1
|
Pourliotopoulou E, Karampatakis T, Kachrimanidou M. Exploring the Toxin-Mediated Mechanisms in Clostridioides difficile Infection. Microorganisms 2024; 12:1004. [PMID: 38792835 PMCID: PMC11124097 DOI: 10.3390/microorganisms12051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of nosocomial antibiotic-associated diarrhea, and colitis, with increasing incidence and healthcare costs. Its pathogenesis is primarily driven by toxins produced by the bacterium C. difficile, Toxin A (TcdA) and Toxin B (TcdB). Certain strains produce an additional toxin, the C. difficile transferase (CDT), which further enhances the virulence and pathogenicity of C. difficile. These toxins disrupt colonic epithelial barrier integrity, and induce inflammation and cellular damage, leading to CDI symptoms. Significant progress has been made in the past decade in elucidating the molecular mechanisms of TcdA, TcdB, and CDT, which provide insights into the management of CDI and the future development of novel treatment strategies based on anti-toxin therapies. While antibiotics are common treatments, high recurrence rates necessitate alternative therapies. Bezlotoxumab, targeting TcdB, is the only available anti-toxin, yet limitations persist, prompting ongoing research. This review highlights the current knowledge of the structure and mechanism of action of C. difficile toxins and their role in disease. By comprehensively describing the toxin-mediated mechanisms, this review provides insights for the future development of novel treatment strategies and the management of CDI.
Collapse
Affiliation(s)
- Evdokia Pourliotopoulou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Melania Kachrimanidou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| |
Collapse
|
2
|
Stieglitz F, Gerhard R, Hönig R, Giehl K, Pich A. TcdB of Clostridioides difficile Mediates RAS-Dependent Necrosis in Epithelial Cells. Int J Mol Sci 2022; 23:ijms23084258. [PMID: 35457076 PMCID: PMC9024770 DOI: 10.3390/ijms23084258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
A Clostridioides difficile infection (CDI) is the most common nosocomial infection worldwide. The main virulence factors of pathogenic C. difficile are TcdA and TcdB, which inhibit small Rho-GTPases. The inhibition of small Rho-GTPases leads to the so-called cytopathic effect, a reorganization of the actin cytoskeleton, an impairment of the colon epithelium barrier function and inflammation. Additionally, TcdB induces a necrotic cell death termed pyknosis in vitro independently from its glucosyltransferases, which are characterized by chromatin condensation and ROS production. To understand the underlying mechanism of this pyknotic effect, we conducted a large-scale phosphoproteomic study. We included the analysis of alterations in the phosphoproteome after treatment with TcdA, which was investigated for the first time. TcdA exhibited no glucosyltransferase-independent necrotic effect and was, thus, a good control to elucidate the underlying mechanism of the glucosyltransferase-independent effect of TcdB. We found RAS to be a central upstream regulator of the glucosyltransferase-independent effect of TcdB. The inhibition of RAS led to a 68% reduction in necrosis. Further analysis revealed apolipoprotein C-III (APOC3) as a possible crucial factor of CDI-induced inflammation in vivo.
Collapse
Affiliation(s)
- Florian Stieglitz
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.S.); (R.G.)
- Core Facility Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.S.); (R.G.)
| | - Rabea Hönig
- Signal Transduction of Cellular Motility, Internal Medicine V, Justus Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany; (R.H.); (K.G.)
| | - Klaudia Giehl
- Signal Transduction of Cellular Motility, Internal Medicine V, Justus Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany; (R.H.); (K.G.)
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.S.); (R.G.)
- Core Facility Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-532-2808; Fax: +49-511-532-2879
| |
Collapse
|
3
|
Jiang M, Shin J, Simeon R, Chang JY, Meng R, Wang Y, Shinde O, Li P, Chen Z, Zhang J. Structural dynamics of receptor recognition and pH-induced dissociation of full-length Clostridioides difficile Toxin B. PLoS Biol 2022; 20:e3001589. [PMID: 35324891 PMCID: PMC8982864 DOI: 10.1371/journal.pbio.3001589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 04/05/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
Clostridioides difficile secretes Toxin B (TcdB) as one of its major virulence factors, which binds to intestinal epithelial and subepithelial receptors, including frizzled proteins and chondroitin sulfate proteoglycan 4 (CSPG4). Here, we present cryo-EM structures of full-length TcdB in complex with the CSPG4 domain 1 fragment (D1401-560) at cytosolic pH and the cysteine-rich domain of frizzled-2 (CRD2) at both cytosolic and acidic pHs. CSPG4 specifically binds to the autoprocessing and delivery domains of TcdB via networks of salt bridges, hydrophobic and aromatic/proline interactions, which are disrupted upon acidification eventually leading to CSPG4 drastically dissociating from TcdB. In contrast, FZD2 moderately dissociates from TcdB under acidic pH, most likely due to its partial unfolding. These results reveal structural dynamics of TcdB during its preentry step upon endosomal acidification, which provide a basis for developing therapeutics against C. difficile infections.
Collapse
Affiliation(s)
- Mengqiu Jiang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Joonyoung Shin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Rudo Simeon
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Jeng-Yih Chang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Ran Meng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Yuhang Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Omkar Shinde
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
4
|
Klepka C, Sandmann M, Tatge H, Mangan M, Arens A, Henkel D, Gerhard R. Impairment of lysosomal function by Clostridioides difficile TcdB. Mol Microbiol 2021; 117:493-507. [PMID: 34931374 DOI: 10.1111/mmi.14864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022]
Abstract
TcdB is a potent cytotoxin produced by pathogenic Clostridioides difficile that inhibits Rho GTPases by mono-glucosylation. TcdB enters cells via receptor-mediated endocytosis. The pathogenic glucosyltransferase domain (GTD) egresses endosomes by pH-mediated conformational changes, and is subsequently released in an autoproteolytic manner. We here investigated the uptake, localization and degradation of TcdB. TcdB colocalized with lysosomal marker protein LAMP1, verifying the endosomal-lysosomal route of the toxin. In pulse assays endocytosed TcdB declined to a limit of detection within 2 hr, whereas the released GTD accumulated for up to 8 hr. We observed that autoproteolytic deficient TcdB NXN C698S was degraded significantly faster than wildtype TcdB, suggesting interference of TcdB with lysosomal degradation process. In fact, TcdB reduced lysosomal degradation of endosome cargo as tested with DQ-Green BSA. Lysosomal dysfunction was accompanied by perinuclear accumulation of LAMP1 and a weaker detection in immunoblots. Galectin-8 or galectin-3 was not recruited to lysosomes speaking against lysosome membrane damage. Changes in the autophagosomal marker LC3B suggested additional indirect effect of lysosomal dysfunction on the autophagic flux. In contrast to necrotic signaling induced in by TcdB, lysosomal dysfunction was not abolished by calcium channel blocker nifedipin, indicating separate cytopathogenic effects induced by TcdB during endo-lysosomal trafficking.
Collapse
Affiliation(s)
- Carmen Klepka
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Moritz Sandmann
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Helma Tatge
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Matthew Mangan
- Institute of Innate Immunology, Biomedical Center, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Annabel Arens
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Daniel Henkel
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Henkel D, Tatge H, Schöttelndreier D, Tao L, Dong M, Gerhard R. Receptor Binding Domains of TcdB from Clostridioides difficile for Chondroitin Sulfate Proteoglycan-4 and Frizzled Proteins Are Functionally Independent and Additive. Toxins (Basel) 2020; 12:toxins12120736. [PMID: 33255261 PMCID: PMC7759879 DOI: 10.3390/toxins12120736] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Toxin B (TcdB) produced by Clostridioides difficile is a main pathogenicity factor that affects a variety of different cell types within the colonic mucosa. TcdB is known to utilize frizzled-1,2,7 and chondroitin sulfate proteoglycan-4 (CSPG4) as protein receptors. By using human cervical cancer cell line HeLa CSPG4 knockout (CSPG4−/−) cells as well as TcdB mutants which do not bind to either CSPG4 or frizzled-1,2,7, or both, we evaluated the impact of the individual receptors for cytopathic and cytotoxic effects of TcdB. We compared TcdB from the reference strain VPI10463 (TcdBVPI) and the endemic strain R20291 (TcdBR20) which does not interact with frizzled-1,2,7. TcdBVPI devoid of CSPG4 binding (TcdBVPI ΔCROP) shows identical cytopathic potency as full-length TcdB in HeLa CSPG4−/− cells, indicating that interaction with frizzled proteins is not affected in the presence of the C-terminal CROP domain. We validated CSPG4 as cellular receptor for both TcdB toxinotypes in HeLa and HEp-2 cells. By exchange of a single phenylalanine residue, 1597 with serine, we generated a mutated TcdBVPI variant (TcdBVPI F1597S) that in accordance with TcdBR20 lacks binding to frizzled-1,2,7 and showed identical potency as TcdBR20 on HeLa cells. This enabled us to estimate the respective share of CSPG4 and frizzled-1,2,7 in the cytotoxic and cytopathic effect induced by TcdB. Our data reveal that binding to frizzled-1,2,7 and to CSPG4 occurs independently and in an additive manner.
Collapse
Affiliation(s)
- Daniel Henkel
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany; (D.H.); (H.T.); (D.S.)
| | - Helma Tatge
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany; (D.H.); (H.T.); (D.S.)
| | - Dennis Schöttelndreier
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany; (D.H.); (H.T.); (D.S.)
| | - Liang Tao
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (L.T.); (M.D.)
- Departments of Surgery and Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Westlake University Hangzhou, Hangzhou 310000, China
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (L.T.); (M.D.)
- Departments of Surgery and Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany; (D.H.); (H.T.); (D.S.)
- Correspondence:
| |
Collapse
|
6
|
Schöttelndreier D, Langejürgen A, Lindner R, Genth H. Low Density Lipoprotein Receptor-Related Protein-1 (LRP1) Is Involved in the Uptake of Clostridioides difficile Toxin A and Serves as an Internalizing Receptor. Front Cell Infect Microbiol 2020; 10:565465. [PMID: 33194803 PMCID: PMC7604483 DOI: 10.3389/fcimb.2020.565465] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/28/2020] [Indexed: 01/24/2023] Open
Abstract
Toxin producing Clostridioides difficile strains cause gastrointestinal infections with the large glucosylating protein toxins A (TcdA) and B (TcdB) being major virulence factors responsible for the onset of symptoms. TcdA and TcdB enter their target cells via receptor-mediated endocytosis. Inside the cell, the toxins glucosylate and thereby inactivate small GTPases of the Rho-/Ras subfamilies resulting in actin reorganization and cell death. The receptors of TcdA are still elusive, glycoprotein 96 (gp96), the low density lipoprotein receptor family (LDLR) and sulfated glycosaminoglycans (sGAGs) have most recently been suggested as receptors for TcdA. In this study, we provide evidence on rapid endocytosis of Low density lipoprotein Receptor-related Protein-1 (LRP1) into fibroblasts and Caco-2 cells by exploiting biotinylation of cell surface proteins. In contrast, gp96 was not endocytosed either in the presence or absence of TcdA. The kinetics of internalization of TfR and LRP1 were comparable in the presence and the absence of TcdA, excluding that TcdA facilitates its internalization by triggering internalization of its receptors. Exploiting fibroblasts with a genetic deletion of LRP1, TcdA was about one order of magnitude less potent in LRP1-deficient cells as compared to the corresponding control cells. In contrast, TcdB exhibited a comparable potency in LRP1-proficient and -deficient fibroblasts. These findings suggested a role of LRP1 in the cellular uptake of TcdA but not of TcdB. Correspondingly, binding of TcdA to the cell surface of LRP1-deficient fibroblasts was reduced as compared with LRP1-proficient fibroblasts. Finally, TcdA bound to LRP1 ligand binding type repeat cluster II (amino acid 786–1,165) and cluster IV (amino acid 3332-3779). In conclusion, LRP1 appears to serve as an endocytic receptor and gp96 as a non-endocytic receptor for TcdA.
Collapse
Affiliation(s)
| | - Anna Langejürgen
- Institutes for Toxicology, Hannover Medical School, Hannover, Germany
| | - Robert Lindner
- Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Harald Genth
- Institutes for Toxicology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Martins CS, Costa DVS, Lima BB, Leitäo RFC, Freire GE, Silva GFM, Pacífico DM, Abreu JG, Brito GAC. Clostridioides difficile Toxin A-Induced Wnt/β-Catenin Pathway Inhibition Is Mediated by Rac1 Glucosylation. Front Microbiol 2020; 11:1998. [PMID: 32983019 PMCID: PMC7483921 DOI: 10.3389/fmicb.2020.01998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile toxin A (TcdA) has been shown to inhibit cellular Wnt signaling, the major driving force behind the proliferation of epithelial cells in colonic crypts, likely through the inhibition of β-catenin nuclear translocation. Herein, we aimed to advance the understanding of this mechanism by replicating the findings in vivo and by investigating the specific role of Rac1, a member of the Rho GTPase family, on the inhibition of the Wnt-induced β-catenin nuclear translocation triggered by TcdA. To investigate the effects of TcdA on the Wnt/β-catenin pathway in vivo, we injected the ileal loops of C57BL/6 mice with TcdA [phosphate-buffered saline (PBS) as the control] to induce C. difficile disease-like ileitis. After 4 h post-injection, we obtained ileum tissue samples to assess Wnt signaling activation and cell proliferation through Western blotting, immunohistochemistry, and qPCR. To assess the role of Rac1 on Wnt signaling inhibition by TcdA, we transfected rat intestinal epithelial cells (IEC-6) with either a constitutively active Rac1 plasmid (pcDNA3-EGFP-Rac1-Q61L) or an empty vector, which served as the control. We incubated these cells with Wnt3a-conditioned medium (Wnt3a-CM) to induce Wnt/β-catenin pathway activation, and then challenged the cells with TcdA. We assessed Wnt signaling activation in vitro with TOP/FOPflash luciferase assays, determined nuclear β-catenin translocation by immunofluorescence, measured cyclin D1 protein expression by Western blotting, and quantified cell proliferation by Ki67 immunostaining. In vivo, TcdA decreased β-catenin, cyclin D1, and cMYC expression and inhibited the translocation of β-catenin into the nucleus in the ileum epithelial cells. In addition, TcdA suppressed cell proliferation and increased Wnt3a expression, but did not alter Rac1 gene expression in the ileum tissue. In vitro, constitutively active Rac1 prevented Wnt signaling inhibition by enabling the β-catenin nuclear translocation that had been blocked by TcdA. Our results show that TcdA inhibits Wnt/β-catenin pathway in vivo and demonstrate that this inhibition is likely caused by a Rac1-mediated mechanism.
Collapse
Affiliation(s)
- Conceição S Martins
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Deiziane V S Costa
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Bruno B Lima
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Renata F C Leitäo
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Gildênio E Freire
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Guilherme F M Silva
- Department of Medical Sciences, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Dvison M Pacífico
- Department of Medical Sciences, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - José G Abreu
- Department of Anatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gerly A C Brito
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
8
|
Chung SY, Schöttelndreier D, Tatge H, Fühner V, Hust M, Beer LA, Gerhard R. The Conserved Cys-2232 in Clostridioides difficile Toxin B Modulates Receptor Binding. Front Microbiol 2018; 9:2314. [PMID: 30416488 PMCID: PMC6212469 DOI: 10.3389/fmicb.2018.02314] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022] Open
Abstract
Clostridioides difficile toxins TcdA and TcdB are large clostridial glucosyltransferases which are the main pathogenicity factors in C. difficile-associated diseases. Four highly conserved cysteines are present in all large clostridial glucosyltransferases. In this study we focused on the conserved cysteine 2232 within the combined repetitive oligopeptide domain of TcdB from reference strain VPI10463 (clade I). Cysteine 2232 is not present in TcdB from hypervirulent strain R20291 (clade II), where a tyrosine is found instead. Replacement of cysteine 2232 by tyrosine in TcdBV PI10463 reduced binding to the soluble fragments of the two known TcdB receptors, frizzled-2 (FZD2) and poliovirus receptor-like protein-3/nectin-3 (PVRL3). In line with this, TcdBR20291 showed weak binding to PVRL3 in pull-down assays which was increased when tyrosine 2232 was exchanged for cysteine. Surprisingly, we did not observe binding of TcdBR20291 to FZD2, indicating that this receptor is less important for this toxinotype. Competition assay with the receptor binding fragments (aa 1101–1836) of TcdBV PI10463 and TcdBR20291, as well as antibodies newly developed by antibody phage display, revealed different characteristics of the yet poorly described delivery domain of TcdB harboring the second receptor binding region. In summary, we found that conserved Cys-2232 in TcdB indirectly contributes to toxin–receptor interaction.
Collapse
Affiliation(s)
- Soo-Young Chung
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| | | | - Helma Tatge
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| | - Viola Fühner
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| |
Collapse
|