1
|
Xu J, He W, Xiao N, Xie L. Repetitive Acinetobacter baumannii pneumonia induces infection tolerance in mice. Microb Pathog 2024; 197:107009. [PMID: 39395746 DOI: 10.1016/j.micpath.2024.107009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Some long-term hospitalized patients with lung infections exhibit pathogen tolerance. To investigate whether long-term chronic infection can induce tolerance, we constructed a mouse model of pneumonia in which mice were infected once, twice, or three times with Acinetobacter baumannii. The results revealed that the inflammatory factor levels decreased in the lung lavage fluid and that pathological damage to the lung tissue was alleviated in the mice infected three times. Flow cytometry and transcriptome analysis of mouse lung tissue revealed that the expression of genes related to T cell activation, differentiation, and regulation and the proportion and number of regulatory T cells and immune suppression-related genes, such as Ctla4, Tigit, Slamf8, ICOS, and IDO1, were increased in mice infected three times. These findings show that repeated A. baumannii infections can induce tolerance, which may be mediated by immune suppression involving regulatory T cells.
Collapse
Affiliation(s)
- Jianqiao Xu
- College of Pulmonary and Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital (PLA Medical School), Beijing, China.
| | - Wanxue He
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital Capital Medical University, Beijing, China.
| | - Nan Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital (PLA Medical School), Beijing, China.
| |
Collapse
|
2
|
Maseko TG, Rambaran S, Ngubane S, Lewis L, Ngcapu S, Hassan-Moosa R, Archary D, Perumal R, Padayatchi N, Naidoo K, Sivro A. NK cell phenotypic profile during active TB in people living with HIV-evolution during TB treatment and implications for bacterial clearance and disease severity. Sci Rep 2023; 13:11726. [PMID: 37474556 PMCID: PMC10359304 DOI: 10.1038/s41598-023-38766-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
Natural killer (NK) cells, key effector cells of the innate immune system, play an important role in the clearance and control of Mycobacterium tuberculosis and HIV infections. Here, we utilized peripheral blood specimens from the Improving Retreatment Success CAPRISA 011 study to characterize NK cell phenotypes during active TB in individuals with or without HIV co-infection. We further assessed the effects of TB treatment on NK cell phenotype, and characterized the effects of NK cell phenotypes during active TB on mycobacterial clearance and TB disease severity measured by the presence of lung cavitation. TB/HIV co-infection led to the expansion of functionally impaired CD56neg NK cell subset. TB treatment completion resulted in restoration of total NK cells, NK cell subset redistribution and downregulation of several NK cell activating and inhibitory receptors. Higher percentage of peripheral CD56bright cells was associated with longer time to culture conversion, while higher expression of NKp46 on CD56dim NK cells was associated with lower odds of lung cavitation in the overall cohort and the TB/HIV co-infected participants. Together these results provide a detailed description of peripheral NK cells in TB and TB/HIV co-infection and yield insights into their role in TB disease pathology.
Collapse
Affiliation(s)
- Thando Glory Maseko
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- South African Medical Research Council (SAMRC)-CAPRISA-TB-HIV Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal Nelson R Mandela School of Medicine, Durban, South Africa
| | - Santhuri Rambaran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Slindile Ngubane
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Lara Lewis
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Razia Hassan-Moosa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- South African Medical Research Council (SAMRC)-CAPRISA-TB-HIV Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal Nelson R Mandela School of Medicine, Durban, South Africa
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Rubeshan Perumal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- South African Medical Research Council (SAMRC)-CAPRISA-TB-HIV Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal Nelson R Mandela School of Medicine, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- South African Medical Research Council (SAMRC)-CAPRISA-TB-HIV Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal Nelson R Mandela School of Medicine, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- South African Medical Research Council (SAMRC)-CAPRISA-TB-HIV Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal Nelson R Mandela School of Medicine, Durban, South Africa
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa.
- South African Medical Research Council (SAMRC)-CAPRISA-TB-HIV Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal Nelson R Mandela School of Medicine, Durban, South Africa.
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
3
|
Camarasa TMN, Torné J, Chevalier C, Rasid O, Hamon MA. Streptococcus pneumoniae drives specific and lasting Natural Killer cell memory. PLoS Pathog 2023; 19:e1011159. [PMID: 37486946 PMCID: PMC10399893 DOI: 10.1371/journal.ppat.1011159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/03/2023] [Accepted: 06/27/2023] [Indexed: 07/26/2023] Open
Abstract
NK cells are important mediators of innate immunity and play an essential role for host protection against infection, although their responses to bacteria are poorly understood. Recently NK cells were shown to display memory properties, as characterized by an epigenetic signature leading to a stronger secondary response. Although NK cell memory could be a promising mechanism to fight against infection, it has not been described upon bacterial infection. Using a mouse model, we reveal that NK cells develop specific and long-term memory following sub-lethal infection with the extracellular pathogen Streptococcus pneumoniae. Memory NK cells display intrinsic sensing and response to bacteria in vitro, in a manner that is enhanced post-bacterial infection. In addition, their transfer into naïve mice confers protection from lethal infection for at least 12 weeks. Interestingly, NK cells display enhanced cytotoxic molecule production upon secondary stimulation and their protective role is dependent on Perforin and independent of IFNγ. Thus, our study identifies a new role for NK cells during bacterial infection, opening the possibility to harness innate immune memory for therapeutic purposes.
Collapse
Affiliation(s)
- Tiphaine M. N. Camarasa
- Chromatin and Infection Unit, Institut Pasteur, Paris, France
- Université Paris Cité, 562 Bio Sorbonne Paris Cité, Paris, France
| | - Júlia Torné
- Chromatin and Infection Unit, Institut Pasteur, Paris, France
| | | | - Orhan Rasid
- Chromatin and Infection Unit, Institut Pasteur, Paris, France
| | | |
Collapse
|
4
|
Morrison AL, Sharpe S, White AD, Bodman-Smith M. Cheap and Commonplace: Making the Case for BCG and γδ T Cells in COVID-19. Front Immunol 2021; 12:743924. [PMID: 34567010 PMCID: PMC8455994 DOI: 10.3389/fimmu.2021.743924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Antigen-specific vaccines developed for the COVID-19 pandemic demonstrate a remarkable achievement and are currently being used in high income countries with much success. However, new SARS-CoV-2 variants are threatening this success via mutations that lessen the efficacy of antigen-specific antibodies. One simple approach to assisting with this issue is focusing on strategies that build on the non-specific protection afforded by the innate immune response. The BCG vaccine has been shown to provide broad protection beyond tuberculosis disease, including against respiratory viruses, and ongoing studies are investigating its efficacy as a tool against SARS-CoV-2. Gamma delta (γδ) T cells, particularly the Vδ2 subtype, undergo rapid expansion after BCG vaccination due to MHC-independent mechanisms. Consequently, γδ T cells can produce diverse defenses against virally infected cells, including direct cytotoxicity, death receptor ligands, and pro-inflammatory cytokines. They can also assist in stimulating the adaptive immune system. BCG is affordable, commonplace and non-specific, and therefore could be a useful tool to initiate innate protection against new SARS-CoV-2 variants. However, considerations must also be made to BCG vaccine supply and the prioritization of countries where it is most needed to combat tuberculosis first and foremost.
Collapse
Affiliation(s)
| | - Sally Sharpe
- Public Health England, National Infection Service, Porton Down, United Kingdom
| | - Andrew D. White
- Public Health England, National Infection Service, Porton Down, United Kingdom
| | - Mark Bodman-Smith
- Infection and Immunity Research Institute, St George’s University of London, London, United Kingdom
| |
Collapse
|
5
|
Cho T, Khatchadourian C, Nguyen H, Dara Y, Jung S, Venketaraman V. A review of the BCG vaccine and other approaches toward tuberculosis eradication. Hum Vaccin Immunother 2021; 17:2454-2470. [PMID: 33769193 PMCID: PMC8475575 DOI: 10.1080/21645515.2021.1885280] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/29/2021] [Indexed: 02/02/2023] Open
Abstract
Despite aggressive eradication efforts, Tuberculosis (TB) remains a global health burden, one that disproportionally affects poorer, less developed nations. The only vaccine approved for TB, the Bacillus of Calmette and Guérin (BCG) vaccine remains controversial because it's stated efficacy has been cited as anywhere from 0 to 80%. Nevertheless, there have been exciting discoveries about the mechanism of action of the BCG vaccine that suggests it has a role in immunization schedules today. We review recent data suggesting the vaccine imparts protection against both tuberculosis and non-tuberculosis pathogens via a newly discovered immune system called trained immunity. BCG's efficacy also appears to be tied to its affect on granulocytes at the epigenetic and hematopoietic stem cell levels, which we discuss in this article at length. We also write about how the different strains of the BCG vaccine elicit different immune responses, suggesting that certain BCG strains are more immunogenic than others. Finally, our review delves into how the current vaccine is being reformulated to be more efficacious, and track the development of the next generation vaccines against TB.
Collapse
Affiliation(s)
- Thomas Cho
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | | | - Huy Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Yash Dara
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Shuna Jung
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
6
|
Shiga M, Miyazaki J, Tanuma K, Nagumo Y, Yoshino T, Kandori S, Negoro H, Kojima T, Tanaka R, Okiyama N, Fujisawa Y, Watanabe M, Yamasaki S, Kiyohara H, Watanabe M, Sato TA, Tahara H, Nishiyama H, Yano I. The liposome of trehalose dimycolate extracted from M. bovis BCG induces antitumor immunity via the activation of dendritic cells and CD8 + T cells. Cancer Immunol Immunother 2021; 70:2529-2543. [PMID: 33570675 DOI: 10.1007/s00262-021-02870-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Intravesical Bovis bacillus Calmette-Guérin (BCG) therapy is the most effective immunotherapy for bladder cancer, but it sometime causes serious side effects because of its inclusion of live bacteria. It is necessary to develop a more active but less toxic immunotherapeutic agent. Trehalose 6,6'-dimycolate (TDM), the most abundant hydrophobic glycolipid of the BCG cell wall, has been reported to show various immunostimulatory activities such as granulomagenesis and adjuvant activity. Here, we developed cationic liposomes incorporating TDM purified from Mycobacterium bovis BCG Connaught, and we investigated the antitumor effect of the cationic liposome TDM (Lip-TDM). Lip-TDM exerted an antitumor effect in bladder cancer, colon cancer, and melanoma-bearing mouse models that was comparable or even superior to that of BCG, with no body weight loss or granuloma formation. The antitumor effect of Lip-TDM disappeared in two types of mice: those with depletion of CD8+ T cells, and those with knockout of macrophage-inducible C-type lectin (Mincle) which recognize TDM. Lip-TDM treatment enhanced the maturation and migration of dendritic cells in the tumor microenvironment in a Mincle-dependent manner. Our results elucidate mechanisms that underlie Lip-TDM treatment and suggest that Lip-TDM has potential as a safe and effective treatment for various cancers.
Collapse
Affiliation(s)
- Masanobu Shiga
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Jun Miyazaki
- Department of Urology, School of Medicine, International University of Health and Welfare, 852 Hatakeda, Narita, Chiba, 286-0124, Japan.
| | - Kozaburo Tanuma
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiyuki Nagumo
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takayuki Yoshino
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shuya Kandori
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiromitsu Negoro
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takahiro Kojima
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryota Tanaka
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoko Okiyama
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuhiro Fujisawa
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Miyuki Watanabe
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan.,Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan.,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chuo-ku, Chiba, Japan
| | | | - Makoto Watanabe
- Life Science Research Center, Technology Research Laboratory, Shimadzu, Kyoto, Japan
| | - Taka-Aki Sato
- Life Science Research Center, Technology Research Laboratory, Shimadzu, Kyoto, Japan
| | - Hideaki Tahara
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Cancer Drug Discovery and Development, Osaka International Cancer Center, Osaka, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
7
|
Theresine M, Patil ND, Zimmer J. Airway Natural Killer Cells and Bacteria in Health and Disease. Front Immunol 2020; 11:585048. [PMID: 33101315 PMCID: PMC7546320 DOI: 10.3389/fimmu.2020.585048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells at the interface between innate and adaptive immunity and mostly studied for their important roles in viral infections and malignant tumors. They can kill diseased cells and produce cytokines and chemokines, thereby shaping the adaptive immune response. Nowadays, NK cells are considered as a strong weapon for cancer immunotherapy and can for example be transduced to express tumor-specific chimeric antigen receptors or harnessed with therapeutic antibodies such as the so-called NK engagers. Whereas a large body of literature exists about the antiviral and antitumoral properties of NK cells, their potential role in bacterial infections is not that well delineated. Furthermore, NK cells are much more heterogeneous than previously thought and have tissue-characteristic features and phenotypes. This review gives an overview of airway NK cells and their position within the immunological army dressed against bacterial infections in the upper and predominantly the lower respiratory tracts. Whereas it appears that in several infections, NK cells play a non-redundant and protective role, they can likewise act as rather detrimental. The use of mouse models and the difficulty of access to human airway tissues for ethical reasons might partly explain the divergent results. However, new methods are appearing that are likely to reduce the heterogeneity between studies and to give a more coherent picture in this field.
Collapse
Affiliation(s)
- Maud Theresine
- CG I Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Neha D Patil
- CG I Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Jacques Zimmer
- CG I Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
8
|
CD28 Deficiency Ameliorates Blast Exposure-Induced Lung Inflammation, Oxidative Stress, Apoptosis, and T Cell Accumulation in the Lungs via the PI3K/Akt/FoxO1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4848560. [PMID: 31565151 PMCID: PMC6745179 DOI: 10.1155/2019/4848560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
Abstract
Although CD28 is associated with the expression of inflammatory mediators, apoptosis-related protein, immunosuppression, and tumorigenesis, the effects of CD28 deficiency on blast exposure-induced lung injury have not been investigated. In this study, we have explored the effects of CD28 on blast exposure-induced lung injury and studied its potential molecular mechanisms. A mouse model of blast exposure-induced acute lung injury was established. Sixty C57BL/6 wild-type (WT) and CD28 knockout (CD28−/−) mice were randomly divided into control or model groups. Lung tissue samples were collected 24 h and 48 h after blast injury. Histopathological changes and the expressions of inflammatory-related proteins were detected by hematoxylin-eosin, immunohistochemistry, and immunofluorescence staining. Apoptosis and oxidative stress were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and reactive oxygen species (ROS). Inflammation, apoptosis, oxidative stress, and related pathway protein expression were studied by western blotting. In addition, the levels of CD3 and CD28 proteins were measured by flow cytometry. In the current study, we found that CD28 deficiency significantly inhibited blast exposure-induced increases in the lung weight/body weight ratio and wet weight/dry weight ratio; decreased the infiltration of CD44+ leukocytes, CD163+ macrophages, and CD3+ T cells into the lungs; reduced the expressions of proinflammatory cytokines including IL-1β, TNF-α, and IL-6; and markedly increased IL-10 expression. CD28 deficiency also significantly attenuated blast exposure-induced ROS, MDA5, and IREα expressions; increased SOD-1 expression; lowered the number of apoptotic cells and Bax, Caspase-3, and active Caspase-8 expressions; and increased Bcl-2 expression. Additionally, CD28 deficiency significantly ameliorated blast exposure-induced increases of p-PI3K and p-Akt and ameliorated the decrease in the p-FoxO1 expression. Our results suggest that CD28 deficiency has a protective effect on blast exposure-induced lung injury, which might be associated with the PI3K/Akt/FoxO1 signaling pathway.
Collapse
|