters. Strains carrying the pseudogene Ψtrh were negative for T3SS2β effector vopC. Transcription of trh and vopC genes was analyzed under different growth conditions. Trh2 gene expression was not altered by bile while trh1 genes were inducible. VopC could be induced by urea in trh2 bearing strains. Most trh1 carrying strains were hemolytic against sheep erythrocytes while all trh2 positive strains did not show any hemolytic activity. TRH variants were synthesized in a prokaryotic cell-free system and their hemolytic activity was analyzed. TRH1 was active against sheep erythrocytes while TRH2 variants were not active at all. CONCLUSION Our study reveals a high diversity among trh positive V. parahaemolyticus strains. The function of TRH2 hemolysins and the role of the pseudogene Ψtrh as pathogenicity factors are questionable. To assess the pathogenic potential of V. parahaemolyticus strains a differentiation of trh variants and the detection of T3SS2β components like vopC would improve the V. parahaemolyticus diagnostics and could lead to a refinement of the risk assessment in food analyses and clinical diagnostics.
Collapse
|
26
|
Hiyoshi H, Okada R, Matsuda S, Gotoh K, Akeda Y, Iida T, Kodama T. Interaction between the type III effector VopO and GEF-H1 activates the RhoA-ROCK pathway. PLoS Pathog 2015; 11:e1004694. [PMID: 25738744 PMCID: PMC4349864 DOI: 10.1371/journal.ppat.1004694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/22/2015] [Indexed: 12/11/2022] Open
Abstract
Vibrio parahaemolyticus is an important pathogen that causes food-borne gastroenteritis in humans. The type III secretion system encoded on chromosome 2 (T3SS2) plays a critical role in the enterotoxic activity of V. parahaemolyticus. Previous studies have demonstrated that T3SS2 induces actin stress fibers in various epithelial cell lines during infection. This stress fiber formation is strongly related to pathogenicity, but the mechanisms that underlie T3SS2-dependent actin stress fiber formation and the main effector have not been elucidated. In this study, we identified VopO as a critical T3SS2 effector protein that activates the RhoA-ROCK pathway, which is an essential pathway for the induction of the T3SS2-dependent stress fiber formation. We also determined that GEF-H1, a RhoA guanine nucleotide exchange factor (GEF), directly binds VopO and is necessary for T3SS2-dependent stress fiber formation. The GEF-H1-binding activity of VopO via an alpha helix region correlated well with its stress fiber-inducing capacity. Furthermore, we showed that VopO is involved in the T3SS2-dependent disruption of the epithelial barrier. Thus, VopO hijacks the RhoA-ROCK pathway in a different manner compared with previously reported bacterial toxins and effectors that modulate the Rho GTPase signaling pathway. Many bacterial pathogens manipulate the actin cytoskeleton of mammalian cells to establish pathogenesis via invasion, to evade killing by phagocytes, to disrupt a barrier function, and to induce inflammation caused by translocation type III secretion (T3S) effector proteins. We demonstrated that the T3S effector protein (VopO) of the enteric pathogen Vibrio parahaemolyticus induced robust actin stress fiber formation in infected host cells. Furthermore, this actin rearrangement induced barrier disruption in a colon epithelial cell line. Although many types of effector proteins have been reported, VopO does not share homology with previously reported effector proteins, and no putative functional motifs could be identified. Finally, we determined that the direct binding of VopO to a RhoA guanine nucleotide exchange factor (GEF) is a key step in the induction of stress fiber formation. These findings indicate that VopO plays a unique role in the pathogenicity of V. parahaemolyticus.
Collapse
Affiliation(s)
- Hirotaka Hiyoshi
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Ryu Okada
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shigeaki Matsuda
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kazuyoshi Gotoh
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yukihiro Akeda
- Laboratory of Clinical Research on Infectious Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tetsuya Iida
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Toshio Kodama
- Microbe Repository Unit, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
27
|
Kuda T, Kosaka M, Hirano S, Kawahara M, Sato M, Kaneshima T, Nishizawa M, Takahashi H, Kimura B. Effect of sodium-alginate and laminaran on Salmonella Typhimurium infection in human enterocyte-like HT-29-Luc cells and BALB/c mice. Carbohydr Polym 2015; 125:113-9. [PMID: 25857966 DOI: 10.1016/j.carbpol.2015.01.078] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 02/07/2023]
Abstract
Brown algal polysaccharides such as alginate, polymers of uronic acids, and laminaran, beta-1,3 and 1,6-glucan, can be fermented by human intestinal microbiota. To evaluate the effects of these polysaccharides on infections caused by food poisoning pathogens, we investigated the adhesion and invasion of pathogens (Salmonella Typhimurium, Listeria monocytogenes and Vibrio parahaemolyticus) in human enterocyte-like HT-29-Luc cells and in infections caused in BALB/c mice. Both sodium Na-alginate and laminaran (0.1% each) inhibited the adhesion of the pathogens to HT-29-Luc cells by approximately 70-90%. The invasion of S. Typhimurium was also inhibited by approximately 70 and 80% by Na-alginate and laminaran, respectively. We observed that incubation with Na-alginate for 18 h increased the transepithelial electrical resistance of HT-29-Luc monolayer cells. Four days after inoculation with 7 log CFU/mouse of S. Typhimurium, the faecal pathogen count in mice that were not fed polysaccharides (control mice) was about 6.5 log CFU/g while the count in mice that were fed Na-alginate had decreased to 5.0 log CFU/g. The liver pathogen count, which was 4.1 log CFU/g in the control mice, was also decreased in mice that were fed Na-alginate. In contrast, the mice that were fed laminaran exhibited a more severe infection than that exhibited by control mice.
Collapse
Affiliation(s)
- Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan.
| | - Misa Kosaka
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| | - Shino Hirano
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| | - Miho Kawahara
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| | - Masahiro Sato
- Kaigen Pharma Co. Ltd., 1-25-18, Okusawa, Otaru 047-0013, Japan
| | - Tai Kaneshima
- Department of Food and Cosmetic Sciences, Tokyo University of Agriculture, Abashiri, Japan
| | - Makoto Nishizawa
- Department of Food and Cosmetic Sciences, Tokyo University of Agriculture, Abashiri, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| |
Collapse
|
28
|
de Souza Santos M, Orth K. Subversion of the cytoskeleton by intracellular bacteria: lessons from Listeria, Salmonella and Vibrio. Cell Microbiol 2015; 17:164-73. [PMID: 25440316 PMCID: PMC5806695 DOI: 10.1111/cmi.12399] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/29/2014] [Accepted: 11/07/2014] [Indexed: 12/18/2022]
Abstract
Entry into host cells and intracellular persistence by invasive bacteria are tightly coupled to the ability of the bacterium to disrupt the eukaryotic cytoskeletal machinery. Herein we review the main strategies used by three intracellular pathogens to harness key modulators of the cytoskeleton. Two of these bacteria, namely Listeria monocytogenes and Salmonella enterica serovar Typhimurium, exhibit quite distinct intracellular lifestyles and therefore provide a comprehensive panel for the understanding of the intricate bacteria-cytoskeleton interplay during infections. The emerging intracellular pathogen Vibrio parahaemolyticus is depicted as a developing model for the uncovering of novel mechanisms used to hijack the cytoskeleton.
Collapse
Affiliation(s)
- Marcela de Souza Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
29
|
Kodama T, Hiyoshi H, Okada R, Matsuda S, Gotoh K, Iida T. Regulation of Vibrio parahaemolyticus T3SS2 gene expression and function of T3SS2 effectors that modulate actin cytoskeleton. Cell Microbiol 2015; 17:183-90. [PMID: 25495647 DOI: 10.1111/cmi.12408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022]
Abstract
Vibrio parahaemolyticus is a leading causative agent of seafood-borne gastroenteritis worldwide. Most clinical isolates from patients with diarrhoea possess two sets of genes for the type III secretion system (T3SS) on each chromosome (T3SS1 and T3SS2). T3SS is a protein secretion system that delivers effector proteins directly into eukaryotic cells. The injected effectors modify the normal cell functions by altering or disrupting the normal cell signalling pathways. Of the two sets of T3SS genes present in V. parahaemolyticus, T3SS2 is essential for enterotoxicity in several animal models. Recent studies have elucidated the biological activities of several T3SS2 effectors and their roles in virulence. This review focuses on the regulation of T3SS2 gene expression and T3SS2 effectors that specifically target the actin cytoskeleton.
Collapse
Affiliation(s)
- Toshio Kodama
- Pathogenic Microbes Repository Unit, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Calder T, de Souza Santos M, Attah V, Klimko J, Fernandez J, Salomon D, Krachler AM, Orth K. Structural and regulatory mutations in Vibrio parahaemolyticus type III secretion systems display variable effects on virulence. FEMS Microbiol Lett 2014; 361:107-14. [PMID: 25288215 DOI: 10.1111/1574-6968.12619] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 12/31/2022] Open
Abstract
The Gram-negative bacterium, Vibrio parahaemolyticus, is a major cause of seafood-derived food poisoning throughout the world. The pathogenicity of V. parahaemolyticus is attributed to several virulence factors, including two type III secretion systems (T3SS), T3SS1 and T3SS2. Herein, we compare the virulence of V. parahaemolyticus POR strains, which harbor a mutation in the T3SS needle apparatus of either system, to V. parahaemolyticus CAB strains, which harbor mutations in positive transcriptional regulators of either system. These strains are derived from the clinical RIMD 2210633 strain. We demonstrate that each mutation affects the virulence of the bacterium in a different manner. POR and CAB strains exhibited similar levels of swarming motility and T3SS effector production and secretion, but the CAB3 and CAB4 strains, which harbor a mutation in the T3SS2 master regulator gene, formed reduced biofilm growth under T3SS2 inducing conditions. Additionally, while the cytotoxicity of the POR and CAB strains was similar, the CAB2 (T3SS1 regulatory mutant) strain was strikingly more invasive than the comparable POR2 (T3SS1 structural mutant) strain. In summary, creating structural or regulatory mutations in either T3SS1 or T3SS2 causes differential downstream effects on other virulence systems. Understanding the biological differences of strains created from a clinical isolate is critical for interpreting and understanding the pathogenic nature of V. parahaemolyticus.
Collapse
Affiliation(s)
- Thomas Calder
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Intracellular Vibrio parahaemolyticus escapes the vacuole and establishes a replicative niche in the cytosol of epithelial cells. mBio 2014; 5:e01506-14. [PMID: 25205094 PMCID: PMC4173779 DOI: 10.1128/mbio.01506-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Vibrio parahaemolyticus is a globally disseminated Gram-negative marine bacterium and the leading cause of seafood-borne acute gastroenteritis. Pathogenic bacterial isolates encode two type III secretion systems (T3SS), with the second system (T3SS2) considered the main virulence factor in mammalian hosts. For many decades, V. parahaemolyticus has been studied as an exclusively extracellular bacterium. However, the recent characterization of the T3SS2 effector protein VopC has suggested that this pathogen has the ability to invade, survive, and replicate within epithelial cells. Herein, we characterize this intracellular lifestyle in detail. We show that following internalization, V. parahaemolyticus is contained in vacuoles that develop into early endosomes, which subsequently mature into late endosomes. V. parahaemolyticus then escapes into the cytoplasm prior to vacuolar fusion with lysosomes. Vacuolar acidification is an important trigger for this escape. The cytoplasm serves as the pathogen's primary intracellular replicative niche; cytosolic replication is rapid and robust, with cells often containing over 150 bacteria by the time of cell lysis. These results show how V. parahaemolyticus successfully establishes an intracellular lifestyle that could contribute to its survival and dissemination during infection. IMPORTANCE The marine bacterium V. parahaemolyticus is the leading cause worldwide of seafood-borne acute gastroenteritis. For decades, the pathogen has been studied exclusively as an extracellular bacterium. However, recent results have revealed the pathogen's ability to invade and replicate within host cells. The present study is the first characterization of the V. parahaemolyticus' intracellular lifestyle. Upon internalization, V. parahaemolyticus is contained in a vacuole that would in the normal course of events ultimately fuse with a lysosome, degrading the vacuole's contents. The bacterium subverts this pathway, escaping into the cytoplasm prior to lysosomal fusion. Once in the cytoplasm, it replicates prolifically. Our study provides new insights into the strategies used by this globally disseminated pathogen to survive and proliferate within its host.
Collapse
|
32
|
Remodeling of the intestinal brush border underlies adhesion and virulence of an enteric pathogen. mBio 2014; 5:mBio.01639-14. [PMID: 25139905 PMCID: PMC4147867 DOI: 10.1128/mbio.01639-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Intestinal colonization by Vibrio parahaemolyticus—the most common cause of seafood-borne bacterial enteritis worldwide—induces extensive disruption of intestinal microvilli. In orogastrically infected infant rabbits, reorganization of the apical brush border membrane includes effacement of some microvilli and marked elongation of others. All diarrhea, inflammation, and intestinal pathology associated with V. parahaemolyticus infection are dependent upon one of its type 3 secretion systems (T3SS2); however, translocated effectors that directly mediate brush border restructuring and bacterial adhesion are not known. Here, we demonstrate that the effector VopV is essential for V. parahaemolyticus intestinal colonization and therefore its pathogenicity, that it induces effacement of brush border microvilli, and that this effacement is required for adhesion of V. parahaemolyticus to enterocytes. VopV contains multiple functionally independent and mechanistically distinct domains through which it disrupts microvilli. We show that interaction between VopV and filamin, as well as VopV’s previously noted interaction with actin, mediates enterocyte cytoskeletal reorganization. VopV’s multipronged approach to epithelial restructuring, coupled with its impact on colonization, suggests that remodeling of the epithelial brush border is a critical step in pathogenesis. Colonization of the small bowel by Vibrio parahaemolyticus, the most common bacterial agent of seafood-borne enteric disease, induces extensive structural changes in the intestinal epithelium. Here, we show that this diarrheal pathogen’s colonization and virulence depend upon VopV, a bacterial protein that is transferred into host epithelial cells. VopV induces marked rearrangement of the apical epithelial cell membrane, including elimination of microvilli, by two means: through interaction with actin and through a previously unrecognized interaction with the actin-cross-linking protein filamin. VopV-mediated “effacement” of microvilli enables V. parahaemolyticus to adhere to host cells, although VopV may not directly mediate adhesion. VopV’s effects on microvillus structure and bacterial adhesion likely account for its essential role in V. parahaemolyticus intestinal pathogenesis. Our findings suggest a new role for filamin in brush border maintenance and raise the possibility that microvillus effacement is a common strategy among enteric pathogens for enhancing adhesion to host cells.
Collapse
|
33
|
Vibrio type III effector VPA1380 is related to the cysteine protease domain of large bacterial toxins. PLoS One 2014; 9:e104387. [PMID: 25099122 PMCID: PMC4123922 DOI: 10.1371/journal.pone.0104387] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/11/2014] [Indexed: 11/19/2022] Open
Abstract
Vibrio parahaemolyticus is a Gram-negative halophilic bacterium and one of the leading causes of food-borne gastroenteritis. Its genome harbors two Type III Secretion Systems (T3SS1 and T3SS2), but only T3SS2 is required for enterotoxicity seen in animal models. Effector proteins secreted from T3SS2 have been previously shown to promote colonization of the intestinal epithelium, invasion of host cells, and destruction of the epithelial monolayer. In this study, we identify VPA1380, a T3SS2 effector protein that is toxic when expressed in yeast. Bioinformatic analyses revealed that VPA1380 is highly similar to the inositol hexakisphosphate (IP6)-inducible cysteine protease domains of several large bacterial toxins. Mutations in conserved catalytic residues and residues in the putative IP6-binding pocket abolished toxicity in yeast. Furthermore, VPA1380 was not toxic in IP6 deficient yeast cells. Therefore, our findings suggest that VPA1380 is a cysteine protease that requires IP6 as an activator.
Collapse
|