1
|
Chowdhury R, Bitar PDP, Bell KE, Altier C. Shigella flexneri utilizes intestinal signals to control its virulence. Gut Microbes 2023; 15:2256767. [PMID: 37741806 PMCID: PMC10519361 DOI: 10.1080/19490976.2023.2256767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023] Open
Abstract
The enteric pathogens have evolved to utilize elements from their surroundings to optimize their infection strategies. A common mechanism to achieve this is to employ intestinal compounds as signals to control the activity of a master regulator of virulence. Shigella flexneri (S. flexneri) is a highly infectious entero-invasive pathogen which requires very few organisms to cause invasion of the colonic mucosa. The invasion program is controlled by the virulence master regulator VirF. Here, we show that the fatty acids commonly found in the colon can be exploited by S. flexneri to repress its virulence, allowing it to energetically finance its proliferation, thus increasing its pathogenicity. Colonic fatty acids such as oleic, palmitoleic and cis-2-hexadecenoic acid were shown to directly bind to VirF and mediate its prompt degradation. These fatty acids also disrupted the ability of VirF to bind to its target DNA, suppressing the transcription of the downstream virulence genes and significantly reducing the invasion of S. flexneri to colonic epithelial cells. Treatment with colonic fatty acids significantly increased the growth rate of the pathogen only under invasion-inducing conditions, showing that the reduction in the burden of virulence promotes a growth advantage. These results demonstrate the process by which S. flexneri can employ intestinal compounds as signals to increase its numbers at its preferred site of invasion, highlighting the mechanism by which the full spectrum of shigellosis is achieved despite a miniscule infectious dose. This highlights an elegant model of environmental adaption by S. flexneri to maximize the pathogenic benefit.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | | | - Katherine E. Bell
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
2
|
Rather MA, Chowdhury R, Pavinski Bitar PD, Altier C. Recombinant production of a diffusible signal factor inhibits Salmonella invasion and animal carriage. Gut Microbes 2023; 15:2208498. [PMID: 37158497 PMCID: PMC10171134 DOI: 10.1080/19490976.2023.2208498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
The complex chemical environment of the intestine is defined largely by the metabolic products of the resident microbiota. Enteric pathogens, elegantly evolved to thrive in the gut, use these chemical products as signals to recognize specific niches and to promote their survival and virulence. Our previous work has shown that a specific class of quorum-sensing molecules found within the gut, termed diffusible signal factors (DSF), signals the repression of Salmonella tissue invasion, thus defining a means by which this pathogen recognizes its location and modulates virulence to optimize its survival. Here, we determined whether the recombinant production of a DSF could reduce Salmonella virulence in vitro and in vivo. We found that the most potent repressor of Salmonella invasion, cis-2-hexadecenoic acid (c2-HDA), could be recombinantly produced in E. coli by the addition of a single exogenous gene encoding a fatty acid enoyl-CoA dehydratase/thioesterase and that co-culture of the recombinant strain with Salmonella potently inhibited tissue invasion by repressing Salmonella genes required for this essential virulence function. Using the well characterized E. coli Nissle 1917 strain and a chicken infection model, we found that the recombinant DSF-producing strain could be stably maintained in the large intestine. Further, challenge studies demonstrated that this recombinant organism could significantly reduce Salmonella colonization of the cecum, the site of carriage in this animal species. These findings thus describe a plausible means by which Salmonella virulence may be affected in animals by in situ chemical manipulation of functions essential for colonization and virulence.
Collapse
Affiliation(s)
- Mudasir Ali Rather
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | | | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Chowdhury R, Pavinski Bitar PD, Adams MC, Chappie JS, Altier C. AraC-type regulators HilC and RtsA are directly controlled by an intestinal fatty acid to regulate Salmonella invasion. Mol Microbiol 2021; 116:1464-1475. [PMID: 34687258 DOI: 10.1111/mmi.14835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 01/30/2023]
Abstract
Invasion of the intestinal epithelium is an essential but energetically expensive survival strategy and is, therefore, tightly regulated by using specific cues from the environment. The enteric pathogen Salmonella controls its invasion machinery through the elegant coordination of three AraC-type transcription activators, HilD, HilC, and RtsA. Most environmental signals target HilD to control invasion, whereas HilC and RtsA are known only to augment these effects on HilD. Here we show that a fatty acid found in the murine colon, cis-2-hexadecenoic acid (c2-HDA), represses Salmonella invasion by directly targeting HilC and RtsA, in addition to HilD. c2-HDA directly binds each of these regulators and inhibits their attachment to DNA targets, repressing invasion even in the absence of HilD. Fatty acid binding, however, does not affect HilC and RtsA protein stability, unlike HilD. Importantly, we show that HilC and RtsA are highly effective in restoring HilD production and invasion gene expression after elimination of the repressive fatty acid c2-HDA. Together, these results illuminate a precise mechanism by which HilC and RtsA may modulate invasion as Salmonella navigates through different regions of the intestine, contributing to our understanding of how this enteric pathogen senses and adapts to a diverse intestinal environment while maintaining its virulence.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Paulina D Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Myfanwy C Adams
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Swietnicki W. Secretory System Components as Potential Prophylactic Targets for Bacterial Pathogens. Biomolecules 2021; 11:892. [PMID: 34203937 PMCID: PMC8232601 DOI: 10.3390/biom11060892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 01/18/2023] Open
Abstract
Bacterial secretory systems are essential for virulence in human pathogens. The systems have become a target of alternative antibacterial strategies based on small molecules and antibodies. Strategies to use components of the systems to design prophylactics have been less publicized despite vaccines being the preferred solution to dealing with bacterial infections. In the current review, strategies to design vaccines against selected pathogens are presented and connected to the biology of the system. The examples are given for Y. pestis, S. enterica, B. anthracis, S. flexneri, and other human pathogens, and discussed in terms of effectiveness and long-term protection.
Collapse
Affiliation(s)
- Wieslaw Swietnicki
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. R. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
5
|
Chowdhury R, Pavinski Bitar PD, Keresztes I, Condo AM, Altier C. A diffusible signal factor of the intestine dictates Salmonella invasion through its direct control of the virulence activator HilD. PLoS Pathog 2021; 17:e1009357. [PMID: 33617591 PMCID: PMC7932555 DOI: 10.1371/journal.ppat.1009357] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/04/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Successful intestinal infection by Salmonella requires optimized invasion of the gut epithelium, a function that is energetically costly. Salmonella have therefore evolved to intricately regulate the expression of their virulence determinants by utilizing specific environmental cues. Here we show that a powerful repressor of Salmonella invasion, a cis-2 unsaturated long chain fatty acid, is present in the murine large intestine. Originally identified in Xylella fastidiosa as a diffusible signal factor for quorum sensing, this fatty acid directly interacts with HilD, the master transcriptional regulator of Salmonella, and prevents hilA activation, thus inhibiting Salmonella invasion. We further identify the fatty acid binding region of HilD and show it to be selective and biased in favour of signal factors with a cis-2 unsaturation over other intestinal fatty acids. Single mutation of specific HilD amino acids to alanine prevented fatty acid binding, thereby alleviating their repressive effect on invasion. Together, these results highlight an exceedingly sensitive mechanism used by Salmonella to colonize its host by detecting and exploiting specific molecules present within the complex intestinal environment.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail: (RC); (CA)
| | - Paulina D. Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ivan Keresztes
- Chemistry NMR Facility, Cornell University, Ithaca, New York, United States of America
| | - Anthony M. Condo
- Chemistry NMR Facility, Cornell University, Ithaca, New York, United States of America
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail: (RC); (CA)
| |
Collapse
|
6
|
Azimi T, Zamirnasta M, Sani MA, Soltan Dallal MM, Nasser A. Molecular Mechanisms of Salmonella Effector Proteins: A Comprehensive Review. Infect Drug Resist 2020; 13:11-26. [PMID: 32021316 PMCID: PMC6954085 DOI: 10.2147/idr.s230604] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022] Open
Abstract
Salmonella can be categorized into many serotypes, which are specific to known hosts or broadhosts. It makes no difference which one of the serotypes would penetrate the gastrointestinal tract because they all face similar obstacles such as mucus and microbiome. However, following their penetration, some species remain in the gastrointestinal tract; yet, others spread to another organ like gallbladder. Salmonella is required to alter the immune response to sustain its intracellular life. Changing the host response requires particular effector proteins and vehicles to translocate them. To this end, a categorized gene called Salmonella pathogenicity island (SPI) was developed; genes like Salmonella pathogenicity island encode aggressive or modulating proteins. Initially, Salmonella needs to be attached and stabilized via adhesin factor, without which no further steps can be taken. In this review, an attempt has been made to elaborate on each factor attached to the host cell or to modulating and aggressive proteins that evade immune systems. This review includes four sections: (A) attachment factors or T3SS- independent entrance, (B) effector proteins or T3SS-dependent entrance, (c) regulation of invasive genes, and (D) regulation of immune responses.
Collapse
Affiliation(s)
- Taher Azimi
- Pediatric Infections Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zamirnasta
- Clinical Microbiology Research Center, Ilam University of Medical Science, Ilam, Iran
| | - Mahmood Alizadeh Sani
- Food Safety and Hygiene Division, Environmental health Department, School of Public Health, Tehran University of medical sciences, Tehran, Iran
- Students Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahmad Nasser
- Clinical Microbiology Research Center, Ilam University of Medical Science, Ilam, Iran
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Microbiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| |
Collapse
|
7
|
Dasgupta S, Das S, Biswas A, Bhadra RK, Das S. Small alarmones (p)ppGpp regulate virulence associated traits and pathogenesis of Salmonella enterica serovar Typhi. Cell Microbiol 2019; 21:e13034. [PMID: 31013389 DOI: 10.1111/cmi.13034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/29/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
Abstract
How Salmonella enterica serovar Typhi (S. Typhi), an important human pathogen, survives the stressful microenvironments inside the gastrointestinal tract and within macrophages remains poorly understood. We report here that S. Typhi has a bonafide stringent response (SR) system, which is mediated by (p)ppGpp and regulates multiple virulence-associated traits and the pathogenicity of the S. Typhi Ty2 strain. In an iron overload mouse model of S. Typhi infection, the (p)ppGpp0 (Ty2ΔRelAΔSpoT) strain showed minimal systemic spread and no mortality, as opposed to 100% death of the mice challenged with the isogenic wild-type strain. Ty2ΔRelAΔSpoT had markedly elongated morphology with incomplete septa formation and demonstrated severely attenuated motility and chemotaxis due to the loss of flagella. Absence of the Vi-polysaccharide capsule rendered the mutant strain highly susceptible to complement-mediated lysis. The phenotypes of Ty2ΔRelAΔSpoT was contributed by transcriptional repression of several genes, including fliC, tviA, and ftsZ, as found by reverse transcriptase quantitative polymerase chain reaction and gene complementation studies. Finally, Ty2ΔRelAΔSpoT had markedly reduced invasion into intestinal epithelial cells and significantly attenuated survival within macrophages. To the best of our knowledge, this was the first study that addressed SR in S. Typhi and showed that (p)ppGpp was essential for optimal pathogenic fitness of the organism.
Collapse
Affiliation(s)
- Shreya Dasgupta
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sayan Das
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asim Biswas
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Rupak K Bhadra
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Santasabuj Das
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
8
|
Das S, Chowdhury R, Pal A, Okamoto K, Das S. Salmonella Typhi outer membrane protein STIV is a potential candidate for vaccine development against typhoid and paratyphoid fever. Immunobiology 2019; 224:371-382. [DOI: 10.1016/j.imbio.2019.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/09/2019] [Accepted: 02/26/2019] [Indexed: 01/07/2023]
|
9
|
Chowdhury R, Das S, Ta A, Das S. Epithelial invasion by Salmonella Typhi using STIV-Met interaction. Cell Microbiol 2018; 21:e12982. [PMID: 30426648 DOI: 10.1111/cmi.12982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022]
Abstract
Typhoid is a life-threatening febrile illness that affects ~24.2 million people worldwide and is caused by the intracellular bacteria Salmonella Typhi (S. Typhi). Intestinal epithelial invasion by S. Typhi is essential for the establishment of successful infection and is traditionally believed to depend on Salmonella pathogenicity island 1-encoded type 3 secretion system 1 (T3SS-1). We had previously reported that bacterial outer membrane protein T2942/STIV functions as a standalone invasin and contributes to the pathogenesis of S. Typhi by promoting epithelial invasion independent of T3SS-1 (Cell Microbiol, 2015). Here, we show that STIV, by using its 20-amino-acid extracellular loop, interacts with receptor tyrosine kinase, Met, of host intestinal epithelial cells. This interaction leads to Met phosphorylation and activation of a downstream signalling cascade, involving Src, phosphatidylinositol 3-kinase/Akt, and Rac1, which culminates into localized actin polymerisation and bacterial engulfment by the cell. Inhibition of Met tyrosine kinase activity severely limited intestinal invasion and systemic infection by S. Typhi in vivo, highlighting the importance of this invasion pathway in disease progression. This is the first report elucidating the mechanism of T3SS-1-independent epithelial invasion of S. Typhi, and this crucial host-pathogen interaction may be targeted therapeutically to restrict pathogenesis.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sayan Das
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Atri Ta
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Santasabuj Das
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
10
|
Mondal M, Chakrabarti J, Ghosh M. Molecular dynamics simulations on interaction between bacterial proteins: Implication on pathogenic activities. Proteins 2017; 86:370-378. [PMID: 29265504 DOI: 10.1002/prot.25446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 11/12/2022]
Abstract
We perform molecular dynamics simulation studies on interaction between bacterial proteins: an outer-membrane protein STY3179 and a yfdX protein STY3178 of Salmonella Typhi. STY3179 has been found to be involved in bacterial adhesion and invasion. STY3178 is recently biophysically characterized. It is a soluble protein having antibiotic binding and chaperon activity capabilities. These two proteins co-occur and are from neighboring gene in Salmonella Typhi-occurrence of homologs of both STY3178 and STY3179 are identified in many Gram-negative bacteria. We show using homology modeling, docking followed by molecular dynamics simulation that they can form a stable complex. STY3178 belongs to aqueous phase, while the beta barrel portion of STY3179 remains buried in DPPC bilayer with extra-cellular loops exposed to water. To understand the molecular basis of interaction between STY3178 and STY3179, we compute the conformational thermodynamics which indicate that these two proteins interact through polar and acidic residues belonging to their interfacial region. Conformational thermodynamics results further reveal instability of certain residues in extra-cellular loops of STY3179 upon complexation with STY3178 which is an indication for binding with host cell protein laminin.
Collapse
Affiliation(s)
- Manas Mondal
- Department of Chemical, Biological and Macro-Molecular Sciences, S.N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata, India
| | - Jaydeb Chakrabarti
- Department of Chemical, Biological and Macro-Molecular Sciences, S.N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata, India.,The Thematic Unit of Excellence on Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata, India
| | - Mahua Ghosh
- Department of Chemical, Biological and Macro-Molecular Sciences, S.N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata, India
| |
Collapse
|
11
|
Chowdhury R, Ilyas H, Ghosh A, Ali H, Ghorai A, Midya A, Jana NR, Das S, Bhunia A. Multivalent gold nanoparticle-peptide conjugates for targeting intracellular bacterial infections. NANOSCALE 2017; 9:14074-14093. [PMID: 28901372 DOI: 10.1039/c7nr04062h] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although nanoparticle-tagged antimicrobal peptides have gained considerable importance in recent years, their structure-function correlation has not yet been explored. Here, we have studied the mechanism of action of a designed antimicrobial peptide, VG16KRKP (VARGWKRKCPLFGKGG), delivered via gold nanoparticle tagging against Salmonella infection by combining biological experiments with high- and low-resolution spectroscopic techniques. In comparison with the free VG16KRKP peptide or gold nanoparticle alone, the conjugated variant, Au-VG16KRKP, is non-cytotoxic to eukaryotic cells, but exhibits strong bacteriolytic activity in culture. Au-VG16KRKP can penetrate host epithelial and macrophage cells as well as interact with intracellular S. Typhi LPS under both in vitro and in vivo conditions. Treatment of mice with Au-VG16KRKP post-infection with S. Typhi resulted in reduced intracellular bacterial recovery and highly enhanced protection against S. Typhi challenge. The three-dimensional high resolution structure of nanoparticle conjugated VG16KRKP depicted the generation of a well-separated amphipathic structure with slight aggregation, responsible for the increase of the local concentration of the peptide, thus leading to potent activity. This is the first report on the structural and functional characterization of a nanoparticle conjugated synthetic antimicrobial peptide that can kill intracellular pathogens and eventually protect against S. Typhi challenge in vivo.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33 CIT Road Scheme XM, Beliaghata, Kolkata-700010, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hume PJ, Singh V, Davidson AC, Koronakis V. Swiss Army Pathogen: The Salmonella Entry Toolkit. Front Cell Infect Microbiol 2017; 7:348. [PMID: 28848711 PMCID: PMC5552672 DOI: 10.3389/fcimb.2017.00348] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/21/2017] [Indexed: 02/04/2023] Open
Abstract
Salmonella causes disease in humans and animals ranging from mild self-limiting gastroenteritis to potentially life-threatening typhoid fever. Salmonellosis remains a considerable cause of morbidity and mortality globally, and hence imposes a huge socio-economic burden worldwide. A key property of all pathogenic Salmonella strains is the ability to invade non-phagocytic host cells. The major determinant of this invasiveness is a Type 3 Secretion System (T3SS), a molecular syringe that injects virulence effector proteins directly into target host cells. These effectors cooperatively manipulate multiple host cell signaling pathways to drive pathogen internalization. Salmonella does not only rely on these injected effectors, but also uses several other T3SS-independent mechanisms to gain entry into host cells. This review summarizes our current understanding of the methods used by Salmonella for cell invasion, with a focus on the host signaling networks that must be coordinately exploited for the pathogen to achieve its goal.
Collapse
Affiliation(s)
- Peter J Hume
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Vikash Singh
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Anthony C Davidson
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| |
Collapse
|
13
|
A recombinant protein of Salmonella Typhi induces humoral and cell-mediated immune responses including memory responses. Vaccine 2017; 35:4523-4531. [PMID: 28739115 DOI: 10.1016/j.vaccine.2017.07.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022]
Abstract
Gram negative enteric bacteria, Salmonella enterica serovar Typhi (S. Typhi), the etiological agent of typhoid fever is a major public health problem in developing countries. While a permanent solution to the problem would require improved sanitation, food and water hygiene, controlling the infection by vaccination is urgently required due to the emergence of multidrug resistant strains in multiple countries. The currently licensed vaccines are moderately efficacious with limited applicability, and no recommended vaccines exist for younger children. We had previously reported that a candidate vaccine based on recombinant outer membrane protein (rT2544) of S. Typhi is highly immunogenic and protective in mice. Here we show that rT2544-specific antiserum is capable of mediating bacterial lysis by the splenocytes through Antibody-Dependent Cellular Cytotoxicity (ADCC). Increased populations of rT2544-specific IgA and IgG secreting plasma cells are found in the spleen, mesenteric lymph nodes and peyer's patches. Cell-Mediated Immune Responses (CMIR) induced by rT2544 consist of Th1 cell differentiation and generation of cytotoxic T lymphocytes (CTL), which produce IFN-γ and are capable of destroying cells displaying T2544-derived antigens. rT2544 elicits pro-inflammatory cytokines (TNF-α, IL-6) from Bone Marrow-Derived Dendritic cells (BMDCs), while in vitro re-stimulation of rT2544-primed CD4+ T cells induces cell proliferation and generates higher amounts of Th1 cytokines, such as IFN-gamma, TNF-α and IL-2. Finally, the candidate vaccine induces immunological memory in the form of memory B and T lymphocytes. Taken together, the study further supports the potential of rT2544 as a novel and improved vaccine candidate against S. Typhi.
Collapse
|
14
|
Barrila J, Yang J, Crabbé A, Sarker SF, Liu Y, Ott CM, Nelman-Gonzalez MA, Clemett SJ, Nydam SD, Forsyth RJ, Davis RR, Crucian BE, Quiriarte H, Roland KL, Brenneman K, Sams C, Loscher C, Nickerson CA. Three-dimensional organotypic co-culture model of intestinal epithelial cells and macrophages to study Salmonella enterica colonization patterns. NPJ Microgravity 2017; 3:10. [PMID: 28649632 PMCID: PMC5460263 DOI: 10.1038/s41526-017-0011-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/23/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments encountered by Salmonella, we developed and validated a novel three-dimensional co-culture infection model of colonic epithelial cells and macrophages using the NASA Rotating Wall Vessel bioreactor. First, U937 cells were activated upon collagen-coated scaffolds. HT-29 epithelial cells were then added and the three-dimensional model was cultured in the bioreactor until optimal differentiation was reached, as assessed by immunohistochemical profiling and bead uptake assays. The new co-culture model exhibited in vivo-like structural and phenotypic characteristics, including three-dimensional architecture, apical-basolateral polarity, well-formed tight/adherens junctions, mucin, multiple epithelial cell types, and functional macrophages. Phagocytic activity of macrophages was confirmed by uptake of inert, bacteria-sized beads. Contribution of macrophages to infection was assessed by colonization studies of Salmonella pathovars with different host adaptations and disease phenotypes (Typhimurium ST19 strain SL1344 and ST313 strain D23580; Typhi Ty2). In addition, Salmonella were cultured aerobically or microaerobically, recapitulating environments encountered prior to and during intestinal infection, respectively. All Salmonella strains exhibited decreased colonization in co-culture (HT-29-U937) relative to epithelial (HT-29) models, indicating antimicrobial function of macrophages. Interestingly, D23580 exhibited enhanced replication/survival in both models following invasion. Pathovar-specific differences in colonization and intracellular co-localization patterns were observed. These findings emphasize the power of incorporating a series of related three-dimensional models within a study to identify microenvironmental factors important for regulating infection.
Collapse
Affiliation(s)
- Jennifer Barrila
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Jiseon Yang
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Aurélie Crabbé
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Shameema F. Sarker
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Yulong Liu
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX USA
| | | | | | - Seth D. Nydam
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Rebecca J. Forsyth
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Richard R. Davis
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Brian E. Crucian
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX USA
| | | | - Kenneth L. Roland
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Karen Brenneman
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Clarence Sams
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX USA
| | - Christine Loscher
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Glasnevin, Ireland
| | - Cheryl A. Nickerson
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
- School of Life Sciences, Arizona State University, Tempe, AZ USA
| |
Collapse
|