1
|
Sundaresan S, Antoun J, Banan B, Adcock J, Johnson C, Claire B, Dixon K, Flynn J, Shibao CA, Abumrad N. Botulinum Injection Into the Proximal Intestinal Wall of Diet-Induced Obese Mice Leads to Weight Loss and Improves Glucose and Fat Tolerance. Diabetes 2022; 71:1424-1438. [PMID: 35476783 PMCID: PMC9490449 DOI: 10.2337/db21-0708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022]
Abstract
Botulinum neurotoxin (available commercially as BOTOX) has been used successfully for treatment of several neuromuscular disorders, including blepharospasm, dystonia, spasticity, and cerebral palsy in children. Our data demonstrate that injection of Botox into the proximal intestinal wall of diet-induced obese (DIO) mice induces weight loss and reduces food intake. This was associated with amelioration of hyperglycemia, hyperlipidemia, and significant improvement of glucose tolerance without alteration of energy expenditure. We also observed accelerated gastrointestinal transit and significant reductions in glucose and lipid absorption, which may account, at least in part, for the observed weight loss and robust metabolic benefits, although possible systemic effects occurring as a consequence of central and/or peripheral signaling cannot be ignored. The observed metabolic benefits were found to be largely independent of weight loss, as demonstrated by pair-feeding experiments. Effects lasted ∼8 weeks, for as long as the half-life of Botox as reported in prior rodent studies. These results have valuable clinical implications. If the observed effects are translatable in humans, this approach could lay the foundation for therapeutic approaches geared toward robust and sustained weight loss, mimicking some of the benefits of bariatric operations without its cost and complications.
Collapse
Affiliation(s)
- Sinju Sundaresan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
- Department of Physiology, Midwestern University, Downers Grove, IL
- Corresponding author: Sinju Sundaresan,
| | - Joseph Antoun
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Babak Banan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Jamie Adcock
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Connor Johnson
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Brendan Claire
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Kala Dixon
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Joyce Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Cyndya A. Shibao
- Department of Physiology, Midwestern University, Downers Grove, IL
| | - Naji Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
2
|
Cai S, Kumar R, Singh BR. Clostridial Neurotoxins: Structure, Function and Implications to Other Bacterial Toxins. Microorganisms 2021; 9:2206. [PMID: 34835332 PMCID: PMC8618262 DOI: 10.3390/microorganisms9112206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/20/2023] Open
Abstract
Gram-positive bacteria are ancient organisms. Many bacteria, including Gram-positive bacteria, produce toxins to manipulate the host, leading to various diseases. While the targets of Gram-positive bacterial toxins are diverse, many of those toxins use a similar mechanism to invade host cells and exert their functions. Clostridial neurotoxins produced by Clostridial tetani and Clostridial botulinum provide a classical example to illustrate the structure-function relationship of bacterial toxins. Here, we critically review the recent progress of the structure-function relationship of clostridial neurotoxins, including the diversity of the clostridial neurotoxins, the mode of actions, and the flexible structures required for the activation of toxins. The mechanism clostridial neurotoxins use for triggering their activity is shared with many other Gram-positive bacterial toxins, especially molten globule-type structures. This review also summarizes the implications of the molten globule-type flexible structures to other Gram-positive bacterial toxins. Understanding these highly dynamic flexible structures in solution and their role in the function of bacterial toxins not only fills in the missing link of the high-resolution structures from X-ray crystallography but also provides vital information for better designing antidotes against those toxins.
Collapse
Affiliation(s)
- Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Raj Kumar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA; (R.K.); (B.R.S.)
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA; (R.K.); (B.R.S.)
| |
Collapse
|
3
|
Toxemia in Human Naturally Acquired Botulism. Toxins (Basel) 2020; 12:toxins12110716. [PMID: 33202855 PMCID: PMC7697460 DOI: 10.3390/toxins12110716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Human botulism is a severe disease characterized by flaccid paralysis and inhibition of certain gland secretions, notably salivary secretions, caused by inhibition of neurotransmitter release. Naturally acquired botulism occurs in three main forms: food-borne botulism by ingestion of preformed botulinum neurotoxin (BoNT) in food, botulism by intestinal colonization (infant botulism and intestinal toxemia botulism in infants above one year and adults), and wound botulism. A rapid laboratory confirmation of botulism is required for the appropriate management of patients. Detection of BoNT in the patient's sera is the most direct way to address the diagnosis of botulism. Based on previous published reports, botulinum toxemia was identified in about 70% of food-borne and wound botulism cases, and only in about 28% of infant botulism cases, in which the diagnosis is mainly confirmed from stool sample investigation. The presence of BoNT in serum depends on the BoNT amount ingested with contaminated food or produced locally in the intestine or wound, and the timeframe between serum sampling and disease onset. BoNT levels in patient's sera are most frequently low, requiring a highly sensitive method of detection. Mouse bioassay is still the most used method of botulism identification from serum samples. However, in vitro methods based on BoNT endopeptidase activity with detection by mass spectrometry or immunoassay have been developed and depending on BoNT type, are more sensitive than the mouse bioassay. These new assays show high specificity for individual BoNT types and allow more accurate differentiation between positive toxin sera from botulism and autoimmune neuropathy patients.
Collapse
|
4
|
Fischer S, Ückert AK, Landenberger M, Papatheodorou P, Hoffmann-Richter C, Mittler AK, Ziener U, Hägele M, Schwan C, Müller M, Kleger A, Benz R, Popoff MR, Aktories K, Barth H. Human peptide α-defensin-1 interferes with Clostridioides difficile toxins TcdA, TcdB, and CDT. FASEB J 2020; 34:6244-6261. [PMID: 32190927 DOI: 10.1096/fj.201902816r] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/23/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
The human pathogenic bacterium Clostridioides difficile produces two exotoxins TcdA and TcdB, which inactivate Rho GTPases thereby causing C. difficile-associated diseases (CDAD) including life-threatening pseudomembranous colitis. Hypervirulent strains produce additionally the binary actin ADP-ribosylating toxin CDT. These strains are hallmarked by more severe forms of CDAD and increased frequency and severity. Once in the cytosol, the toxins act as enzymes resulting in the typical clinical symptoms. Therefore, targeting and inactivation of the released toxins are of peculiar interest. Prompted by earlier findings that human α-defensin-1 neutralizes TcdB, we investigated the effects of the defensin on all three C. difficile toxins. Inhibition of TcdA, TcdB, and CDT was demonstrated by analyzing toxin-induced changes in cell morphology, substrate modification, and decrease in transepithelial electrical resistance. Application of α-defensin-1 protected cells and human intestinal organoids from the cytotoxic effects of TcdA, TcdB, CDT, and their combination which is attributed to a direct interaction between the toxins and α-defensin-1. In mice, the application of α-defensin-1 reduced the TcdA-induced damage of intestinal loops in vivo. In conclusion, human α-defensin-1 is a specific and potent inhibitor of the C. difficile toxins and a promising agent to develop novel therapeutic options against C. difficile infections.
Collapse
Affiliation(s)
- Stephan Fischer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Anna-Katharina Ückert
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Marc Landenberger
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | | | | | - Ann-Katrin Mittler
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Ulrich Ziener
- Institute of Organic Chemistry III, Ulm University, Ulm, Germany
| | - Marlen Hägele
- Department of Internal Medicine I, University of Ulm Medical Center, Ulm, Germany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Martin Müller
- Department of Internal Medicine I, University of Ulm Medical Center, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, University of Ulm Medical Center, Ulm, Germany
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Michel R Popoff
- Department of Anaerobic Bacteria, Pasteur Institute, Paris, France
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
5
|
Poulain B, Lemichez E, Popoff MR. Neuronal selectivity of botulinum neurotoxins. Toxicon 2020; 178:20-32. [PMID: 32094099 DOI: 10.1016/j.toxicon.2020.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Botulinum neurotoxins (BoNTs) are highly potent toxins responsible for a severe disease, called botulism. They are also efficient therapeutic tools with an increasing number of indications ranging from neuromuscular dysfunction to hypersecretion syndrome, pain release, depression as well as cosmetic application. BoNTs are known to mainly target the motor-neurons terminals and to induce flaccid paralysis. BoNTs recognize a specific double receptor on neuronal cells consisting of gangliosides and synaptic vesicle protein, SV2 or synaptotagmin. Using cultured neuronal cells, BoNTs have been established blocking the release of a wide variety of neurotransmitters. However, BoNTs are more potent in motor-neurons than in the other neuronal cell types. In in vivo models, BoNT/A impairs the cholinergic neuronal transmission at the motor-neurons but also at neurons controlling secretions and smooth muscle neurons, and blocks several neuronal pathways including excitatory, inhibitory, and sensitive neurons. However, only a few reports investigated the neuronal selectivity of BoNTs in vivo. In the intestinal wall, BoNT/A and BoNT/B target mainly the cholinergic neurons and to a lower extent the other non-cholinergic neurons including serotonergic, glutamatergic, GABAergic, and VIP-neurons. The in vivo effects induced by BoNTs on the non-cholinergic neurons remain to be precisely investigated. We report here a literature review of the neuronal selectivity of BoNTs.
Collapse
Affiliation(s)
- Bernard Poulain
- Université de Strasbourg, CNRS, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | | | | |
Collapse
|
6
|
Rasetti-Escargueil C, Popoff MR. Antibodies and Vaccines against Botulinum Toxins: Available Measures and Novel Approaches. Toxins (Basel) 2019; 11:toxins11090528. [PMID: 31547338 PMCID: PMC6783819 DOI: 10.3390/toxins11090528] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is produced by the anaerobic, Gram-positive bacterium Clostridium botulinum. As one of the most poisonous toxins known and a potential bioterrosism agent, BoNT is characterized by a complex mode of action comprising: internalization, translocation and proteolytic cleavage of a substrate, which inhibits synaptic exocytotic transmitter release at neuro-muscular nerve endings leading to peripheral neuroparalysis of the skeletal and autonomic nervous systems. There are seven major serologically distinct toxinotypes (A-G) of BoNT which act on different substrates. Human botulism is generally caused by BoNT/A, B and E. Due to its extreme lethality and potential use as biological weapon, botulism remains a global public health concern. Vaccination against BoNT, although an effective strategy, remains undesirable due to the growing expectation around therapeutic use of BoNTs in various pathological conditions. This review focuses on the current approaches for botulism control by immunotherapy, highlighting the future challenges while the molecular underpinnings among subtypes variants and BoNT sequences found in non-clostridial species remain to be elucidated.
Collapse
Affiliation(s)
- Christine Rasetti-Escargueil
- Institut Pasteur, Département de Microbiologie, Unité des Toxines Bactériennes, 25 Rue du Docteur Roux, 75015 Paris, France.
| | - Michel R Popoff
- Institut Pasteur, Département de Microbiologie, Unité des Toxines Bactériennes, 25 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
7
|
Pellett S, Tepp WH, Johnson EA. Botulinum neurotoxins A, B, C, E, and F preferentially enter cultured human motor neurons compared to other cultured human neuronal populations. FEBS Lett 2019; 593:2675-2685. [PMID: 31240706 PMCID: PMC7751886 DOI: 10.1002/1873-3468.13508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
Abstract
Human-induced pluripotent stem cell (hiPSC)-derived neurons can be exquisitely sensitive to botulinum neurotoxins (BoNTs), exceeding sensitivity of the traditionally used mouse bioassay. In this report, four defined hiPSC-derived neuronal populations including primarily GABAergic, glutamatergic, dopaminergic, and motor neurons were examined for BoNT/A, B, C, D, E, and F sensitivity. The data indicate that sensitivity varies markedly for the BoNTs tested. Motor neurons are significantly more sensitive than other neuron types for all BoNTs except BoNT/D. Examination of SNARE protein levels and BoNT-specific cell surface protein receptors reveals few differences between the cell types except greater expression levels of the receptor protein SV2C and synapsin-IIa in motor neurons. This indicates that differential toxicity of BoNTs for motor neurons compared to other neuronal cell types involves multiple mechanisms.
Collapse
Affiliation(s)
- Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, WI, USA
| | - William H Tepp
- Department of Bacteriology, University of Wisconsin-Madison, WI, USA
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
8
|
Fujinaga Y, Popoff MR. Translocation and dissemination of botulinum neurotoxin from the intestinal tract. Toxicon 2017; 147:13-18. [PMID: 29074396 DOI: 10.1016/j.toxicon.2017.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/16/2017] [Accepted: 10/22/2017] [Indexed: 12/19/2022]
Abstract
Botulinum neurotoxins (BoNTs) are potent toxins which induce flaccid paralysis by inhibiting the release of acetylcholine at the neuromuscular junctions. They associate with non-toxic proteins (ANTPs or NAPs) to form complexes of various sizes which are resistant to acidic pH and protease degradation. BoNT trafficking from the digestive tract to the target neurons is still a matter of debate. BoNTs use different strategies to pass through the intestinal barrier including passage of BoNT complexes containing hemagglutinins (HAs) via M cells, HA-dependent perturbation of E-cadherin intercellular junctions between enterocytes and paracellular passage of BoNT complexes, and transcytosis of BoNT free of NAPs through certain intestinal epithelial cells. Then, BoNTs target neuronal cells, preferentially cholinergic neurons, in the intestinal mucosa and submucosa. The precise mode of BoNT dissemination until the final target neuro-muscular junctions is still elusive.
Collapse
Affiliation(s)
- Yukako Fujinaga
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Michel R Popoff
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France.
| |
Collapse
|
9
|
Rasetti-Escargueil C, Avril A, Miethe S, Mazuet C, Derman Y, Selby K, Thullier P, Pelat T, Urbain R, Fontayne A, Korkeala H, Sesardic D, Hust M, Popoff MR. The European AntibotABE Framework Program and Its Update: Development of Innovative Botulinum Antibodies. Toxins (Basel) 2017; 9:toxins9100309. [PMID: 28974033 PMCID: PMC5666356 DOI: 10.3390/toxins9100309] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023] Open
Abstract
The goal of the AntiBotABE Program was the development of recombinant antibodies that neutralize botulinum neurotoxins (BoNT) A, B and E. These serotypes are lethal and responsible for most human botulinum cases. To improve therapeutic efficacy, the heavy and light chains (HC and LC) of the three BoNT serotypes were targeted to achieve a synergistic effect (oligoclonal antibodies). For antibody isolation, macaques were immunized with the recombinant and non-toxic BoNT/A, B or E, HC or LC, followed by the generation of immune phage-display libraries. Antibodies were selected from these libraries against the holotoxin and further analyzed in in vitro and ex vivo assays. For each library, the best ex vivo neutralizing antibody fragments were germline-humanized and expressed as immunoglobulin G (IgGs). The IgGs were tested in vivo, in a standardized model of protection, and challenged with toxins obtained from collections of Clostridium strains. Protective antibody combinations against BoNT/A and BoNT/B were evidenced and for BoNT/E, the anti-LC antibody alone was found highly protective. The combination of these five antibodies as an oligoclonal antibody cocktail can be clinically and regulatorily developed while their high “humanness” predicts a high tolerance in humans.
Collapse
Affiliation(s)
| | - Arnaud Avril
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de Biotechnologie des Anticorps et Des Toxins, Cedex 38702 La Tronche, France.
- Institut de Recherche Biomédicale des Armées (IRBA), Département des Maladies Infectieuses, Unité Biothérapies anti-Infectieuses et Immunité, 1 Place du Général Valérie André, BP73, 91220 Brétigny-sur-Orge, France.
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany and YUMAB GmbH, Rebenring 33, Braunschweig 38106, Germany.
| | - Christelle Mazuet
- Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 Avenue du Docteur Roux, 75015 Paris, France.
| | - Yagmur Derman
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Katja Selby
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Philippe Thullier
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de Biotechnologie des Anticorps et Des Toxins, Cedex 38702 La Tronche, France.
| | - Thibaut Pelat
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de Biotechnologie des Anticorps et Des Toxins, Cedex 38702 La Tronche, France.
- BIOTEM, Parc d'activité Bièvre Dauphine 885, Rue Alphonse Gourju, 38140 Apprieu, France.
| | - Remi Urbain
- LFB Biotechnologies, Therapeutic Innovation Department, 59, Rue de Trévise, BP 2006-59011 Lille Cedex, France.
- Ecdysis Pharma, Bioincubateur Eurasanté, 70 Rue du Dr Yersin, 59120 Loos, France.
| | - Alexandre Fontayne
- LFB Biotechnologies, Therapeutic Innovation Department, 59, Rue de Trévise, BP 2006-59011 Lille Cedex, France.
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Dorothea Sesardic
- National Institute for Biological Standards and Control (NIBSC), a Center of the Medicines and Healthcare Products Regulatory Agency, Division of Bacteriology, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany and YUMAB GmbH, Rebenring 33, Braunschweig 38106, Germany.
| | - Michel R Popoff
- Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 Avenue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
10
|
Connan C, Voillequin M, Chavez CV, Mazuet C, Leveque C, Vitry S, Vandewalle A, Popoff MR. Botulinum neurotoxin type B uses a distinct entry pathway mediated by CDC42 into intestinal cells versus neuronal cells. Cell Microbiol 2017; 19. [PMID: 28296078 DOI: 10.1111/cmi.12738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/15/2022]
Abstract
Botulinum neurotoxins (BoNTs) are responsible for severe flaccid paralysis by inhibiting the release of acetylcholine at the neuromuscular junctions. BoNT type B (BoNT/B) most often induces mild forms of botulism with predominant dysautonomic symptoms. In food borne botulism and botulism by intestinal colonisation such as infant botulism, which are the most frequent naturally acquired forms of botulism, the digestive tract is the main entry route of BoNTs into the organism. We previously showed that BoNT/B translocates through mouse intestinal barrier by an endocytosis-dependent mechanism and subsequently targets neuronal cells, mainly cholinergic neurons, in the intestinal mucosa and musculosa. Here, we investigated the entry pathway of BoNT/B using fluorescent C-terminal domain of the heavy chain (HcB), which is involved in the binding to specific receptor(s) and entry process into target cells. While the combination of gangliosides GD1a /GD1b /GT1b and synaptotagmin I and to a greater extent synaptotagmin II constitutes the functional HcB receptor on NG108-15 neuronal cells, HcB only uses the gangliosides GD1a /GD1b /GT1b to efficiently bind to m-ICcl2 intestinal cells. HcB enters both cell types by a dynamin-dependent endocytosis, which is efficiently prevented by Dynasore, a dynamin inhibitor, and reaches a common early endosomal compartment labeled by early endosome antigen (EEA1). In contrast to neuronal cells, HcB uses a Cdc42-dependent pathway to enter intestinal cells. Then, HcB is transported to late endosomes in neuronal cells, whereas it exploits a nonacidified pathway from apical to basal lateral side of m-ICcl2 cells supporting a transcytotic route in epithelial intestinal cells.
Collapse
Affiliation(s)
- Chloé Connan
- Bactéries anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Marie Voillequin
- Bactéries anaérobies et Toxines, Institut Pasteur, Paris, France
| | | | | | - Christian Leveque
- INSERM, UMR_S 1072 (UNIS), Faculté de Médecine -Secteur Nord, Aix Marseille Université, Marseille, France
| | - Sandrine Vitry
- Neuro-Immunologie Virale, Institut Pasteur, Paris, France
| | | | - Michel R Popoff
- Bactéries anaérobies et Toxines, Institut Pasteur, Paris, France
| |
Collapse
|
11
|
Connan C, Popoff MR. Uptake of Clostridial Neurotoxins into Cells and Dissemination. Curr Top Microbiol Immunol 2017; 406:39-78. [PMID: 28879524 DOI: 10.1007/82_2017_50] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clostridial neurotoxins, botulinum neurotoxins (BoNT) and tetanus neurotoxin (TeNT), are potent toxins, which are responsible for severe neurological diseases in man and animals. BoNTs induce a flaccid paralysis (botulism) by inhibiting acetylcholine release at the neuromuscular junctions, whereas TeNT causes a spastic paralysis (tetanus) by blocking the neurotransmitter release (glycine, GABA) in inhibitory interneurons within the central nervous system. Clostridial neurotoxins recognize specific receptor(s) on the target neuronal cells and enter via a receptor-mediated endocytosis. They transit through an acidic compartment which allows the translocation of the catalytic chain into the cytosol, a prerequisite step for the intracellular activity of the neurotoxins. TeNT migrates to the central nervous system by using a motor neuron as transport cell. TeNT enters a neutral pH compartment and undergoes a retrograde axonal transport to the spinal cord or brain, where the whole undissociated toxin is delivered and interacts with target neurons. Botulism most often results from ingestion of food contaminated with BoNT. Thus, BoNT passes through the intestinal epithelial barrier mainly via a transcytotic mechanism and then diffuses or is transported to the neuromuscular junctions by the lymph or blood circulation. Indeed, clostridial neurotoxins are specific neurotoxins which transit through a transport cell to gain access to the target neuron, and use distinct trafficking pathways in both cell types.
Collapse
Affiliation(s)
- Chloé Connan
- Unité Des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Rue Du Dr Roux, 75724, Paris Cedex 15, France
| | - Michel R Popoff
- Unité Des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Rue Du Dr Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
12
|
Lam TI, Tam CC, Stanker LH, Cheng LW. Probiotic Microorganisms Inhibit Epithelial Cell Internalization of Botulinum Neurotoxin Serotype A. Toxins (Basel) 2016; 8:toxins8120377. [PMID: 27999281 PMCID: PMC5198571 DOI: 10.3390/toxins8120377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/10/2016] [Accepted: 12/13/2016] [Indexed: 01/02/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are some of the most poisonous natural toxins known to man and are threats to public health and safety. Previous work from our laboratory showed that both BoNT serotype A complex and holotoxin can bind and transit through the intestinal epithelia to disseminate in the blood. The timing of BoNT/A toxin internalization was shown to be comparable in both the Caco-2 in vitro cell culture and in the oral mouse intoxication models. Probiotic microorganisms have been extensively studied for their beneficial effects in not only maintaining the normal gut mucosa but also protection from allergens, pathogens, and toxins. In this study, we evaluate whether probiotic microorganisms will block BoNT/A uptake in the in vitro cell culture system using Caco-2 cells. Several probiotics tested (Saccharomyces boulardii, Lactobacillus acidophilus, Lactobacillus rhamnosus LGG, and Lactobacillus reuteri) blocked BoNT/A uptake in a dose-dependent manner whereas a non-probiotic strain of Escherichia coli did not. We also showed that inhibition of BoNT/A uptake was not due to the degradation of BoNT/A nor by sequestration of toxin via binding to probiotics. These results show for the first time that probiotic treatment can inhibit BoNT/A binding and internalization in vitro and may lead to the development of new therapies.
Collapse
Affiliation(s)
- Tina I Lam
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Christina C Tam
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Larry H Stanker
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| |
Collapse
|