1
|
He L, Zhang Y, Si K, Yu C, Shang K, Yu Z, Wei Y, Ding C, Sarker S, Chen S. Evidence of an emerging triple-reassortant H3N3 avian influenza virus in China. BMC Genomics 2024; 25:1249. [PMID: 39725881 DOI: 10.1186/s12864-024-11152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
The H3 subtype of avian influenza virus (AIV) stands out as one of the most prevalent subtypes, posing a significant threat to public health. In this study, a novel triple-reassortant H3N3 AIV designated A/chicken/China/16/2023 (H3N3), was isolated from a sick chicken in northern China. The complete genome of the isolate was determined using next-generation sequencing, and the AIV-like particles were confirmed via transmission electron microscopy. Subsequent phylogenetic analyses revealed that HA and NA genes of the H3N3 isolate clustered within the Eurasian lineage of AIVs, exhibiting the closest genetic relationship with other H3N3 AIVs identified in China during 2023. Interestingly, the HA and NA genes of the nove H3N3 isolate were originated from H3N8 and H10N3 AIVs, respectively, and the six internal genes originated from prevalent H9N2 AIVs. These findings indicated the novel H3N3 isolate possesses a complex genetic constellation, likely arising from multiple reassortment events involving H3N8, H9N2, and H10N3 subtype influenza viruses. Additionally, the presence of Q226 and T228 in the HA protein suggests the H3N3 virus preferentially binds to α-2,3-linked sialic acid receptors. The HA cleavage site motif (PEKQTR/GIF) and the absence of E627K and D701N mutations in PB2 protein classify the virus as a characteristic low pathogenicity AIV. However, several mutations in internal genes raise concerns about potential increases in viral resistance, virulence, and transmission in mammalian hosts. Overall, this study provides valuable insights into the molecular and genetic characterization of the emerging triple-reassortant H3N3 AIVs, and continued surveillance of domestic poultry is essential for monitoring the H3N3 subtype evolution and potential spread.
Collapse
Affiliation(s)
- Lei He
- The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Yuhao Zhang
- The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Kaixin Si
- The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, 471900, China
| | - Ke Shang
- The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Zuhua Yu
- The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Ying Wei
- The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Chunhai Ding
- Shenyang Aiyou Biotechnology Co, Shenyang, 110136, China
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia.
| | - Songbiao Chen
- The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China.
| |
Collapse
|
2
|
Yao Q, Liu J, Liu H, Zhou Y, Huo M, Li Y, Gao Y, Ge Y. One-Health Challenge in H9N2 Avian Influenza: Novel Human-Avian Reassortment Virus in Guangdong Province, China. Transbound Emerg Dis 2024; 2024:9913934. [PMID: 40303180 PMCID: PMC12016894 DOI: 10.1155/2024/9913934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 05/02/2025]
Abstract
China is one of the highest producers of poultry meat output in the world, with a large scale of chicken rearing. Statistically analyzed H9N2-subtype avian influenza viruses (AIVs) have become the dominant subtype in China's live poultry market, with the highest detection rate. Although H9N2 AIV is of low pathogenicity and tends not to cause serious disease and high mortality in poultry, it poses a great challenge to the domestic poultry farming industry by causing a decrease in appetite, a decline in egg production, and deaths caused by mixed infections with another pathogenic microorganism. Moreover, novel influenza viruses (H7N9 and H3N8) infecting humans have emerged in China, and the H9N2 AIV provides all or part of the internal genes to the new recombinant viruses, posing a potential threat to public health and safety and human health. In this research, six H9N2 AIVs were isolated from feces or oropharyngeal swabs collected from live poultry markets and duck farms in Zhanjiang. After epidemiological investigations, phylogenetic analyses, and molecular characterization, we found that the ZJ81 strain was a chicken-human-mink recombinant virus, the ML3 strain was a chicken-human recombinant virus, and all six virus strains of the virus had a bias for the human receptor-binding site and a mutation that could cause an increase in virulence in mice. Therefore, surveillance and control of H9N2 AIV should be strengthened to provide data support for cross-species transmission of H9N2 AIV.
Collapse
Affiliation(s)
- Qiucheng Yao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jing Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Huizhen Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yan Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Miaotong Huo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yuanguo Li
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, China
| | - Yuwei Gao
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, China
| | - Ye Ge
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
3
|
Phosphorylation of Influenza A Virus Matrix Protein 1 at Threonine 108 Controls Its Multimerization State and Functional Association with the STRIPAK Complex. mBio 2023; 14:e0323122. [PMID: 36602306 PMCID: PMC9973344 DOI: 10.1128/mbio.03231-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The influenza A virus (IAV)-encoded matrix protein 1 (M1) acts as a master regulator of virus replication and fulfills multiple structural and regulatory functions in different cell compartments. Therefore, the spatiotemporal regulation of M1 is achieved by different mechanisms, including its structural and pH-dependent flexibility, differential association with cellular factors, and posttranslational modifications. Here, we investigated the function of M1 phosphorylation at the evolutionarily conserved threonine 108 (T108) and found that its mutation to a nonphosphorylatable alanine prohibited virus replication. Absent T108, phosphorylation led to strongly increased self-association of M1 at the cell membrane and consequently prohibited its ability to enter the nucleus and to contribute to viral ribonucleoprotein nuclear export. M1 T108 phosphorylation also controls the binding affinity to the cellular STRIPAK (striatin-interacting phosphatases and kinases) complex, which contains different kinases and the phosphatase PP2A to shape phosphorylation-dependent signaling networks. IAV infection led to the redistribution of the STRIPAK scaffolding subunits STRN and STRN3 from the cell membrane to cytosolic and perinuclear clusters, where it colocalized with M1. Inactivation of the STRIPAK complex resulted in compromised M1 polymerization and IAV replication. IMPORTANCE Influenza viruses pose a major threat to human health and cause annual epidemics and occasional pandemics. Many virus-encoded proteins exert various functions in different subcellular compartments, as exemplified by the M1 protein, but the molecular mechanisms endowing the multiplicity of functions remain incompletely understood. Here, we report that phosphorylation of M1 at T108 is essential for virus replication and controls its propensity for self-association and nuclear localization. This phosphorylation also controls binding affinity of the M1 protein to the STRIPAK complex, which contributes to M1 polymerization and virus replication.
Collapse
|
4
|
Yin Y, Liu Y, Fen J, Liu K, Qin T, Chen S, Peng D, Liu X. Characterization of an H7N9 Influenza Virus Isolated from Camels in Inner Mongolia, China. Microbiol Spectr 2023; 11:e0179822. [PMID: 36809036 PMCID: PMC10100662 DOI: 10.1128/spectrum.01798-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/13/2023] [Indexed: 02/23/2023] Open
Abstract
The H7N9 subtype of influenza virus can infect birds and humans, causing great losses in the poultry industry and threatening public health worldwide. However, H7N9 infection in other mammals has not been reported yet. In the present study, one H7N9 subtype influenza virus, A/camel/Inner Mongolia/XL/2020 (XL), was isolated from the nasal swabs of camels in Inner Mongolia, China, in 2020. Sequence analyses revealed that the hemagglutinin cleavage site of the XL virus was ELPKGR/GLF, which is a low-pathogenicity molecular characteristic. The XL virus had similar mammalian adaptations to human-originated H7N9 viruses, such as the polymerase basic protein 2 (PB2) Glu-to-Lys mutation at position 627 (E627K) mutation, but differed from avian-originated H7N9 viruses. The XL virus showed a higher SA-α2,6-Gal receptor-binding affinity and better mammalian cell replication than the avian H7N9 virus. Moreover, the XL virus had weak pathogenicity in chickens, with an intravenous pathogenicity index of 0.01, and intermediate virulence in mice, with a median lethal dose of 4.8. The XL virus replicated well and caused clear infiltration of inflammatory cells and increased inflammatory cytokines in the lungs of mice. Our data constitute the first evidence that the low-pathogenicity H7N9 influenza virus can infect camels and therefore poses a high risk to public health. IMPORTANCE H5 subtype avian influenza viruses can cause serious diseases in poultry and wild birds. On rare occasions, viruses can cause cross-species transmission to mammalian species, including humans, pigs, horses, canines, seals, and minks. The H7N9 subtype of the influenza virus can also infect both birds and humans. However, viral infection in other mammalian species has not been reported yet. In this study, we found that the H7N9 virus could infect camels. Notably, the H7N9 virus from camels had mammalian adaption molecular markers, including altered receptor-binding activity on the hemagglutinin protein and an E627K mutation on the polymerase basic protein 2 protein. Our findings indicated that the potential risk of camel-origin H7N9 virus to public health is of great concern.
Collapse
Affiliation(s)
- Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Juan Fen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kaituo Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Durairaj K, Trinh TTT, Yun SY, Yeo SJ, Sung HW, Park H. Molecular Characterization and Pathogenesis of H6N6 Low Pathogenic Avian Influenza Viruses Isolated from Mallard Ducks (Anas platyrhynchos) in South Korea. Viruses 2022; 14:v14051001. [PMID: 35632743 PMCID: PMC9143286 DOI: 10.3390/v14051001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
The subtype H6N6 has been identified worldwide following the increasing frequency of avian influenza viruses (AIVs). These AIVs also have the ability to bind to human-like receptors, thereby increasing the risk of animal-human transmission. In September 2019, an H6N6 avian influenza virus—KNU2019-48 (A/Mallard (Anas platyrhynchos)/South Korea/KNU 2019-48/2019(H6N6))—was isolated from Anas platyrhynchos in South Korea. Phylogenetic analysis results revealed that the hemagglutinin (HA) gene of this strain belongs to the Korean lineage, whereas the neuraminidase (NA) and polymerase basic protein 1 (PB1) genes belong to the Chinese lineage. Outstanding internal proteins such as PB2, polymerase acidic protein, nucleoprotein, matrix protein, and non-structural protein belong to the Vietnamese lineage. Additionally, a monobasic amino acid (PRIETR↓GLF) at the HA cleavage site; non-deletion of the stalk region (residue 59–69) in the NA gene; and E627 in the PB2 gene indicate that the KNU2019-48 isolate is a typical low-pathogenic avian influenza (LPAI) virus. The nucleotide sequence similarity analysis of HA revealed that the highest homology (97.18%) of this isolate is to that of A/duck/Jiangxi/01.14 NCJD125-P/2015(H6N6), and the amino acid sequence of NA (97.38%) is closely related to that of A/duck/Fujian/10.11_FZHX1045-C/2016 (H6N6). An in vitro analysis of the KNU2019-48 virus shows a virus titer of not more than 2.8 Log10 TCID 50/mL until 72 h post-infection, whereas in the lungs, the virus is detected at 3 dpi (days post-infection). The isolated KNU2019-48 (H6N6) strain is the first reported AIV in Korea, and the H6 subtype virus has co-circulated in China, Vietnam, and Korea for half a decade. Overall, our study demonstrates that Korean H6N6 strain PB1-S375N, PA-A404S, and S409N mutations are infectious in humans and might contribute to the enhanced pathogenicity of this strain. Therefore, we emphasize the importance of continuous and intensive surveillance of the H6N6 virus not only in Korea but also worldwide.
Collapse
Affiliation(s)
- Kaliannan Durairaj
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (K.D.); (S.-Y.Y.)
| | - Thuy-Tien Thi Trinh
- Institute of Endemic Diseases, Medical Research Center, Department of Tropical Medicine and Parasitology, Seoul National University, Seoul 03080, Korea;
| | - Su-Yeon Yun
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (K.D.); (S.-Y.Y.)
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (S.-J.Y.); (H.-W.S.); (H.P.)
| | - Haan-Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (S.-J.Y.); (H.-W.S.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (K.D.); (S.-Y.Y.)
- Correspondence: (S.-J.Y.); (H.-W.S.); (H.P.)
| |
Collapse
|
6
|
Nguyen ATV, Hoang VT, Sung HW, Yeo SJ, Park H. Genetic Characterization and Pathogenesis of Three Novel Reassortant H5N2 Viruses in South Korea, 2018. Viruses 2021; 13:v13112192. [PMID: 34834997 PMCID: PMC8619638 DOI: 10.3390/v13112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/03/2022] Open
Abstract
The outbreaks of H5N2 avian influenza viruses have occasionally caused the death of thousands of birds in poultry farms. Surveillance during the 2018 winter season in South Korea revealed three H5N2 isolates in feces samples collected from wild birds (KNU18-28: A/Wild duck/South Korea/KNU18-28/2018, KNU18-86: A/Bean Goose/South Korea/KNU18-86/2018, and KNU18-93: A/Wild duck/South Korea/KNU18-93/2018). Phylogenetic tree analysis revealed that these viruses arose from reassortment events among various virus subtypes circulating in South Korea and other countries in the East Asia–Australasian Flyway. The NS gene of the KNU18-28 and KNU18-86 isolates was closely related to that of China’s H10N3 strain, whereas the KNU18-93 strain originated from the H12N2 strain in Japan, showing two different reassortment events and different from a low pathogenic H5N3 (KNU18-91) virus which was isolated at the same day and same place with KNU18-86 and KNU18-93. These H5N2 isolates were characterized as low pathogenic avian influenza viruses. However, many amino acid changes in eight gene segments were identified to enhance polymerase activity and increase adaptation and virulence in mice and mammals. Experiments reveal that viral replication in MDCK cells was quite high after 12 hpi, showing the ability to replicate in mouse lungs. The hematoxylin and eosin-stained (H&E) lung sections indicated different degrees of pathogenicity of the three H5N2 isolates in mice compared with that of the control H1N1 strain. The continuing circulation of these H5N2 viruses may represent a potential threat to mammals and humans. Our findings highlight the need for intensive surveillance of avian influenza virus circulation in South Korea to prevent the risks posed by these reassortment viruses to animal and public health.
Collapse
Affiliation(s)
- Anh Thi Viet Nguyen
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (A.T.V.N.); (V.T.H.)
| | - Vui Thi Hoang
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (A.T.V.N.); (V.T.H.)
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (S.-J.Y.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (A.T.V.N.); (V.T.H.)
- Correspondence: (S.-J.Y.); (H.P.)
| |
Collapse
|
7
|
Na EJ, Kim YS, Kim YJ, Park JS, Oem JK. Genetic Characterization and Pathogenicity of H7N7 and H7N9 Avian Influenza Viruses Isolated from South Korea. Viruses 2021; 13:v13102057. [PMID: 34696486 PMCID: PMC8540337 DOI: 10.3390/v13102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
H7 low pathogenic avian influenza viruses (LPAIVs) can mutate into highly pathogenic avian influenza viruses (HPAIVs). In addition to avian species, H7 avian influenza viruses (AIVs) also infect humans. In this study, two AIVs, H7N9 (20X-20) and H7N7 (34X-2), isolated from the feces of wild birds in South Korea in 2021, were genetically analyzed. The HA cleavage site of the two H7 Korean viruses was confirmed to be ELPKGR/GLF, indicating they are LPAIVs. There were no amino acid substitutions at the receptor-binding site of the HA gene of two H7 Korean viruses compared to that of A/Anhui/1/2013 (H7N9), which prefer human receptors. In the phylogenetic tree analysis, the HA gene of the two H7 Korean viruses shared the highest nucleotide similarity with the Korean H7 subtype AIVs. In addition, the HA gene of the two H7 Korean viruses showed high nucleotide similarity to that of the A/Jiangsu/1/2018(H7N4) virus, which is a human influenza virus originating from avian influenza virus. Most internal genes (PB2, PB1, PA, NP, NA, M, and NS) of the two H7 Korean viruses belonged to the Eurasian lineage, except for the M gene of 34X-2. This result suggests that active reassortment occurred among AIVs. In pathogenicity studies of mice, the two H7 Korean viruses replicated in the lungs of mice. In addition, the body weight of mice infected with 34X-2 decreased 7 days post-infection (dpi) and inflammation was observed in the peribronchiolar and perivascular regions of the lungs of mice. These results suggest that mammals can be infected with the two H7 Korean AIVs. Our data showed that even low pathogenic H7 AIVs may infect mammals, including humans, as confirmed by the A/Jiangsu/1/2018(H7N4) virus. Therefore, continuous monitoring and pathogenicity assessment of AIVs, even of LPAIVs, are required.
Collapse
|
8
|
Genetic Characterization and Pathogenesis of Avian Influenza Virus H7N3 Isolated from Spot-Billed Ducks in South Korea, Early 2019. Viruses 2021; 13:v13050856. [PMID: 34067187 PMCID: PMC8151380 DOI: 10.3390/v13050856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022] Open
Abstract
Low-pathogenicity avian influenza viruses (LPAIV) introduced by migratory birds circulate in wild birds and can be transmitted to poultry. These viruses can mutate to become highly pathogenic avian influenza viruses causing severe disease and death in poultry. In March 2019, an H7N3 avian influenza virus—A/Spot-billed duck/South Korea/WKU2019-1/2019 (H7N3)—was isolated from spot-billed ducks in South Korea. This study aimed to evaluate the phylogenetic and mutational analysis of this isolate. Molecular analysis revealed that the genes for HA (hemagglutinin) and NA (neuraminidase) of this strain belonged to the Central Asian lineage, whereas genes for other internal proteins such as polymerase basic protein 1 (PB1), PB2, nucleoprotein, polymerase acidic protein, matrix protein, and non-structural protein belonged to that of the Korean lineage. In addition, a monobasic amino acid (PQIEPR/GLF) at the HA cleavage site, and the non-deletion of the stalk region in the NA gene indicated that this isolate was a typical LPAIV. Nucleotide sequence similarity analysis of HA revealed that the highest homology (99.51%) of this isolate is to that of A/common teal/Shanghai/CM1216/2017 (H7N7), and amino acid sequence of NA (99.48%) was closely related to that of A/teal/Egypt/MB-D-487OP/2016 (H7N3). An in vitro propagation of the A/Spot-billed duck/South Korea/WKU2019-1/2019 (H7N3) virus showed highest (7.38 Log10 TCID50/mL) virus titer at 60 h post-infection, and in experimental mouse lungs, the virus was detected at six days’ post-infection. Our study characterizes genetic mutations, as well as pathogenesis in both in vitro and in vivo model of a new Korea H7N3 viruses in 2019, carrying multiple potential mutations to become highly pathogenic and develop an ability to infect humans; thus, emphasizing the need for routine surveillance of avian influenza viruses in wild birds.
Collapse
|
9
|
Trinh TTT, Duong BT, Nguyen ATV, Tuong HT, Hoang VT, Than DD, Nam S, Sung HW, Yun KJ, Yeo SJ, Park H. Emergence of Novel Reassortant H1N1 Avian Influenza Viruses in Korean Wild Ducks in 2018 and 2019. Viruses 2020; 13:v13010030. [PMID: 33375376 PMCID: PMC7823676 DOI: 10.3390/v13010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023] Open
Abstract
Influenza A virus subtype H1N1 has caused global pandemics like the “Spanish flu” in 1918 and the 2009 H1N1 pandemic several times. H1N1 remains in circulation and survives in multiple animal sources, including wild birds. Surveillance during the winter of 2018–2019 in Korea revealed two H1N1 isolates in samples collected from wild bird feces: KNU18-64 (A/Greater white-fronted goose/South Korea/KNU18-64/2018(H1N1)) and WKU19-4 (A/wild bird/South Korea/WKU19-4/2019(H1N1)). Phylogenetic analysis indicated that M gene of KNU18-64(H1N1) isolate resembles that of the Alaskan avian influenza virus, whereas WKU19-4(H1N1) appears to be closer to the Mongolian virus. Molecular characterization revealed that they harbor the amino acid sequence PSIQRS↓GLF and are low-pathogenicity influenza viruses. In particular, the two isolates harbored three different mutation sites, indicating that they have different virulence characteristics. The mutations in the PB1-F2 and PA protein of WKU19-4(H1N1) indicate increasing polymerase activity. These results corroborate the kinetic growth data for WKU19-4 in MDCK cells: a dramatic increase in the viral titer after 12 h post-inoculation compared with that in the control group H1N1 (CA/04/09(pdm09)). The KNU18-64(H1N1) isolate carries mutations indicating an increase in mammal adaptation; this characterization was confirmed by the animal study in mice. The KNU18-64(H1N1) group showed the presence of viruses in the lungs at days 3 and 6 post-infection, with titers of 2.71 ± 0.16 and 3.71 ± 0.25 log10(TCID50/mL), respectively, whereas the virus was only detected in the WKU19-4(H1N1) group at day 6 post-infection, with a lower titer of 2.75 ± 0.51 log10(TCID50/mL). The present study supports the theory that there is a relationship between Korea and America with regard to reassortment to produce novel viral strains. Therefore, there is a need for increased surveillance of influenza virus circulation in free-flying and wild land-based birds in Korea, particularly with regard to Alaskan and Asian strains.
Collapse
Affiliation(s)
- Thuy-Tien Thi Trinh
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Bao Tuan Duong
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Anh Thi Viet Nguyen
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Hien Thi Tuong
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Vui Thi Hoang
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Duong Duc Than
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - SunJeong Nam
- Division of EcoScience, Ewha University, Seoul 03760, Korea;
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Korea;
| | - Ki-Jung Yun
- Department of Pathology, School of Medicine, Wonkwang University, Iksan 570-749, Korea;
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (S.-J.Y.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
- Correspondence: (S.-J.Y.); (H.P.)
| |
Collapse
|
10
|
Nguyen NM, Sung HW, Yun KJ, Park H, Yeo SJ. Genetic Characterization of a Novel North American-Origin Avian Influenza A (H6N5) Virus Isolated from Bean Goose of South Korea in 2018. Viruses 2020; 12:v12070774. [PMID: 32709116 PMCID: PMC7411716 DOI: 10.3390/v12070774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
The complex overlap in waterfowl migratory pathways across the world has established numerous occurrences of genetic reassortment and intercontinental spread of avian influenza virus (AIV) over long distances, thereby calling for huge efforts and targeted surveillance for infection control. During annual surveillance in South Korea in 2018, a novel avian influenza H6N5 (K6) subtype was isolated from the fecal sample of wild bird. Genomic characterization using a phylogenetic tree indicated the K6 virus to be of North American-origin, with partial homology to an H6N5 strain, A/Aix galericulata/South Korea/K17-1638-5/2017 (K17). A monobasic residue at the HA cleavage site and absence of a notable mutation at the HA receptor-binding site suggested the isolate to be of low pathogenicity. However, molecular analysis revealed the E119V mutation in the NA gene and a human host marker mutation E382D in the polymerase acidic (PA) gene, implying their susceptibility to neuraminidase inhibitors and potential infectivity in humans, respectively. For comparison, K6 and K17 were found to be dissimilar for various mutations, such as A274T of PB2, S375N/T of PB1, or V105M of NP, each concerning the increased virulence of K6 in mammalian system. Moreover, kinetic data presented the highest viral titer of this H6N5 isolate at 106.37 log10TCID50 after 48 h of infection, thus proving efficient adaptability for replication in a mammalian system in vitro. The mouse virus challenge study showed insignificant influence on the total body weight, while viral load shedding in lungs peaked at 1.88 ± 0.21 log10 TICD50/mL, six days post infection. The intercontinental transmission of viruses from North America may continuously be present in Korea, thereby providing constant opportunities for virus reassortment with local resident AIVs; these results hint at the increased potential risk of host jumping capabilities of the new isolates. Our findings reinforce the demand for regular surveillance, not only in Korea but also along the flyways in Alaska.
Collapse
Affiliation(s)
- Ngoc Minh Nguyen
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea;
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Korea;
| | - Ki-Jung Yun
- Department of Pathology, School of Medicine, Wonkwang University, Iksan 570-749, Korea;
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea;
- Correspondence: (H.P.); (S.-J.Y.)
| | - Seon-Ju Yeo
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea;
- Correspondence: (H.P.); (S.-J.Y.)
| |
Collapse
|
11
|
Cao Y, Zhang K, Liu L, Li W, Zhu B, Zhang S, Xu P, Liu W, Li J. Global transcriptome analysis of H5N1 influenza virus-infected human cells. Hereditas 2019; 156:10. [PMID: 30774581 PMCID: PMC6366111 DOI: 10.1186/s41065-019-0085-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/21/2019] [Indexed: 01/19/2023] Open
Abstract
Background Influenza A virus (IAV) belongs to the Orthomyxoviridae family. IAV causes a highly contagious respiratory disease in humans that exacts severe economic losses globally. The virus uses strategies developed to exploit and subvert cellular proteins and pathways to increase its own replication and to inhibit antiviral immune response. Results A/bar-headed goose/Qinghai/1/2005 (A/QH) was able to infect A549 and 293 T cells, with a high infection rate for A549 cells. To identify host cellular responses of human cells to influenza infection, differentially expressed genes (DEGs) between AIV-infected groups and uninfected controls were identified using RNA-sequencing. The DEGs were annotated by Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway analyses, which revealed that the DEGs were mainly linked to cellular function and metabolic processes, while the cellular function that is probably associated with host cellular response of human cells, including defense response to virus and protein modification. All the DEGs and pathways were possibly involved in the response to IAV invasion. Conclusions The global transcriptome analysis results revealed that sensitive genes and pathways of the cells were infected with the influenza virus and provided further evidence to investigate the complicated relationship between IAV and host cells. Electronic supplementary material The online version of this article (10.1186/s41065-019-0085-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Cao
- 1School of Life Sciences, University of Science and Technology of China, Hefei, China.,2CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kun Zhang
- 3Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia USA
| | - Lirong Liu
- 2CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,4University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- 2CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Zhu
- 3Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia USA
| | - Shuang Zhang
- 2CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ping Xu
- 3Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia USA
| | - Wenjun Liu
- 1School of Life Sciences, University of Science and Technology of China, Hefei, China.,2CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,4University of Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- 2CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,4University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Švančarová P, Betáková T. Conserved methionine 165 of matrix protein contributes to the nuclear import and is essential for influenza A virus replication. Virol J 2018; 15:187. [PMID: 30509291 PMCID: PMC6276163 DOI: 10.1186/s12985-018-1056-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The influenza matrix protein (M1) layer under the viral membrane plays multiple roles in virus assembly and infection. N-domain and C-domain are connected by a loop region, which consists of conserved RQMV motif. METHODS The function of the highly conserve RQMV motif in the influenza virus life cycle was investigated by site-directed mutagenesis and by rescuing mutant viruses by reverse genetics. Co-localization of M1 with nucleoprotein (NP), clustered mitochondria homolog protein (CLUH), chromosome region maintenance 1 protein (CRM1), or plasma membrane were studied by confocal microscopy. RESULTS Mutant viruses containing an alanine substitution of R163, Q164 and V166 result in the production of the virus indistinguishable from the wild type phenotype. Single M165A substitution was lethal for rescuing infection virus and had a striking effect on the distribution of M1 and NP proteins. We have observed statistically significant reduction in distribution of both M165A (p‹0,05) and NP (p‹0,001) proteins to the nucleus in the cells transfected with the reverse -genetic system with mutated M1. M165A protein was co-localized with CLUH protein in the cytoplasm and around the nucleus but transport of M165-CLUH complex through the nuclear membrane was restricted. CONCLUSIONS Our finding suggest that methionine 165 is essential for virus replication and RQMV motif is involved in the nuclear import of viral proteins.
Collapse
Affiliation(s)
- Petra Švančarová
- Biomedical Research Center - Slovaks Academy of Sciences, Institute of Virology, Bratislava, Slovak Republic
| | - Tatiana Betáková
- Biomedical Research Center - Slovaks Academy of Sciences, Institute of Virology, Bratislava, Slovak Republic.
| |
Collapse
|
13
|
Three amino acid substitutions in the NS1 protein change the virus replication of H5N1 influenza virus in human cells. Virology 2018; 519:64-73. [PMID: 29677653 DOI: 10.1016/j.virol.2018.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022]
Abstract
Influenza A viruses have sophisticated strategies to promote their own replication. Here, we found that three H5N1 influenza viruses display different replication patterns in human A549 and macrophage cells. The HN01 virus displayed poor replication compared to HN021 and JS01. In addition, the HN01 virus was unable to counteract the interferon response and block general gene expression. This capability was restored by three amino acid substitutions on the NS1 protein: K55E, K66E, and C133F, resulting in recovered binding to CPSF30 and decreased interferon response activity. Furthermore, a recombinant HN01 virus expressing either NS1-C133F or the triple mutation replicate with higher titers in human A549 cells and macrophages compared to the parent virus. These three amino acid mutations reveal a new pathway to alter H5N1 virus replication.
Collapse
|
14
|
Zhao N, Wang S, Li H, Liu S, Li M, Luo J, Su W, He H. Influence of Novel Highly Pathogenic Avian Influenza A (H5N1) Virus Infection on Migrating Whooper Swans Fecal Microbiota. Front Cell Infect Microbiol 2018. [PMID: 29520341 PMCID: PMC5827414 DOI: 10.3389/fcimb.2018.00046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The migration of wild birds plays an important role in the transmission and spread of H5 highly pathogenic avian influenza (HPAI) virus, posing a severe risk to animal and human health. Substantial evidence suggests that altered gut microbial community is implicated in the infection of respiratory influenza virus. However, the influence of H5N1 infection in gut microbiota of migratory birds remains unknown. In January 2015, a novel recombinant H5N1 virus emerged and killed about 100 migratory birds, mainly including whooper swans in Sanmenxia Reservoir Area of China. Here, we describe the first fecal microbiome diversity study of H5N1-infected migratory birds. By investigating the influence of H5N1 infection on fecal bacterial communities in infected and uninfected individuals, we found that H5N1 infection shaped the gut microbiota composition by a difference in the dominance of some genera, such as Aeromonas and Lactobacillus. We also found a decreased α diversity and increased β diversity in infectious individuals. Our results highlight that increases in changes in pathogen-containing gut communities occur when individuals become infected with H5N1. Our study may provide the first evidence that there are statistical association among H5N1 presence and fecal microbiota compositional shifts, and properties of the fecal microbiota may serve as the risk of gut-linked disease in migrates with H5N1 and further aggravate the disease transmission.
Collapse
Affiliation(s)
- Na Zhao
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Supen Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongyi Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Shelan Liu
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Meng Li
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Luo
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen Su
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
CASCIRE surveillance network and work on avian influenza viruses. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1386-1391. [PMID: 29294220 DOI: 10.1007/s11427-017-9251-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/23/2017] [Indexed: 12/12/2022]
|