1
|
Dessenne C, Mariller C, Vidal O, Huvent I, Guerardel Y, Elass-Rochard E, Rossez Y. Glycan-mediated adhesion mechanisms in antibiotic-resistant bacteria. BBA ADVANCES 2025; 7:100156. [PMID: 40207210 PMCID: PMC11979486 DOI: 10.1016/j.bbadva.2025.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Bacterial adhesins play a central role in host-pathogen interactions, with many specifically targeting glycans to mediate bacterial colonization, influence infection dynamics, and evade host immune responses. In this review, we focus on bacterial pathogens identified by the World Health Organization as critical threats to public health and in urgent need of new treatments. We summarize glycoconjugate targets identified in the literature across 19 bacterial genera and species. This comprehensive review provides a foundation for the development of innovative therapeutic strategies to effectively combat these pathogens.
Collapse
Affiliation(s)
- Clara Dessenne
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Christophe Mariller
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Olivier Vidal
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Isabelle Huvent
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yann Guerardel
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Elisabeth Elass-Rochard
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
2
|
Lv B, Huang S, Huang H, Niu N, Liu J. Endothelial Glycocalyx Injury in SARS-CoV-2 Infection: Molecular Mechanisms and Potential Targeted Therapy. Mediators Inflamm 2023; 2023:6685251. [PMID: 37674786 PMCID: PMC10480029 DOI: 10.1155/2023/6685251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
This review aims at summarizing state-of-the-art knowledge on glycocalyx and SARS-CoV-2. The endothelial glycocalyx is a dynamic grid overlying the surface of the endothelial cell (EC) lumen and consists of membrane-bound proteoglycans and glycoproteins. The role of glycocalyx has been determined in the regulation of EC permeability, adhesion, and coagulation. SARS-CoV-2 is an enveloped, single-stranded RNA virus belonging to β-coronavirus that causes the outbreak and the pandemic of COVID-19. Through the respiratory tract, SARS-CoV-2 enters blood circulation and interacts with ECs possessing angiotensin-converting enzyme 2 (ACE2). Intact glycolyx prevents SARS-CoV-2 invasion of ECs. When the glycocalyx is incomplete, virus spike protein of SARS-CoV-2 binds with ACE2 and enters ECs for replication. In addition, cytokine storm targets glycocalyx, leading to subsequent coagulation disorder. Therefore, it is intriguing to develop a novel treatment for SARS-CoV-2 infection through the maintenance of the integrity of glycocalyx. This review aims to summarize state-of-the-art knowledge of glycocalyx and its potential function in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Bingxuan Lv
- The Second Hospital of Shandong University, Shandong University, 247 Beiyuan Street, Jinan 250033, China
| | - Shengshi Huang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| | - Hong Huang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| | - Na Niu
- Department of Pediatrics, Shandong Provincial Hospital, Shandong First Medical University, 324 Jingwu Road, Jinan 250021, China
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| |
Collapse
|
3
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
4
|
Hayashida K, Aquino RS, Park PW. Coreceptor Functions of Cell Surface Heparan Sulfate Proteoglycans. Am J Physiol Cell Physiol 2022; 322:C896-C912. [PMID: 35319900 PMCID: PMC9109798 DOI: 10.1152/ajpcell.00050.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Receptor-ligand interactions play an important role in many biological processes by triggering specific cellular responses. These interactions are frequently regulated by coreceptors that facilitate, alter, or inhibit signaling. Coreceptors work in parallel with other specific and accessory molecules to coordinate receptor-ligand interactions. Cell surface heparan sulfate proteoglycans (HSPGs) function as unique coreceptors because they can bind to many ligands and receptors through their HS and core protein motifs. Cell surface HSPGs are typically expressed in abundance of the signaling receptors and, thus, are capable of mediating the initial binding of ligands to the cell surface. HSPG coreceptors do not possess kinase domains or intrinsic enzyme activities and, for the most part, binding to cell surface HSPGs does not directly stimulate intracellular signaling. Because of these features, cell surface HSPGs primarily function as coreceptors for many receptor-ligand interactions. Given that cell surface HSPGs are widely conserved, they likely serve fundamental functions to preserve basic physiological processes. Indeed, cell surface HSPGs can support specific cellular interactions with growth factors, morphogens, chemokines, extracellular matrix (ECM) components, and microbial pathogens and their secreted virulence factors. Through these interactions, HSPG coreceptors regulate cell adhesion, proliferation, migration and differentiation, and impact the onset, progression, and outcome of pathophysiological processes, such as development, tissue repair, inflammation, infection, and tumorigenesis. This review seeks to provide an overview of the various mechanisms of how cell surface HSPGs function as coreceptors.
Collapse
Affiliation(s)
- Kazutaka Hayashida
- Department of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Rafael S Aquino
- Department of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Pyong Woo Park
- Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
de Waal AM, Hiemstra PS, Ottenhoff TH, Joosten SA, van der Does AM. Lung epithelial cells interact with immune cells and bacteria to shape the microenvironment in tuberculosis. Thorax 2022; 77:408-416. [PMID: 35017314 PMCID: PMC8938665 DOI: 10.1136/thoraxjnl-2021-217997] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022]
Abstract
The lung epithelium has long been overlooked as a key player in tuberculosis disease. In addition to acting as a direct barrier to Mycobacterium tuberculosis (Mtb), epithelial cells (EC) of the airways and alveoli act as first responders during Mtb infections; they directly sense and respond to Mtb by producing mediators such as cytokines, chemokines and antimicrobials. Interactions of EC with innate and adaptive immune cells further shape the immune response against Mtb. These three essential components, epithelium, immune cells and Mtb, are rarely studied in conjunction, owing in part to difficulties in coculturing them. Recent advances in cell culture technologies offer the opportunity to model the lung microenvironment more closely. Herein, we discuss the interplay between lung EC, immune cells and Mtb and argue that modelling these interactions is of key importance to unravel early events during Mtb infection.
Collapse
Affiliation(s)
- Amy M de Waal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom Hm Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Wen D, Cui J, Li P, Xiong Q, Chen G, Wu C. Syndecan-4 assists Mycobacterium tuberculosis entry into lung epithelial cells by regulating the Cdc42, N-WASP, and Arp2/3 signaling pathways. Microbes Infect 2022; 24:104931. [PMID: 35026388 DOI: 10.1016/j.micinf.2022.104931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/14/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022]
Abstract
Syndecan-4 (SDC4) is a transmembrane heparin sulfate proteoglycan that regulates inflammatory responses, cell motility, cell adhesion and intracellular signaling. In this study, we found that overexpression of SDC4 promoted the infection efficiency of Mycobacterium tuberculosis (Mtb), whereas knockdown of SDC4 reduced the infection efficiency, suggesting that SDC4 assisted Mtb infection of epithelial cells. We also observed that Mtb infection affected the F-actin/G-actin ratio, which was also correlated with SDC4 expression levels. Analysis of the Cdc42, N-WASP, and Arp2/3 signaling pathways during Mtb infection revealed that knockdown of Cdc42 and N-WASP or the addition of ZCL278, Wiskostatin or CK636 (blockers of Cdc42, N-WASP, and Arp2/3, respectively) significantly exacerbated Mtb infection in lung epithelial cells. Taken together, our data indicate that SDC4 assists Mtb infection of epithelial cells by regulating the Cdc42, N-WASP, and Arp2/3 signaling pathways, which regulate the polymerization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Da Wen
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Jia Cui
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; Department of Microbiology, Changzhi Medical College, Changzhi 046000, China
| | - Ping Li
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Qiuhong Xiong
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Guangxin Chen
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China.
| | - Changxin Wu
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; Key Lab of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan 030006, China; The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases, Taiyuan 030006, Shanxi, China.
| |
Collapse
|
7
|
Abstract
Cell surface proteoglycans, such as syndecans and glypicans, regulate molecular interactions that mediate cell adhesion, migration, proliferation, and differentiation. Through these activities, surface proteoglycans modulate critical biological processes of development, inflammation, infection, tissue repair, and cancer metastasis. Proteoglycans are unique glycoproteins comprised of one or several glycosaminoglycans attached covalently to core proteins. Glycosaminoglycans mediate the majority of ligand-binding functions of proteoglycans. Accumulating evidence indicates that surface proteoglycans regulate the onset, progression, and outcome of lung diseases, including lung injury, infection, fibrosis, and cancer. This article will review key features of surface proteoglycan biology in lung health and disease.
Collapse
|
8
|
Palacios-Rápalo SN, De Jesús-González LA, Cordero-Rivera CD, Farfan-Morales CN, Osuna-Ramos JF, Martínez-Mier G, Quistián-Galván J, Muñoz-Pérez A, Bernal-Dolores V, del Ángel RM, Reyes-Ruiz JM. Cholesterol-Rich Lipid Rafts as Platforms for SARS-CoV-2 Entry. Front Immunol 2021; 12:796855. [PMID: 34975904 PMCID: PMC8719300 DOI: 10.3389/fimmu.2021.796855] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Since its appearance, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), the causal agent of Coronavirus Disease 2019 (COVID-19), represents a global problem for human health that involves the host lipid homeostasis. Regarding, lipid rafts are functional membrane microdomains with highly and tightly packed lipid molecules. These regions enriched in sphingolipids and cholesterol recruit and concentrate several receptors and molecules involved in pathogen recognition and cellular signaling. Cholesterol-rich lipid rafts have multiple functions for viral replication; however, their role in SARS-CoV-2 infection remains unclear. In this review, we discussed the novel evidence on the cholesterol-rich lipid rafts as a platform for SARS-CoV-2 entry, where receptors such as the angiotensin-converting enzyme-2 (ACE-2), heparan sulfate proteoglycans (HSPGs), human Toll-like receptors (TLRs), transmembrane serine proteases (TMPRSS), CD-147 and HDL-scavenger receptor B type 1 (SR-B1) are recruited for their interaction with the viral spike protein. FDA-approved drugs such as statins, metformin, hydroxychloroquine, and cyclodextrins (methyl-β-cyclodextrin) can disrupt cholesterol-rich lipid rafts to regulate key molecules in the immune signaling pathways triggered by SARS-CoV-2 infection. Taken together, better knowledge on cholesterol-rich lipid rafts in the SARS-CoV-2-host interactions will provide valuable insights into pathogenesis and the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Gustavo Martínez-Mier
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Judith Quistián-Galván
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Armando Muñoz-Pérez
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Víctor Bernal-Dolores
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Rosa María del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| |
Collapse
|
9
|
Parada C, Neri-Badillo IC, Vallecillo AJ, Segura E, Silva-Miranda M, Guzmán-Gutiérrez SL, Ortega PA, Coronado-Aceves EW, Cancino-Villeda L, Torres-Larios A, Aceves Sánchez MDJ, Flores Valdez MA, Espitia C. New Insights into the Methylation of Mycobacterium tuberculosis Heparin Binding Hemagglutinin Adhesin Expressed in Rhodococcus erythropolis. Pathogens 2021; 10:pathogens10091139. [PMID: 34578171 PMCID: PMC8467707 DOI: 10.3390/pathogens10091139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
In recent years, knowledge of the role that protein methylation is playing on the physiopathogenesis of bacteria has grown. In Mycobacterium tuberculosis, methylation of the heparin binding hemagglutinin adhesin modulates the immune response, making this protein a subunit vaccine candidate. Through its C-terminal lysine-rich domain, this surface antigen interacts with heparan sulfate proteoglycans present in non-phagocytic cells, leading to extrapulmonary dissemination of the pathogen. In this study, the adhesin was expressed as a recombinant methylated protein in Rhodococcus erythropolis L88 and it was found associated to lipid droplets when bacteria were grown under nitrogen limitation. In order to delve into the role methylation could have in host–pathogen interactions, a comparative analysis was carried out between methylated and unmethylated protein produced in Escherichia coli. We found that methylation had an impact on lowering protein isoelectric point, but no differences between the proteins were found in their capacity to interact with heparin and A549 epithelial cells. An important finding was that HbhA is a Fatty Acid Binding Protein and differences in the conformational stability of the protein in complex with the fatty acid were observed between methylated and unmethylated protein. Together, these results suggest that the described role for this mycobacteria protein in lipid bodies formation could be related to its capacity to transport fatty acids. Obtained results also provide new clues about the role HbhA methylation could have in tuberculosis and point out the importance of having heterologous expression systems to obtain modified proteins.
Collapse
Affiliation(s)
- Cristina Parada
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
| | - Isabel Cecilia Neri-Badillo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
| | - Antonio J. Vallecillo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
- Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca 010220, Ecuador
| | - Erika Segura
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
| | - Mayra Silva-Miranda
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
- Consejo Nacional de Ciencia y Tecnología, CONACyT, Ciudad de México 03940, Mexico
| | - Silvia Laura Guzmán-Gutiérrez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
- Consejo Nacional de Ciencia y Tecnología, CONACyT, Ciudad de México 03940, Mexico
| | - Paola A. Ortega
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
| | - Enrique Wenceslao Coronado-Aceves
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
| | - Laura Cancino-Villeda
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
| | - Alfredo Torres-Larios
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Michel de Jesús Aceves Sánchez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Mexico; (M.d.J.A.S.); (M.A.F.V.)
| | - Mario Alberto Flores Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Mexico; (M.d.J.A.S.); (M.A.F.V.)
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
- Correspondence:
| |
Collapse
|
10
|
Contribution of Syndecans to the Cellular Entry of SARS-CoV-2. Int J Mol Sci 2021; 22:ijms22105336. [PMID: 34069441 PMCID: PMC8159090 DOI: 10.3390/ijms22105336] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/13/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel emerging pathogen causing an unprecedented pandemic in 21st century medicine. Due to the significant health and economic burden of the current SARS-CoV-2 outbreak, there is a huge unmet medical need for novel interventions effectively blocking SARS-CoV-2 infection. Unknown details of SARS-CoV-2 cellular biology hamper the development of potent and highly specific SARS-CoV-2 therapeutics. Angiotensin-converting enzyme-2 (ACE2) has been reported to be the primary receptor for SARS-CoV-2 cellular entry. However, emerging scientific evidence suggests the involvement of additional membrane proteins, such as heparan sulfate proteoglycans, in SARS-CoV-2 internalization. Here, we report that syndecans, the evolutionarily conserved family of transmembrane proteoglycans, facilitate the cellular entry of SARS-CoV-2. Among syndecans, the lung abundant syndecan-4 was the most efficient in mediating SARS-CoV-2 uptake. The S1 subunit of the SARS-CoV-2 spike protein plays a dominant role in the virus's interactions with syndecans. Besides the polyanionic heparan sulfate chains, other parts of the syndecan ectodomain, such as the cell-binding domain, also contribute to the interaction with SARS-CoV-2. During virus internalization, syndecans colocalize with ACE2, suggesting a jointly shared internalization pathway. Both ACE2 and syndecan inhibitors exhibited significant efficacy in reducing the cellular entry of SARS-CoV-2, thus supporting the complex nature of internalization. Data obtained on syndecan specific in vitro assays present syndecans as novel cellular targets of SARS-CoV-2 and offer molecularly precise yet simple strategies to overcome the complex nature of SARS-CoV-2 infection.
Collapse
|
11
|
Yang J, Qin H, Chai Y, zhang P, Chen Y, Yang K, Qin M, Zhang Y, Xia H, Ren L, Yu B. Molecular mechanisms of osteogenesis and antibacterial activity of Cu-bearing Ti alloy in a bone defect model with infection in vivo. J Orthop Translat 2021; 27:77-89. [PMID: 33437640 PMCID: PMC7779545 DOI: 10.1016/j.jot.2020.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/03/2020] [Accepted: 10/08/2020] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE The antibacterial activity of copper (Cu)-alloy biomaterials has shown a great potential in clinical application. Here, we evaluated the osteogenesis and antibacterial effects of Ti6Al4V-6.5wt%Cu alloy in an in vivo model of infected bone defects and determine their responsible proteins and pathways using proteomics. METHODS After bone defects were filled with Ti6Al4V and Ti6Al4V-6.5wt%Cu implants for 6 week, the tissue and bone samples around the implants were harvested for radiographic, micro-CT, histological, and bone-related gene expression analyses. An iTRAQ-based protein identification/quantification approach was used to analyze the osteogenic and antibacterial effects of Ti6Al4V-6.5wt%Cu alloy. RESULTS Imaging and histological results showed Ti6Al4V alloy induced a stronger inflammatory response than Ti6Al4V-6.5wt%Cu alloy; imaging results and osteogenic protein levels showed Ti6Al4V-6.5wt%Cu alloy exerted a stronger osteogenic effect. In vitro experiment, we found the Ti6Al4V-6.5wt%Cu had significant antibacterial effects and inhibited the activity of Staphylococcus aureus in the early stage. In addition, the bacterial biofilm formed in Ti6Al4V-6.5wt%Cu group was significantly lower than that in Ti6Al4V group. Proteomic screening of 4279 proteins resulted in 35 differentially expressed proteins for further examination which were mainly associated with the cellular process, metabolic process, stimulus response, and cellular component organization. In further exploration of the mechanism of osteogenic mineralization of Ti6Al4V-6.5wt%Cu alloy, we found out SDC4 and AGRN were the top two target proteins associated with osteogenic differentiation and bone mineralization. CONCLUSION Ti6Al4V-6.5wt%Cu alloy shows a great potential as a bone implant material due to its positive effects against bacterial infection and on bone formation. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE At present, titanium alloys and other non-antibacterial metal materials are used in orthopedic internal fixation operations. Our study demonstrates that Ti6Al4V-6.5wt%Cu alloy has good antibacterial and osteogenic effects in vivo and in vitro. This means that Ti6Al4V-6.5wt%Cu alloy may become a new kind of antimicrobial metallic material as internal fixation material to continuously exert its antimicrobial effects and reduce the infection rate after clinical internal fixation.
Collapse
Key Words
- AGRN, Agrin
- ALP, alkaline phosphatase
- Antibacterial
- BV, bone volume
- Bone defect
- DEPs, differentially expressed proteins
- EDTA, Ethylene Diamine Tetraacetic Acid
- ESI, Electrospray Ionization
- LC, Liquid Chromatography
- OCN, osteocalcin
- OPN, osteopontin
- Osteogenesis
- PPI, protein-to-protein interacting
- S. Aureus, staphylococcus aureus
- SCX, Strong Cation Exchange
- SDC4, Syndecan 4
- SEM, scanning electron microscope
- TV, tissue volume
- Tb.N, trabecular number
- Tb.Sp, trabecular separation
- Tb.Th, trabecular thickness
- Ti6Al4V-6.5wt%Cu alloy
- UV, ultraviolet
- XRD, X-Ray Diffraction
- cfu, colony-forming unit
- hBMSCs, human bone marrow stromal cells
- iTRAQ, isobaric Tags for Relative and Absolute Quantitation
- isobaric tags for relative and absolute quantification(iTRAQ) analysis
- micro-CT, microcomputed tomography
- pAGC, predictive Automatic Gain Control
Collapse
Affiliation(s)
- Jun Yang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
- Department of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Guangzhou 510010, China
| | - Hanjun Qin
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yu Chai
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ping zhang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yirong Chen
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Min Qin
- School of Public Health, Experimental Teaching Center of Preventive Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yifang Zhang
- Editorial Office, Chinese Journal of Orthopaedic Trauma, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Hong Xia
- Department of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command of PLA, Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Guangzhou 510010, China
| | - Ling Ren
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bin Yu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
12
|
Abreu R, Giri P, Quinn F. Host-Pathogen Interaction as a Novel Target for Host-Directed Therapies in Tuberculosis. Front Immunol 2020; 11:1553. [PMID: 32849525 PMCID: PMC7396704 DOI: 10.3389/fimmu.2020.01553] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) has been a transmittable human disease for many thousands of years, and M. tuberculosis is again the number one cause of death worldwide due to a single infectious agent. The intense 6- to 10-month process of multi-drug treatment, combined with the adverse side effects that can run the spectrum from gastrointestinal disturbances to liver toxicity or peripheral neuropathy are major obstacles to patient compliance and therapy completion. The consequent increase in multidrug resistant TB (MDR-TB) and extensively drug resistant TB (XDR-TB) cases requires that we increase our arsenal of effective drugs, particularly novel therapeutic approaches. Over the millennia, host and pathogen have evolved mechanisms and relationships that greatly influence the outcome of infection. Understanding these evolutionary interactions and their impact on bacterial clearance or host pathology will lead the way toward rational development of new therapeutics that favor enhancing a host protective response. These host-directed therapies have recently demonstrated promising results against M. tuberculosis, adding to the effectiveness of currently available anti-mycobacterial drugs that directly kill the organism or slow mycobacterial replication. Here we review the host-pathogen interactions during M. tuberculosis infection, describe how M. tuberculosis bacilli modulate and evade the host immune system, and discuss the currently available host-directed therapies that target these bacterial factors. Rather than provide an exhaustive description of M. tuberculosis virulence factors, which falls outside the scope of this review, we will instead focus on the host-pathogen interactions that lead to increased bacterial growth or host immune evasion, and that can be modulated by existing host-directed therapies.
Collapse
Affiliation(s)
| | | | - Fred Quinn
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
13
|
Rodrigues TS, Conti BJ, Fraga-Silva TFDC, Almeida F, Bonato VLD. Interplay between alveolar epithelial and dendritic cells and Mycobacterium tuberculosis. J Leukoc Biol 2020; 108:1139-1156. [PMID: 32620048 DOI: 10.1002/jlb.4mr0520-112r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
The innate response plays a crucial role in the protection against tuberculosis development. Moreover, the initial steps that drive the host-pathogen interaction following Mycobacterium tuberculosis infection are critical for the development of adaptive immune response. As alveolar Mϕs, airway epithelial cells, and dendritic cells can sense the presence of M. tuberculosis and are the first infected cells. These cells secrete mediators, which generate inflammatory signals that drive the differentiation and activation of the T lymphocytes necessary to clear the infection. Throughout this review article, we addressed the interaction between epithelial cells and M. tuberculosis, as well as the interaction between dendritic cells and M. tuberculosis. The understanding of the mechanisms that modulate those interactions is critical to have a complete view of the onset of an infection and may be useful for the development of dendritic cell-based vaccine or immunotherapies.
Collapse
Affiliation(s)
- Tamara Silva Rodrigues
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Bruno José Conti
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Thais Fernanda de Campos Fraga-Silva
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fausto Almeida
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Vânia Luiza Deperon Bonato
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
14
|
Rodrigues TS, Alvarez ARP, Gembre AF, Forni MFPDAD, de Melo BMS, Alves Filho JCF, Câmara NOS, Bonato VLD. Mycobacterium tuberculosis-infected alveolar epithelial cells modulate dendritic cell function through the HIF-1α-NOS2 axis. J Leukoc Biol 2020; 108:1225-1238. [PMID: 32557929 DOI: 10.1002/jlb.3ma0520-113r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 01/03/2023] Open
Abstract
Tuberculosis kills more than 1 million people every year, and its control depends on the effective mechanisms of innate immunity, with or without induction of adaptive immune response. We investigated the interaction of type II alveolar epithelial cells (AEC-II) infected by Mycobacterium tuberculosis with dendritic cells (DCs). We hypothesized that the microenvironment generated by this interaction is critical for the early innate response against mycobacteria. We found that AEC-II infected by M. tuberculosis induced DC maturation, which was negatively regulated by HIF-1α-inducible NOS2 axis, and switched DC metabolism from an early and short peak of glycolysis to a low energetic status. However, the infection of DCs by M. tuberculosis up-regulated NOS2 expression and inhibited AEC-II-induced DC maturation. Our study demonstrated, for the first time, that HIF-1α-NOS2 axis plays a negative role in the maturation of DCs during M. tuberculosis infection. Such modulation might be useful for the exploitation of molecular targets to develop new therapeutic strategies against tuberculosis.
Collapse
Affiliation(s)
- Tamara Silva Rodrigues
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Ana Flávia Gembre
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Bruno Marcel Silva de Melo
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Niels Olsen Saraiva Câmara
- Transplantation Immunology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vânia Luiza Deperon Bonato
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
15
|
Ryndak MB, Laal S. Mycobacterium tuberculosis Primary Infection and Dissemination: A Critical Role for Alveolar Epithelial Cells. Front Cell Infect Microbiol 2019; 9:299. [PMID: 31497538 PMCID: PMC6712944 DOI: 10.3389/fcimb.2019.00299] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/02/2019] [Indexed: 12/28/2022] Open
Abstract
Globally, tuberculosis (TB) has reemerged as a major cause of morbidity and mortality, despite the use of the Mycobacterium bovis BCG vaccine and intensive attempts to improve upon BCG or develop new vaccines. Two lacunae in our understanding of the Mycobacterium tuberculosis (M. tb)-host pathogenesis have mitigated the vaccine efforts; the bacterial-host interaction that enables successful establishment of primary infection and the correlates of protection against TB. The vast majority of vaccine efforts are based on the premise that cell-mediated immunity (CMI) is the predominating mode of protection against TB. However, studies in animal models and in humans demonstrate that post-infection, a period of several weeks precedes the initiation of CMI during which the few inhaled bacteria replicate dramatically and disseminate systemically. The “Trojan Horse” mechanism, wherein M. tb is phagocytosed and transported across the alveolar barrier by infected alveolar macrophages has been long postulated as the sole, primary M. tb:host interaction. In the current review, we present evidence from our studies of transcriptional profiles of M. tb in sputum as it emerges from infectious patients where the bacteria are in a quiescent state, to its adaptations in alveolar epithelial cells where the bacteria transform to a highly replicative and invasive phenotype, to its maintenance of the invasive phenotype in whole blood to the downregulation of invasiveness upon infection of epithelial cells at an extrapulmonary site. Evidence for this alternative mode of infection and dissemination during primary infection is supported by in vivo, in vitro cell-based, and transcriptional studies from multiple investigators in recent years. The proposed alternative mechanism of primary infection and dissemination across the alveolar barrier parallels our understanding of infection and dissemination of other Gram-positive pathogens across their relevant mucosal barriers in that barrier-specific adhesins, toxins, and enzymes synergize to facilitate systemic establishment of infection prior to the emergence of CMI. Further exploration of this M. tb:non-phagocytic cell interaction can provide alternative approaches to vaccine design to prevent infection with M. tb and not only decrease clinical disease but also decrease the overwhelming reservoir of latent TB infection.
Collapse
Affiliation(s)
- Michelle B Ryndak
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Suman Laal
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
16
|
Carow B, Hauling T, Qian X, Kramnik I, Nilsson M, Rottenberg ME. Spatial and temporal localization of immune transcripts defines hallmarks and diversity in the tuberculosis granuloma. Nat Commun 2019; 10:1823. [PMID: 31015452 PMCID: PMC6479067 DOI: 10.1038/s41467-019-09816-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/02/2019] [Indexed: 01/04/2023] Open
Abstract
Granulomas are the pathological hallmark of tuberculosis (TB) and the niche where bacilli can grow and disseminate or the immunological microenvironment in which host cells interact to prevent bacterial dissemination. Here we show 34 immune transcripts align to the morphology of lung sections from Mycobacterium tuberculosis-infected mice at cellular resolution. Colocalizing transcript networks at <10 μm in C57BL/6 mouse granulomas increase complexity with time after infection. B-cell clusters develop late after infection. Transcripts from activated macrophages are enriched at subcellular distances from M. tuberculosis. Encapsulated C3HeB/FeJ granulomas show necrotic centers with transcripts associated with immunosuppression (Foxp3, Il10), whereas those in the granuloma rims associate with activated T cells and macrophages. We see highly diverse networks with common interactors in similar lesions. Different immune landscapes of M. tuberculosis granulomas depending on the time after infection, the histopathological features of the lesion, and the proximity to bacteria are here defined.
Collapse
Affiliation(s)
- Berit Carow
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Thomas Hauling
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65, Solna, Sweden
| | - Xiaoyan Qian
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65, Solna, Sweden
| | - Igor Kramnik
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, 02118, USA
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65, Solna, Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
17
|
Mulloy B. The non-anticoagulant promise of heparin and its mimetics. Curr Opin Pharmacol 2019; 46:50-54. [PMID: 31009826 DOI: 10.1016/j.coph.2019.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Abstract
Heparin, the widely used anticoagulant and antithrombotic polysaccharide, has other potential therapeutic uses that arise from its similarity to heparan sulfate. This review provides a brief overview of the most recent developments in this field, paying particular respect to pulmonary and respiratory pharmacology. It has often been said that heparin, with its mimetics and derivatives, shows great promise in the treatment of inflammatory, infectious, and malignant conditions. Difficulties are encountered, however, in translating this promise into worthwhile treatment strategies for patients in some conditions. Several clinical trials of low molecular weight heparins as adjuvant therapy to standard treatment of lung cancers have recently provided no evidence to support the supposed beneficial effects of low molecular weight heparin.
Collapse
Affiliation(s)
- Barbara Mulloy
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
18
|
Chrabaszcz K, Jasztal A, Smęda M, Zieliński B, Blat A, Diem M, Chlopicki S, Malek K, Marzec KM. Label-free FTIR spectroscopy detects and visualizes the early stage of pulmonary micrometastasis seeded from breast carcinoma. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3574-3584. [DOI: 10.1016/j.bbadis.2018.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022]
|
19
|
Veyron-Churlet R, Dupres V, Saliou JM, Lafont F, Raze D, Locht C. Rv0613c/MSMEG_1285 Interacts with HBHA and Mediates Its Proper Cell-Surface Exposure in Mycobacteria. Int J Mol Sci 2018; 19:E1673. [PMID: 29874861 PMCID: PMC6032435 DOI: 10.3390/ijms19061673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022] Open
Abstract
Heparin-binding haemagglutinin (HBHA) is a surface-exposed virulence factor of Mycobacterium tuberculosis and is involved in the binding of mycobacteria to non-phagocytic cells, allowing for extra-pulmonary dissemination of the bacilli. Despite its surface exposure, HBHA is not produced as a pre-protein containing a typical cleavable N-terminal signal peptide and is thus likely secreted by a Sec-independent, as of yet unknown mechanism. Here, we used the bacterial adenylate cyclase two-hybrid system to identify the proteins encoded by rv0613c and mmpL14 as being able to interact with HBHA. Our study was focused on Rv0613c, as it showed more consistent interactions with HBHA than MmpL14. Deletion of its orthologous gene MSMEG_1285 in recombinant Mycobacterium smegmatis producing HBHA from M. tuberculosis resulted in the loss of proper surface exposure of HBHA, as evidenced by atomic force microscopy. Furthermore, the lack of MSMEG_1285 also abolished the clumping phenotype and rough colony morphology of the recombinant M. smegmatis and reduced its adherence to A549 epithelial cells. These phenotypes have previously been associated with surface-exposed HBHA. Thus, MSMEG_1285 is directly involved in the proper cell-surface exposure of HBHA. These observations identify MSMEG_1285/Rv0613c as the first accessory protein involved in the cell surface exposure of HBHA.
Collapse
Affiliation(s)
- Romain Veyron-Churlet
- Université de Lille, CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, 59000 Lille, France.
| | - Vincent Dupres
- Université de Lille, CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, 59000 Lille, France.
| | - Jean-Michel Saliou
- Université de Lille, CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, 59000 Lille, France.
| | - Frank Lafont
- Université de Lille, CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, 59000 Lille, France.
| | - Dominique Raze
- Université de Lille, CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, 59000 Lille, France.
| | - Camille Locht
- Université de Lille, CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, 59000 Lille, France.
| |
Collapse
|
20
|
Abstract
Syndecan-1 (Sdc1) is a major cell surface heparan sulfate (HS) proteoglycan of epithelial cells, a cell type targeted by many bacterial pathogens early in their pathogenesis. Loss of Sdc1 in mice is a gain-of-function mutation that significantly decreases the susceptibility to several bacterial infections, suggesting that subversion of Sdc1 is an important virulence strategy. HS glycosaminoglycan (GAG) chains of cell surface Sdc1 promote bacterial pathogenesis by facilitating the attachment of bacteria to host cells. Engagement of cell surface Sdc1 HS chains by bacterial adhesins transmits signal through the highly conserved Sdc1 cytoplasmic domain, which can lead to uptake of intracellular bacterial pathogens. On the other hand, several bacteria that do not require Sdc1 for their attachment and invasion stimulate Sdc1 shedding and exploit the capacity of Sdc1 ectodomain HS GAGs to disarm innate defense mechanisms to evade immune clearance. Recent data suggest that select HS sulfate motifs, and not the overall charge of HS, are important in the inhibition of innate immune mechanisms. Here, we discuss several examples of Sdc1 subversion in bacterial infections.
Collapse
|
21
|
Song OR, Queval CJ, Iantomasi R, Delorme V, Marion S, Veyron-Churlet R, Werkmeister E, Popoff M, Ricard I, Jouny S, Deboosere N, Lafont F, Baulard A, Yeramian E, Marsollier L, Hoffmann E, Brodin P. ArfGAP1 restricts Mycobacterium tuberculosis entry by controlling the actin cytoskeleton. EMBO Rep 2017; 19:29-42. [PMID: 29141986 DOI: 10.15252/embr.201744371] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/03/2017] [Accepted: 10/23/2017] [Indexed: 11/09/2022] Open
Abstract
The interaction of Mycobacterium tuberculosis (Mtb) with pulmonary epithelial cells is critical for early stages of bacillus colonization and during the progression of tuberculosis. Entry of Mtb into epithelial cells has been shown to depend on F-actin polymerization, though the molecular mechanisms are still unclear. Here, we demonstrate that mycobacterial uptake into epithelial cells requires rearrangements of the actin cytoskeleton, which are regulated by ADP-ribosylation factor 1 (Arf1) and phospholipase D1 (PLD1), and is dependent on the M3 muscarinic receptor (M3R). We show that this pathway is controlled by Arf GTPase-activating protein 1 (ArfGAP1), as its silencing has an impact on actin cytoskeleton reorganization leading to uncontrolled uptake and replication of Mtb. Furthermore, we provide evidence that this pathway is critical for mycobacterial entry, while the cellular infection with other pathogens, such as Shigella flexneri and Yersinia pseudotuberculosis, is not affected. Altogether, these results reveal how cortical actin plays the role of a barrier to prevent mycobacterial entry into epithelial cells and indicate a novel role for ArfGAP1 as a restriction factor of host-pathogen interactions.
Collapse
Affiliation(s)
- Ok-Ryul Song
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France.,Equipe ATIP AVENIR, CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Institute Pasteur Korea, Seongnam-si Gyeonggi-do, South Korea
| | - Christophe J Queval
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Raffaella Iantomasi
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Vincent Delorme
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France.,Institute Pasteur Korea, Seongnam-si Gyeonggi-do, South Korea
| | - Sabrina Marion
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Romain Veyron-Churlet
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Elisabeth Werkmeister
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Michka Popoff
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France.,CNRS, UMR8520, Institut d'électronique, de microélectronique et de nanotechnologie, Villeneuve d'Ascq, France
| | - Isabelle Ricard
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Samuel Jouny
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Nathalie Deboosere
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Frank Lafont
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Alain Baulard
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Edouard Yeramian
- Unité de Microbiologie Structurale, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Laurent Marsollier
- Equipe ATIP AVENIR, CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France .,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Eik Hoffmann
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Priscille Brodin
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France .,Institute Pasteur Korea, Seongnam-si Gyeonggi-do, South Korea
| |
Collapse
|
22
|
Mortaz E, Alipoor SD, Movassaghi M, Varahram M, Ghorbani J, Folkerts G, Garssen J, Adcock IM. Water-pipe smoke condensate increases the internalization of Mycobacterium Bovis of type II alveolar epithelial cells (A549). BMC Pulm Med 2017; 17:68. [PMID: 28431548 PMCID: PMC5401461 DOI: 10.1186/s12890-017-0413-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 04/13/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is a major global health problem, and there is an association between tobacco smoke and TB. Water pipe smoking has become an increasing problem not only in Middle Eastern countries but also globally because users consider it as safer than cigarettes. The presence of high levels of toxic substances in water-pipe smoke may be a predisposing factor that enhances the incidence of pulmonary disorders. For example, uncontrolled macropinocytosis in alveolar epithelial cells following exposure to water-pipe smoke may predispose subjects to pulmonary infection. Here, we studied the effects of water-pipe condense (WPC) on the internalization of Mycobacterium Bovis BCG by macropinocytosis in the alveolar epithelial cell line A549. METHODS A549 cells were exposed to WPC (4 mg/ml) for 24, 48, 72 and 96 h. Cell viability was studied using the methyl thiazolyldipenyl-tetrazolium bromide (MTT) reduction assay and proliferation by bromodeoxyUridine (BrdU) incorporation. Cells were exposed to FITC-Dextran (1 mg/ml) (as a control) and FITC-BCG (MOI = 10) for 20 min at 37 °C before cells were collected and the uptake of BCG-FITC determined by flow cytometry. Similar experiments were performed at 4 °C as a control. The Rho-associated protein kinase (ROCK) inhibitor Y-27632 (1 μM) was used to assess the mechanism by which WPC enhanced BCG uptake. RESULTS WPC (4 mg/ml) increased the uptake of BCG-FITC after 72 (1.3 ± 0.1 fold, p < 0.05) and 96 (1.4 ± 0.05 fold, p < 0.05) hours. No effect on BCG-FITC uptake was observed at 24 or 48 h. WPC also significantly increased the uptake of FITC-Dextran (2.9 ± 0.3 fold, p < 0.05) after 24 h. WPC significantly decreased cell viability after 24 (84 ± 2%, p < 0.05), 48 (78±, 3%, p < 0.05), 72 (64 ± 2%, p < 0.05) and 96 h (45 ± 2%, p < 0.05). Y-27632 completely attenuated the increased uptake of BCG by WPC. Cell proliferation showed a decreasing trend in a time-dependent manner with WPC exposure. CONCLUSION WPC exposure increased epithelial cell endocytosis activity and death as well as enhancing their capacity for macropinocytosis. Our in vitro data indicates possible harmful effects of WPC on the ability of lung epithelial cells to phagocytose mycobacterium.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shamila D Alipoor
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Medical Biotechnology, Molecular Medicine Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Movassaghi
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Mohammad Varahram
- Mycobacteriology Research Center (MRC) National Research Institute of Tuberculosis and lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jahangir Ghorbani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Nutricia Research Centre for Specialized Nutrition, Utrecht, The Netherlands
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
23
|
Konowich J, Gopalakrishnan A, Dietzold J, Verma S, Bhatt K, Rafi W, Salgame P. Divergent Functions of TLR2 on Hematopoietic and Nonhematopoietic Cells during Chronic Mycobacterium tuberculosis Infection. THE JOURNAL OF IMMUNOLOGY 2016; 198:741-748. [PMID: 27920273 DOI: 10.4049/jimmunol.1601651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/06/2016] [Indexed: 11/19/2022]
Abstract
We have reported that TLR2 is crucial for host resistance against chronic Mycobacterium tuberculosis infection; however, which cell types are key players in this response remain unknown. This led us to decipher the relative contribution of TLR2 on nonhematopoietic and hematopoietic cells in resistance against chronic M. tuberculosis infection in mice infected with M. tuberculosis Erdman. Consistent with our previous report, at 8 wk of infection, TLR2 knockout (TLR2KO)→TLR2KO bone marrow chimeric mice exhibited increased bacterial burden, disorganized accumulation of lymphocytes and mononuclear cells, and extensive pulmonary immunopathology compared with wild-type (WT)→WT chimeric mice. Bacterial burden and pulmonary immunopathology of chimeric mice lacking TLR2 in the hematopoietic compartment (TLR2KO→WT) was comparable to TLR2KO mice. In contrast, chimeric mice deficient in TLR2 in the nonhematopoietic compartment (WT→TLR2KO) exhibited a marked attenuation in granulomatous inflammation compared with WT mice. Although the latter mice did not exhibit improved pulmonary bacterial control, significant reductions in bacterial burden in the draining lymph nodes, spleen, and liver were observed. These findings establish that the TLR2-mediated hematopoietic response promotes stable control of pulmonary bacterial burden and granuloma integrity, whereas TLR2 signaling on nonhematopoietic cells may partly facilitate granulomatous inflammation and bacterial dissemination.
Collapse
Affiliation(s)
- Jill Konowich
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Archana Gopalakrishnan
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Jillian Dietzold
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Sheetal Verma
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Kamlesh Bhatt
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | | | - Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| |
Collapse
|
24
|
Zimmermann N, Thormann V, Hu B, Köhler AB, Imai-Matsushima A, Locht C, Arnett E, Schlesinger LS, Zoller T, Schürmann M, Kaufmann SH, Wardemann H. Human isotype-dependent inhibitory antibody responses against Mycobacterium tuberculosis. EMBO Mol Med 2016; 8:1325-1339. [PMID: 27729388 PMCID: PMC5090662 DOI: 10.15252/emmm.201606330] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence from experimental animal models suggests that antibodies play a protective role against tuberculosis (TB). However, little is known about the antibodies generated upon Mycobacterium tuberculosis (MTB) exposure in humans. Here, we performed a molecular and functional characterization of the human B‐cell response to MTB by generating recombinant monoclonal antibodies from single isolated B cells of untreated adult patients with acute pulmonary TB and from MTB‐exposed healthcare workers. The data suggest that the acute plasmablast response to MTB originates from reactivated memory B cells and indicates a mucosal origin. Through functional analyses, we identified MTB inhibitory antibodies against mycobacterial antigens including virulence factors that play important roles in host cell infection. The inhibitory activity of anti‐MTB antibodies was directly linked to their isotype. Monoclonal as well as purified serum IgA antibodies showed MTB blocking activity independently of Fc alpha receptor expression, whereas IgG antibodies promoted the host cell infection. Together, the data provide molecular insights into the human antibody response to MTB and may thereby facilitate the design of protective vaccination strategies.
Collapse
Affiliation(s)
- Natalie Zimmermann
- Research Group Molecular Immunology, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany.,B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Verena Thormann
- Research Group Molecular Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Bo Hu
- Research Group Molecular Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Anne-Britta Köhler
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Aki Imai-Matsushima
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Camille Locht
- U1019 - UMR 8204 - CIIL - Centre for Infection and Immunity of Lille, University of Lille, Lille, France.,CNRS, UMR 8204, Lille, France.,Inserm, U1019, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - Eusondia Arnett
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Larry S Schlesinger
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Thomas Zoller
- Department of Infectious Diseases and Respiratory Medicine, Charité University Medical Center, Berlin, Germany
| | - Mariana Schürmann
- Department of Infectious Diseases and Respiratory Medicine, Charité University Medical Center, Berlin, Germany
| | - Stefan He Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hedda Wardemann
- Research Group Molecular Immunology, Max Planck Institute for Infection Biology, Berlin, Germany .,B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|