1
|
Herrera A, Packer MM, Rosas-Lemus M, Minasov G, Chen J, Brumell JH, Satchell KJF. Vibrio MARTX toxin processing and degradation of cellular Rab GTPases by the cytotoxic effector Makes Caterpillars Floppy. Proc Natl Acad Sci U S A 2024; 121:e2316143121. [PMID: 38861595 PMCID: PMC11194500 DOI: 10.1073/pnas.2316143121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/19/2024] [Indexed: 06/13/2024] Open
Abstract
Vibrio vulnificus causes life-threatening wound and gastrointestinal infections, mediated primarily by the production of a Multifunctional-Autoprocessing Repeats-In-Toxin (MARTX) toxin. The most commonly present MARTX effector domain, the Makes Caterpillars Floppy-like (MCF) toxin, is a cysteine protease stimulated by host adenosine diphosphate (ADP) ribosylation factors (ARFs) to autoprocess. Here, we show processed MCF then binds and cleaves host Ras-related proteins in brain (Rab) guanosine triphosphatases within their C-terminal tails resulting in Rab degradation. We demonstrate MCF binds Rabs at the same interface occupied by ARFs. Moreover, we show MCF preferentially binds to ARF1 prior to autoprocessing and is active to cleave Rabs only subsequent to autoprocessing. We then use structure prediction algorithms to demonstrate that structural composition, rather than sequence, determines Rab target specificity. We further determine a crystal structure of aMCF as a swapped dimer, revealing an alternative conformation we suggest represents the open, activated state of MCF with reorganized active site residues. The cleavage of Rabs results in Rab1B dispersal within cells and loss of Rab1B density in the intestinal tissue of infected mice. Collectively, our work describes an extracellular bacterial mechanism whereby MCF is activated by ARFs and subsequently induces the degradation of another small host guanosine triphosphatase (GTPase), Rabs, to drive organelle damage, cell death, and promote pathogenesis of these rapidly fatal infections.
Collapse
Affiliation(s)
- Alfa Herrera
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Megan M. Packer
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Monica Rosas-Lemus
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - George Minasov
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Jiexi Chen
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - John H. Brumell
- Cell Biology Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5G 0A4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ONM5S 1A8, Canada
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
2
|
Belyy A, Heilen P, Hagel P, Hofnagel O, Raunser S. Structure and activation mechanism of the Makes caterpillars floppy 1 toxin. Nat Commun 2023; 14:8226. [PMID: 38086871 PMCID: PMC10716152 DOI: 10.1038/s41467-023-44069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
The bacterial Makes caterpillars floppy 1 (Mcf1) toxin promotes apoptosis in insects, leading to loss of body turgor and death. The molecular mechanism underlying Mcf1 intoxication is poorly understood. Here, we present the cryo-EM structure of Mcf1 from Photorhabdus luminescens, revealing a seahorse-like shape with a head and tail. While the three head domains contain two effectors, as well as an activator-binding domain (ABD) and an autoprotease, the tail consists of two putative translocation and three putative receptor-binding domains. Rearrangement of the tail moves the C-terminus away from the ABD and allows binding of the host cell ADP-ribosylation factor 3, inducing conformational changes that position the cleavage site closer to the protease. This distinct activation mechanism that is based on a hook-loop interaction results in three autocleavage reactions and the release of two toxic effectors. Unexpectedly, the BH3-like domain containing ABD is not an active effector. Our findings allow us to understand key steps of Mcf1 intoxication at the molecular level.
Collapse
Affiliation(s)
- Alexander Belyy
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Philipp Heilen
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Philine Hagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Oliver Hofnagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.
| |
Collapse
|
3
|
Herrera A, Packer MM, Rosas-Lemus M, Minasov G, Brummel JH, Satchell KJF. Vibrio MARTX toxin processing and degradation of cellular Rab GTPases by the cytotoxic effector Makes Caterpillars Floppy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537381. [PMID: 37131655 PMCID: PMC10153396 DOI: 10.1101/2023.04.19.537381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Vibrio vulnificus causes life threatening infections dependent upon the effectors released from the Multifunctional-Autoprocessing Repeats-In-Toxin (MARTX) toxin. The Makes Caterpillars Floppy-like (MCF) cysteine protease effector is activated by host ADP ribosylation factors (ARFs), although the targets of processing activity were unknown. In this study we show MCF binds Ras-related proteins in brain (Rab) GTPases at the same interface occupied by ARFs and then cleaves and/or degrades 24 distinct members of the Rab GTPases family. The cleavage occurs in the C-terminal tails of Rabs. We determine the crystal structure of MCF as a swapped dimer revealing the open, activated state of MCF and then use structure prediction algorithms to show that structural composition, rather than sequence or localization, determine Rabs selected as MCF proteolytic targets. Once cleaved, Rabs become dispersed in cells to drive organelle damage and cell death to promote pathogenesis of these rapidly fatal infections.
Collapse
Affiliation(s)
- Alfa Herrera
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Megan M. Packer
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Monica Rosas-Lemus
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - George Minasov
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John H. Brummel
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- SickKids IBD Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
4
|
Shimohata N, Harada Y, Hayano T. Proteomic analysis of nascent polypeptide chains that potentially induce translational pausing during elongation. Biosci Biotechnol Biochem 2022; 86:1262-1269. [PMID: 35749475 DOI: 10.1093/bbb/zbac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022]
Abstract
Currently, proteins equipped with "ribosomal arrest peptides" (RAPs) that regulate the expression of downstream genes and their own activity by pausing their own translation during elongation are extensively studied. However, studies focusing on RAP have been conducted primarily in prokaryotic cells; studies on eukaryotic cells, especially mammalian cells, are limited. In the present study, we comprehensively examined translationally arrested nascent polypeptides to gain novel insights into RAPs in mammalian cells. Cetyltrimethylammonium bromide was used to obtain nascent polypeptide chains that were translationally arrested during translation elongation. After proteomic analysis, additional screening by discriminating according to amino acid residues at the C-terminal end revealed several novel RAP candidates. Our method can be applied for comprehensive RAP studies in mammalian cells.
Collapse
Affiliation(s)
- Nobuyuki Shimohata
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, Japan.,Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, Japan
| | - Yudai Harada
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, Japan
| | - Toshiya Hayano
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, Japan
| |
Collapse
|
5
|
Actin Cross-Linking Effector Domain of the Vibrio vulnificus F-Type MARTX Toxin Dominates Disease Progression During Intestinal Infection. Infect Immun 2022; 90:e0062721. [PMID: 35254094 DOI: 10.1128/iai.00627-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vibrio vulnificus is an opportunistic pathogen that causes gastroenteritis and septicemia in humans. The V. vulnificus multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin is a pore-forming toxin that translocates multiple functionally independent effector domains into target cells and an essential virulence factor for fatal disease. The effector repertoire delivered and thus the mechanism of action of the toxin can differ dramatically across V. vulnificus isolates. Here, we utilize a strain of V. vulnificus that carries an F-type MARTX toxin that delivers an actin cross-linking domain (ACD) and four other effector domains. We demonstrate that ACD is the primary driver of virulence following intragastric infection and of bacterial dissemination to distal organs. We additionally show that ACD activates the transcription of intermediate early response genes in cultured intestinal epithelial cells (IECs). However, the genes activated by ACD are suppressed, at least in part, by the codelivered Ras/Rap1-specific endopeptidase (RRSP). The transcriptional response induced by strains translocating only RRSP results in a unique transcriptional profile, demonstrating that the transcriptional response to V. vulnificus is remodeled rather than simply suppressed by the MARTX toxin effector repertoire. Regardless, the transcriptional response in the intestinal tissue of infected mice is dominated by ACD-mediated induction of genes associated with response to tissue damage and is not impacted by RRSP or the three other effectors codelivered with ACD and RRSP. These data demonstrate that while other effectors do remodel early intestinal innate immune responses, ACD is the dominant driver of disease progression by ACD+ V. vulnificus during intestinal infection.
Collapse
|
6
|
Choi S, Kim BS, Hwang J, Kim MH. Reduced virulence of the MARTX toxin increases the persistence of outbreak-associated Vibrio vulnificus in host reservoirs. J Biol Chem 2021; 296:100777. [PMID: 33992647 PMCID: PMC8191300 DOI: 10.1016/j.jbc.2021.100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 11/23/2022] Open
Abstract
Opportunistic bacteria strategically dampen their virulence to allow them to survive and propagate in hosts. However, the molecular mechanisms underlying virulence control are not clearly understood. Here, we found that the opportunistic pathogen Vibrio vulnificus biotype 3, which caused an outbreak of severe wound and intestinal infections associated with farmed tilapia, secretes significantly less virulent multifunctional autoprocessing repeats-in-toxin (MARTX) toxin, which is the most critical virulence factor in other clinical Vibrio strains. The biotype 3 MARTX toxin contains a cysteine protease domain (CPD) evolutionarily retaining a unique autocleavage site and a distinct β-flap region. CPD autoproteolytic activity is attenuated following its autocleavage because of the β-flap region. This β-flap blocks the active site, disabling further autoproteolytic processing and release of the modularly structured effector domains within the toxin. Expression of this altered CPD consequently results in attenuated release of effectors by the toxin and significantly reduces the virulence of V. vulnificus biotype 3 in cells and in mice. Bioinformatic analysis revealed that this virulence mechanism is shared in all biotype 3 strains. Thus, these data provide new insights into the mechanisms by which opportunistic bacteria persist in an environmental reservoir, prolonging the potential to cause outbreaks.
Collapse
Affiliation(s)
- Sanghyeon Choi
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Byoung Sik Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Korea
| | - Jungwon Hwang
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
| | - Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
| |
Collapse
|
7
|
Herrera A, Satchell KJF. Cross-Kingdom Activation of Vibrio Toxins by ADP-Ribosylation Factor Family GTPases. J Bacteriol 2020; 202:e00278-20. [PMID: 32900828 PMCID: PMC7685564 DOI: 10.1128/jb.00278-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic Vibrio species use many different approaches to subvert, attack, and undermine the host response. The toxins they produce are often responsible for the devastating effects associated with their diseases. These toxins target a variety of host proteins, which leads to deleterious effects, including dissolution of cell organelle integrity and inhibition of protein secretion. Becoming increasingly prevalent as cofactors for Vibrio toxins are proteins of the small GTPase families. ADP-ribosylation factor small GTPases (ARFs) in particular are emerging as a common host cofactor necessary for full activation of Vibrio toxins. While ARFs are not the direct target of Vibrio cholerae cholera toxin (CT), ARF binding is required for its optimal activity as an ADP-ribosyltransferase. The makes caterpillars floppy (MCF)-like and the domain X (DmX) effectors of the Vibrio vulnificus multifunctional autoprocessing repeats-in-toxin (MARTX) toxin also both require ARFs to initiate autoprocessing and activation as independent effectors. ARFs are ubiquitously expressed in eukaryotes and are key regulators of many cellular processes, and as such they are ideal cofactors for Vibrio pathogens that infect many host species. In this review, we cover in detail the known Vibrio toxins that use ARFs as cross-kingdom activators to both stimulate and optimize their activity. We further discuss how these contrast to toxins and effectors from other bacterial species that coactivate, stimulate, or directly modify host ARFs as their mechanisms of action.
Collapse
Affiliation(s)
- Alfa Herrera
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
8
|
Herrera A, Muroski J, Sengupta R, Nguyen HH, Agarwal S, Ogorzalek Loo RR, Mattoo S, Loo JA, Satchell KJF. N-terminal autoprocessing and acetylation of multifunctional-autoprocessing repeats-in-toxins (MARTX) Makes Caterpillars Floppy-like effector is stimulated by adenosine diphosphate (ADP)-Ribosylation Factor 1 in advance of Golgi fragmentation. Cell Microbiol 2019; 22:e13133. [PMID: 31658406 DOI: 10.1111/cmi.13133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022]
Abstract
Studies have successfully elucidated the mechanism of action of several effector domains that comprise the multifunctional-autoprocessing repeats-in-toxins (MARTX) toxins of Vibrio vulnificus. However, the biochemical linkage between the cysteine proteolytic activity of Makes Caterpillars Floppy (MCF)-like effector and its cellular effects remains unknown. In this study, we identify the host cell factors that activate in vivo and in vitro MCF autoprocessing as adenosine diphosphate (ADP)-Ribosylation Factor 1 (ARF1) and ADP-Ribosylation Factor 3 (ARF3). Autoprocessing activity is enhanced when ARF1 is in its active [guanosine triphosphate (GTP)-bound] form compared to the inactive [guanosine diphosphate (GDP)-bound] form. Subsequent to auto-cleavage, MCF is acetylated on its exposed N-terminal glycine residue. Acetylation apparently does not dictate subcellular localization as MCF is found localized throughout the cell. However, the cleaved form of MCF gains the ability to bind to the specialized lipid phosphatidylinositol 5-phosphate enriched in Golgi and other membranes necessary for endocytic trafficking, suggesting that a fraction of MCF may be subcellularly localized. Traditional thin-section electron microscopy, high-resolution cryoAPEX localization, and fluorescent microscopy show that MCF causes Golgi dispersal resulting in extensive vesiculation. In addition, host mitochondria are disrupted and fragmented. Mass spectrometry analysis found no reproducible modifications of ARF1 suggesting that ARF1 is not post-translationally modified by MCF. Further, catalytically active MCF does not stably associate with ARF1. Our data indicate not only that ARF1 is a cross-kingdom activator of MCF, but also that MCF may mediate cytotoxicity by directly targeting another yet to be identified protein. This study begins to elucidate the biochemical activity of this important domain and gives insight into how it may promote disease progression.
Collapse
Affiliation(s)
- Alfa Herrera
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - John Muroski
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Ranjan Sengupta
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Hong Hanh Nguyen
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Shivangi Agarwal
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rachel R Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California.,UCLA/DOE Institute of Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California
| | - Seema Mattoo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana.,Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California.,Department of Biological Chemistry, David Geffen School of Medicine, UCLA Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
9
|
Makes caterpillars floppy-like effector-containing MARTX toxins require host ADP-ribosylation factor (ARF) proteins for systemic pathogenicity. Proc Natl Acad Sci U S A 2019; 116:18031-18040. [PMID: 31427506 PMCID: PMC6731672 DOI: 10.1073/pnas.1905095116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
MARTX toxins present across multiple bacterial genera are primary virulence factors that facilitate initial colonization, dissemination, and lethality in a wide range of hosts, including humans. Upon entry into host cells, the toxins undergo a processing event to release their disease-related modularly structured effector domains. However, the mechanisms underlying processing and activation of diverse effector domains within the toxins remain unclear. Here, we use biochemical and structural biological approaches, in combination with cellular microbiological experiments, to demonstrate how Makes caterpillars floppy-like effector (MCF) or its homolog-containing MARTX toxins process effector modules and fully activate effectors. MCF-containing toxins target ADP-ribosylation factor proteins ubiquitously expressed in cells to activate and disseminate effectors across subcellular compartments simultaneously, eventually leading to systemic pathogenicity. Upon invading target cells, multifunctional autoprocessing repeats-in-toxin (MARTX) toxins secreted by bacterial pathogens release their disease-related modularly structured effector domains. However, it is unclear how a diverse repertoire of effector domains within these toxins are processed and activated. Here, we report that Makes caterpillars floppy-like effector (MCF)-containing MARTX toxins require ubiquitous ADP-ribosylation factor (ARF) proteins for processing and activation of intermediate effector modules, which localize in different subcellular compartments following limited processing of holo effector modules by the internal cysteine protease. Effector domains structured tandemly with MCF in intermediate modules become disengaged and fully activated by MCF, which aggressively interacts with ARF proteins present at the same location as intermediate modules and is converted allosterically into a catalytically competent protease. MCF-mediated effector processing leads ultimately to severe virulence in mice via an MCF-mediated ARF switching mechanism across subcellular compartments. This work provides insight into how bacteria take advantage of host systems to induce systemic pathogenicity.
Collapse
|
10
|
Gavin HE, Satchell KJF. RRSP and RID Effector Domains Dominate the Virulence Impact of Vibrio vulnificus MARTX Toxin. J Infect Dis 2019; 219:889-897. [PMID: 30289477 PMCID: PMC6386806 DOI: 10.1093/infdis/jiy590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The bacterial pathogen Vibrio vulnificus causes severe septic foodborne infections. The multifunctional autoprocessing repeats-in-toxins (MARTX) toxin is an important secreted virulence factor. The effector domain region is essential for lethal intestinal infection in mice, but the contribution of each of the 5 effector domains to infection has not been investigated. METHODS V. vulnificus mutants with varying effector domain content were inoculated intragastrically to mice, and the time to death was monitored to establish the contribution of each effector domain to overall virulence. Each strain was also tested for bacterial dissemination from the intestine to internal organs and for inhibition of phagocytosis. RESULTS The effector domain region was required for V. vulnificus to inhibit phagocytosis by J774 macrophages, but no single effector domain was required. No single MARTX effector domain was necessary for bacterial dissemination. Nonetheless, overall survival of infected mice differed with respect to the infecting V. vulnificus strain. Removal of rid or rrsp significantly reduced the virulence potential of V. vulnificus, while deletion of duf1 or abh accelerated the time to death. CONCLUSION Rho GTPases inactivation domain and Ras/Rap1-specific endopeptidase each exert greater effects on virulence than other MARTX domains, suggesting that modulation of the Rho/Ras family of GTPases is a critical function of the toxin during intestinal infection.
Collapse
Affiliation(s)
- Hannah E Gavin
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
11
|
Kim BS. The Modes of Action of MARTX Toxin Effector Domains. Toxins (Basel) 2018; 10:toxins10120507. [PMID: 30513802 PMCID: PMC6315884 DOI: 10.3390/toxins10120507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022] Open
Abstract
Many Gram-negative bacterial pathogens directly deliver numerous effector proteins from the bacterium to the host cell, thereby altering the target cell physiology. The already well-characterized effector delivery systems are type III, type IV, and type VI secretion systems. Multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are another effector delivery platform employed by some genera of Gram-negative bacteria. These single polypeptide exotoxins possess up to five effector domains in a modular fashion in their central regions. Upon binding to the host cell plasma membrane, MARTX toxins form a pore using amino- and carboxyl-terminal repeat-containing arms and translocate the effector domains into the cells. Consequently, MARTX toxins affect the integrity of the host cells and often induce cell death. Thus, they have been characterized as crucial virulence factors of certain human pathogens. This review covers how each of the MARTX toxin effector domains exhibits cytopathic and/or cytotoxic activities in cells, with their structural features revealed recently. In addition, future directions for the comprehensive understanding of MARTX toxin-mediated pathogenesis are discussed.
Collapse
Affiliation(s)
- Byoung Sik Kim
- Department of Food Science and Engineering, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
12
|
Bogdanovic X, Schneider S, Levanova N, Wirth C, Trillhaase C, Steinemann M, Hunte C, Aktories K, Jank T. A cysteine protease-like domain enhances the cytotoxic effects of the Photorhabdus asymbiotica toxin PaTox. J Biol Chem 2018; 294:1035-1044. [PMID: 30478175 DOI: 10.1074/jbc.ra118.005043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/21/2018] [Indexed: 01/07/2023] Open
Abstract
The nematode mutualistic bacterium Photorhabdus asymbiotica produces a large virulence-associated multifunctional protein toxin named PaTox. A glycosyltransferase domain and a deamidase domain of this large toxin function as effectors that specifically target host Rho GTPases and heterotrimeric G proteins, respectively. Modification of these intracellular regulators results in toxicity toward insects and mammalian cells. In this study, we identified a cysteine protease-like domain spanning PaTox residues 1844-2114 (PaToxP), upstream of these two effector domains and characterized by three conserved amino acid residues (Cys-1865, His-1955, and Asp-1975). We determined the crystal structure of the PaToxP C1865A variant by native single-wavelength anomalous diffraction of sulfur atoms (sulfur-SAD). At 2.0 Å resolution, this structure revealed a catalytic site typical for papain-like cysteine proteases, comprising a catalytic triad, oxyanion hole, and typical secondary structural elements. The PaToxP structure had highest similarity to that of the AvrPphB protease from Pseudomonas syringae classified as a C58-protease. Furthermore, we observed that PaToxP shares structural homology also with non-C58-cysteine proteases, deubiquitinases, and deamidases. Upon delivery into insect larvae, PaToxP alone without full-length PaTox had no toxic effects. Yet, PaToxP expression in mammalian cells was toxic and enhanced the apoptotic phenotype induced by PaTox in HeLa cells. We propose that PaToxP is a C58-like cysteine protease module that is essential for full PaTox activity.
Collapse
Affiliation(s)
- Xenia Bogdanovic
- From the Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Silvia Schneider
- the Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany, and
| | - Nadezhda Levanova
- the Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany, and
| | - Christophe Wirth
- From the Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Christoph Trillhaase
- the Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany, and
| | - Marcus Steinemann
- the Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany, and
| | - Carola Hunte
- From the Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany, .,the Centre for Biological Signalling Studies (BIOSS), University of Freiburg, D-79106 Freiburg, Germany
| | - Klaus Aktories
- the Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany, and .,the Centre for Biological Signalling Studies (BIOSS), University of Freiburg, D-79106 Freiburg, Germany
| | - Thomas Jank
- the Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany, and
| |
Collapse
|
13
|
Woida PJ, Satchell KJF. Coordinated delivery and function of bacterial MARTX toxin effectors. Mol Microbiol 2017; 107:133-141. [PMID: 29114985 DOI: 10.1111/mmi.13875] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2017] [Indexed: 12/22/2022]
Abstract
Bacteria often coordinate virulence factors to fine-tune the host response during infection. These coordinated events can include toxins counteracting or amplifying effects of another toxin or though regulating the stability of virulence factors to remove their function once it is no longer needed. Multifunctional autoprocessing repeats-in toxin (MARTX) toxins are effector delivery toxins that form a pore into the plasma membrane of a eukaryotic cell to deliver multiple effector proteins into the cytosol of the target cell. The function of these proteins includes manipulating actin cytoskeletal dynamics, regulating signal transduction pathways and inhibiting host secretory pathways. Investigations into the molecular mechanisms of these effector domains are providing insight into how the function of some effectors overlap and regulate one another during infection. Coordinated crosstalk of effector function suggests that MARTX toxins are not simply a sum of all their parts. Instead, modulation of cell function by effector domains may depend on which other effector domain are co-delivered. Future studies will elucidate how these effectors interact with each other to modulate the bacterial host interaction.
Collapse
Affiliation(s)
- Patrick J Woida
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Chen CL, Chien SC, Leu TH, Harn HIC, Tang MJ, Hor LI. Vibrio vulnificus MARTX cytotoxin causes inactivation of phagocytosis-related signaling molecules in macrophages. J Biomed Sci 2017; 24:58. [PMID: 28822352 PMCID: PMC5563386 DOI: 10.1186/s12929-017-0368-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/13/2017] [Indexed: 01/22/2023] Open
Abstract
Background Vibrio vulnificus is a marine bacterial species that causes opportunistic infections manifested by serious skin lesions and fulminant septicemia in humans. We have previously shown that the multifunctional autoprocessing repeats in toxin (MARTXVv1) of a biotype 1 V. vulnificus strain promotes survival of this organism in the host by preventing it from engulfment by the phagocytes. The purpose of this study was to further explore how MARTXVv1 inhibits phagocytosis of this microorganism by the macrophage. Methods We compared between a wild-type V. vulnificus strain and its MARTXVv1-deficient mutant for a variety of phagocytosis-related responses, including morphological change and activation of signaling molecules, they induced in the macrophage. We also characterized a set of MARTXVv1 domain-deletion mutants to define the regions associated with antiphagocytosis activity. Results The RAW 264.7 cells and mouse peritoneal exudate macrophages underwent cell rounding accompanied by F-actin disorganization in the presence of MARTXVv1. In addition, phosphorylation of some F-actin rearrangement-associated signaling molecules, including Lyn, Fgr and Hck of the Src family kinases (SFKs), focal adhesion kinase (FAK), proline-rich tyrosine kinase 2 (Pyk2), phosphoinositide 3-kinase (PI3K) and Akt, but not p38, was decreased. By using specific inhibitors, we found that these kinases were all involved in the phagocytosis of MARTXVv1-deficient mutant in an order of SFKs-FAK/Pyk2-PI3K-Akt. Deletion of the effector domains in the central region of MARTXVv1 could lead to reduced cytotoxicity, depending on the region and size of deletion, but did not affect the antiphagocytosis activity and ability to cause rounding of macrophage. Reduced phosphorylation of Akt was closely associated with inhibition of phagocytosis by the wild-type strain and MARTXVv1 domain-deletion mutants, and expression of the constitutively active Akt, myr-Akt, enhanced the engulfment of these strains by macrophage. Conclusions MARTXVv1 could inactivate the SFKs-FAK/Pyk2-PI3K-Akt signaling pathway in the macrophages. This might lead to impaired phagocytosis of the V. vulnificus-infected macrophage. The majority of the central region of MARTXVv1 is not associated with the antiphagocytosis activity. Electronic supplementary material The online version of this article (doi:10.1186/s12929-017-0368-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shu-Chun Chien
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tzeng-Horng Leu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.,Department of Pharmacology College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hans I-Chen Harn
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ming-Jer Tang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Lien-I Hor
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
15
|
Gavin HE, Beubier NT, Satchell KJF. The Effector Domain Region of the Vibrio vulnificus MARTX Toxin Confers Biphasic Epithelial Barrier Disruption and Is Essential for Systemic Spread from the Intestine. PLoS Pathog 2017; 13:e1006119. [PMID: 28060924 PMCID: PMC5218395 DOI: 10.1371/journal.ppat.1006119] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022] Open
Abstract
Vibrio vulnificus causes highly lethal bacterial infections in which the Multifunctional Autoprocessing Repeats-in-Toxins (MARTX) toxin product of the rtxA1 gene is a key virulence factor. MARTX toxins are secreted proteins up to 5208 amino acids in size. Conserved MARTX N- and C-terminal repeat regions work in concert to form pores in eukaryotic cell membranes, through which the toxin's central region of modular effector domains is translocated. Upon inositol hexakisphosphate-induced activation of the of the MARTX cysteine protease domain (CPD) in the eukaryotic cytosol, effector domains are released from the holotoxin by autoproteolytic activity. We previously reported that the native MARTX toxin effector domain repertoire is dispensable for epithelial cellular necrosis in vitro, but essential for cell rounding and apoptosis prior to necrotic cell death. Here we use an intragastric mouse model to demonstrate that the effector domain region is required for bacterial virulence during intragastric infection. The MARTX effector domain region is essential for bacterial dissemination from the intestine, but dissemination occurs in the absence of overt intestinal tissue pathology. We employ an in vitro model of V. vulnificus interaction with polarized colonic epithelial cells to show that the MARTX effector domain region induces rapid intestinal barrier dysfunction and increased paracellular permeability prior to onset of cell lysis. Together, these results negate the inherent assumption that observations of necrosis in vitro directly predict bacterial virulence, and indicate a paradigm shift in our conceptual understanding of MARTX toxin function during intestinal infection. Results implicate the MARTX effector domain region in mediating early bacterial dissemination from the intestine to distal organs-a key step in V. vulnificus foodborne pathogenesis-even before onset of overt intestinal pathology.
Collapse
Affiliation(s)
- Hannah E. Gavin
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Nike T. Beubier
- Department of Pathology, Northwestern University Feinberg School of Medicine and Northwestern Memorial Hospital, Chicago, IL, United States of America
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| |
Collapse
|
16
|
Abstract
Multifunctional-autoprocessing repeats-in-toxin (MARTX) toxins are a heterogeneous group of toxins found in a number of Vibrio species and other Gram-negative bacteria. The toxins are composed of conserved repeat regions and an autoprocessing protease domain that together function as a delivery platform for transfer of cytotoxic and cytopathic domains into target eukaryotic cell cytosol. Within the cells, the effectors can alter biological processes such as signaling or cytoskeletal structure, presumably to the benefit of the bacterium. Ten effector domains are found in the various Vibrio MARTX toxins, although any one toxin carries only two to five effector domains. The specific toxin variant expressed by a species can be modified by homologous recombination to acquire or lose effector domains, such that different strains within the same species can express distinct variants of the toxins. This review examines the conserved structural elements of the MARTX toxins and details the different toxin arrangements carried by Vibrio species and strains. The catalytic function of domains and how the toxins are linked to pathogenesis of human and animals is described.
Collapse
|
17
|
Kim BS, Satchell KJF. MARTX effector cross kingdom activation by Golgi-associated ADP-ribosylation factors. Cell Microbiol 2016; 18:1078-93. [PMID: 26780191 DOI: 10.1111/cmi.12568] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/28/2015] [Accepted: 01/10/2016] [Indexed: 02/07/2023]
Abstract
Vibrio vulnificus infects humans and causes lethal septicemia. The primary virulence factor is a multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin consisting of conserved repeats-containing regions and various effector domains. Recent genomic analyses for the newly emerged V. vulnificus biotype 3 strain revealed that its MARTX toxin has two previously unknown effector domains. Herein, we characterized one of these domains, Domain X (DmXVv ). A structure-based homology search revealed that DmXVv belongs to the C58B cysteine peptidase subfamily. When ectopically expressed in cells, DmXVv was autoprocessed and induced cytopathicity including Golgi dispersion. When the catalytic cysteine or the region flanking the scissile bond was mutated, both autoprocessing and cytopathicity were significantly reduced indicating that DmXVv cytopathicity is activated by amino-terminal autoprocessing. Consistent with this, host cell protein export was affected by Vibrio cells producing a toxin with wild-type, but not catalytically inactive, DmXVv . DmXVv was found to localize to Golgi and to directly interact with Golgi-associated ADP-ribosylation factors ARF1, ARF3 and ARF4, although ARF binding was not necessary for the subcellular localization. Rather, this interaction was found to induce autoprocessing of DmXVv . These data demonstrate that the V. vulnificus hijacks the host ARF proteins to activate the cytopathic DmXVv effector domain of MARTX toxin.
Collapse
Affiliation(s)
- Byoung Sik Kim
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
18
|
Murfin KE, Whooley AC, Klassen JL, Goodrich-Blair H. Comparison of Xenorhabdus bovienii bacterial strain genomes reveals diversity in symbiotic functions. BMC Genomics 2015; 16:889. [PMID: 26525894 PMCID: PMC4630870 DOI: 10.1186/s12864-015-2000-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/03/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Xenorhabdus bacteria engage in a beneficial symbiosis with Steinernema nematodes, in part by providing activities that help kill and degrade insect hosts for nutrition. Xenorhabdus strains (members of a single species) can display wide variation in host-interaction phenotypes and genetic potential indicating that strains may differ in their encoded symbiosis factors, including secreted metabolites. METHODS To discern strain-level variation among symbiosis factors, and facilitate the identification of novel compounds, we performed a comparative analysis of the genomes of 10 Xenorhabdus bovienii bacterial strains. RESULTS The analyzed X. bovienii draft genomes are broadly similar in structure (e.g. size, GC content, number of coding sequences). Genome content analysis revealed that general classes of putative host-microbe interaction functions, such as secretion systems and toxin classes, were identified in all bacterial strains. In contrast, we observed diversity of individual genes within families (e.g. non-ribosomal peptide synthetase clusters and insecticidal toxin components), indicating the specific molecules secreted by each strain can vary. Additionally, phenotypic analysis indicates that regulation of activities (e.g. enzymes and motility) differs among strains. CONCLUSIONS The analyses presented here demonstrate that while general mechanisms by which X. bovienii bacterial strains interact with their invertebrate hosts are similar, the specific molecules mediating these interactions differ. Our data support that adaptation of individual bacterial strains to distinct hosts or niches has occurred. For example, diverse metabolic profiles among bacterial symbionts may have been selected by dissimilarities in nutritional requirements of their different nematode hosts. Similarly, factors involved in parasitism (e.g. immune suppression and microbial competition factors), likely differ based on evolution in response to naturally encountered organisms, such as insect hosts, competitors, predators or pathogens. This study provides insight into effectors of a symbiotic lifestyle, and also highlights that when mining Xenorhabdus species for novel natural products, including antibiotics and insecticidal toxins, analysis of multiple bacterial strains likely will increase the potential for the discovery of novel molecules.
Collapse
Affiliation(s)
- Kristen E Murfin
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Amy C Whooley
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Jonathan L Klassen
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
| | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
19
|
Identification of Critical Amino Acids Conferring Lethality in VopK, a Type III Effector Protein of Vibrio cholerae: Lessons from Yeast Model System. PLoS One 2015; 10:e0141038. [PMID: 26488395 PMCID: PMC4619451 DOI: 10.1371/journal.pone.0141038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
VopK, a type III effector protein, has been implicated in the pathogenesis of Vibrio cholerae strains belonging to diverse serogroups. Ectopic expression of this protein exhibits strong toxicity in yeast model system. In order to map critical residues in VopK, we scanned the primary sequence guided by available data on various toxins and effector proteins. Our in silico analysis of VopK indicated the presence of predicted MCF1-SHE (SHxxxE) serine peptidase domain at the C-terminus region of the protein. Substitution of each of the predicted catalytic triad residues namely Ser314, His353 and Glu357 with alanine resulted in recombinant VopK proteins varying in lethality as evaluated in yeast model system. We observed that replacement of glutamate357 to alanine causes complete loss in toxicity while substitutions of serine314 and histidine353 with alanine exhibited partial loss in toxicity without affecting the stability of variants. In addition, replacement of another conserved serine residue at position 354 (S354) within predicted S314H353E357 did not affect toxicity of VopK. In essence, combined in silico and site directed mutagenesis, we have identified critical amino acids contributing to the lethal activity of VopK in yeast model system.
Collapse
|
20
|
Gavin HE, Satchell KJF. MARTX toxins as effector delivery platforms. Pathog Dis 2015; 73:ftv092. [PMID: 26472741 DOI: 10.1093/femspd/ftv092] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2015] [Indexed: 12/14/2022] Open
Abstract
Bacteria frequently manipulate their host environment via delivery of microbial 'effector' proteins to the cytosol of eukaryotic cells. In the case of the multifunctional autoprocessing repeats-in-toxins (MARTX) toxin, this phenomenon is accomplished by a single, >3500 amino acid polypeptide that carries information for secretion, translocation, autoprocessing and effector activity. MARTX toxins are secreted from bacteria by dedicated Type I secretion systems. The released MARTX toxins form pores in target eukaryotic cell membranes for the delivery of up to five cytopathic effectors, each of which disrupts a key cellular process. Targeted cellular processes include modulation or modification of small GTPases, manipulation of host cell signaling and disruption of cytoskeletal integrity. More recently, MARTX toxins have been shown to be capable of heterologous protein translocation. Found across multiple bacterial species and genera--frequently in pathogens lacking Type 3 or Type 4 secretion systems--MARTX toxins in multiple cases function as virulence factors. Innovative research at the intersection of toxin biology and bacterial genetics continues to elucidate the intricacies of the toxin as well as the cytotoxic mechanisms of its diverse effector collection.
Collapse
Affiliation(s)
- Hannah E Gavin
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
21
|
The Makes Caterpillars Floppy (MCF)-Like Domain of Vibrio vulnificus Induces Mitochondrion-Mediated Apoptosis. Infect Immun 2015; 83:4392-403. [PMID: 26351282 DOI: 10.1128/iai.00570-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022] Open
Abstract
The multifunctional-autoprocessing repeats-in-toxin (MARTXVv) toxin of Vibrio vulnificus plays a significant role in the pathogenesis of this bacterium through delivery of up to five effector domains to the host cells. Previous studies have established that the MARTXVv toxin is linked to V. vulnificus dependent induction of apoptosis, but the region of the large multifunction protein essential for this activity was not previously identified. Recently, we showed that the Makes Caterpillar Floppy-like MARTX effector domain (MCFVv) is an autoproteolytic cysteine protease that induces rounding of various cell types. In this study, we demonstrate that cell rounding induced by MCFVv is coupled to reduced metabolic rate and inhibition of cellular proliferation. Moreover, delivery of MCFVv into host cells either as a fusion to the N-terminal fragment of anthrax toxin lethal factor or when naturally delivered as a V. vulnificus MARTX toxin led to loss of mitochondrial membrane potential, release of cytochrome c, activation of Bax and Bak, and processing of caspases and poly-(ADP-ribose) polymerase (PARP-γ). These studies specifically link the MCFVv effector domain to induction of the intrinsic apoptosis pathway by V. vulnificus.
Collapse
|