1
|
Papadopoulos S, Hardy D, Vernel-Pauillac F, Tichit M, Boneca IG, Werts C. Myocarditis and neutrophil-mediated vascular leakage but not cytokine storm associated with fatal murine leptospirosis. EBioMedicine 2025; 112:105571. [PMID: 39889371 PMCID: PMC11830356 DOI: 10.1016/j.ebiom.2025.105571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Leptospirosis is a globally neglected re-emerging zoonosis affecting all mammals, albeit with variable outcomes. Humans are susceptible to leptospirosis; infection with Leptospira interrogans species can cause severe disease in humans, with multi-organ failure, mainly affecting kidney, lung and liver function, leading to death in 10% of cases. Mice and rats are more resistant to acute disease and can carry leptospires asymptomatically in the kidneys and act as reservoirs, shedding leptospires into the environment. The incidence of leptospirosis is higher in tropical countries, and countries with poor sanitation, where heavy rainfall and flooding favour infection. Diagnosis of leptospirosis is difficult because of the many different serovars and the variety of clinical symptoms that can be confused with viral infections. The physiopathology is poorly understood, and leptospirosis is often regarded as an inflammatory disease, like sepsis. METHODS To investigate the causes of death in lethal leptospirosis, we compared intraperitoneal infection of male and female C57BL6/J mice with 108Leptospira of two strains of pathogenic L. interrogans. One strain, L. interrogans Manilae L495, killed the mice 4 days after infection, whereas the other strain, L. interrogans Icterohaemorrhagiae Verdun, did not induce any major symptoms in the mice. On day 3 post infection, the mice were humanely euthanised and blood and organs were collected. Bacterial load, biochemical parameters, cytokine production and leucocyte population were assessed by qPCR, ELISA, cytometry and immunohistochemistry. FINDINGS Neither lung, liver, pancreas or kidney damage nor massive necroptosis or cytokine storm could explain the lethality. Although we did not find pro-inflammatory cytokines, we did find elevated levels of the anti-inflammatory cytokine IL-10 and the chemokine RANTES in the serum and organs of Leptospira-infected mice. In contrast, severe leptospirosis was associated with neutrophilia and vascular permeability, unexpectedly due to neutrophils and not only due to Leptospira infection. Strikingly, the main cause of death was myocarditis, an overlooked complication of human leptospirosis. INTERPRETATION Despite clinical similarities between bacterial sepsis and leptospirosis, striking differences were observed, in particular a lack of cytokine storm in acute leptospirosis. The fact that IL-10 was increased in infected mice may explain the lack of pro-inflammatory cytokines, emphasising the covert nature of Leptospira infections. Neutrophilia is a hallmark of human leptospirosis. Our findings confirm the ineffective control of infection by neutrophils and highlight their deleterious role in vascular permeability, previously only attributed to the ability of leptospires to damage and cross endothelial junctions. Finally, the identification of death due to myocarditis rather than kidney, liver or liver failure may reflect an overlooked but common symptom associated with poor prognosis in human leptospirosis. These features of neutrophilia and myocarditis are also seen in patients, making this mouse model a paradigm for better understanding human leptospirosis and designing new therapeutic strategies. FUNDING The Boneca laboratory was supported by the following programmes: Investissement d'Avenir program, Laboratoire d'Excellence "Integrative Biology of Emerging Infectious Diseases" (ANR-10-LABX-62-IBEID) and by R&D grants from Danone and MEIJI. CW received an ICRAD/ANR grant (S-CR23012-ANR 22 ICRD 0004 01). SP received a scholarship by Université Paris Cité (formerly Université Paris V - Descartes) through Doctoral School BioSPC (ED562, BioSPC). SP has additionally received a scholarship "Fin de Thèse de Science" number FDT202404018322 granted by "Fondation pour la Recherche Médicale (FRM)". The funders had no implication in the design, analysis and reporting of the study.
Collapse
Affiliation(s)
- Stylianos Papadopoulos
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, F-75015, France
| | - David Hardy
- Institut Pasteur, Université Paris Cité, Histopathology Core Facility, Paris, F-75015, France
| | - Frédérique Vernel-Pauillac
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, F-75015, France
| | - Magali Tichit
- Institut Pasteur, Université Paris Cité, Histopathology Core Facility, Paris, F-75015, France
| | - Ivo G Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, F-75015, France
| | - Catherine Werts
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, F-75015, France.
| |
Collapse
|
2
|
Kappagoda C, Senavirathna I, Agampodi T, Agampodi SB. Role of Toll-like receptor 2 during infection of Leptospira spp: A systematic review. PLoS One 2024; 19:e0312466. [PMID: 39729468 DOI: 10.1371/journal.pone.0312466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024] Open
Abstract
The involvement of Toll-like receptor 2 (TLR2) in leptospirosis is poorly understood. Our systematic review examined its role across in-vitro, in-vivo, ex-vivo, and human studies. Original articles published in English up to January 2024, exploring the role of TLR2 during leptospirosis, were selected from databases including PubMed, Web of Science, Scopus, Trip, and Google Scholar. Cochrane guidelines and Preferred Reporting Items for Systematic Reviews and Meta-Analyses were followed by this systematic review. The National Institute of Health Quality Assessment tool, Systematic Review Centre for Laboratory Animal Experimentation risk of bias tool, and Office of Health Assessment and Translation extended tool were used to assess the risk of bias of the studies. Out of 2458 studies retrieved, 35 were selected for the systematic review. These comprised 3 human, 17 in-vitro, 5 in-vivo, 3 ex-vivo, and 7 studies with combined experimental models. We assessed the direct TLR2 expression and indirect TLR2 involvement via the secretion/mRNA expression of immune effectors during leptospirosis. Notably, we observed the secretion/mRNA expression of several cytokines (IL6, IL8, IL-1β, TNFα, IFNγ, IL10, CCL2/MCP-1, CCL10, COX2, CXCL1/KC, CXCL2/MIP2) and immune effectors (hBD2, iNOS, Fibronectin, Oxygen, and Nitrogen reactive species) as key aspects of host TLR2 responses during leptospirosis. Even though increased TLR2 expression in in-vivo and in-vitro studies was evident, human studies reported mixed results showing that the postulated effect of TLR2 response based on other studies may not be valid for human leptospirosis. Besides the role of TLR2 in response to leptospirosis, the involvement of TLR4 and TLR5 was identified in in-vitro and in-vivo studies. TLR2 expression is inconclusive during human leptospirosis and further studies are needed to examine the immune effector regulation, through TLR2 for mitigating the harmful effects and promoting effective immune responses.
Collapse
Affiliation(s)
- Chamila Kappagoda
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Anuradhapura, Sri Lanka
| | - Indika Senavirathna
- Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Anuradhapura, Sri Lanka
| | - Thilini Agampodi
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Anuradhapura, Sri Lanka
- International Vaccine Institute, Seoul, Republic of Korea
| | - Suneth Buddhika Agampodi
- International Vaccine Institute, Seoul, Republic of Korea
- Department of Internal Medicine, Section of Infectious Diseases, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
3
|
Mariano IHDM, Blanco RM, de Souza CE, de Freitas GS, Ho PL, Martins EAL, Romero EC, da Silva JB. Chemokine profile in the serum of patients with leptospirosis. Front Cell Infect Microbiol 2024; 14:1484291. [PMID: 39534703 PMCID: PMC11554663 DOI: 10.3389/fcimb.2024.1484291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Leptospirosis is a global zoonosis that affects more than one million people per year, with a lethality rate of approximately 15%. Chemokines are crucial in the immune response against Leptospira, recruiting leukocytes to the site of infection and regulating immune activity. In previous studies, we have shown that CCL2, CXCL5, and CCL8 are involved in the leptospirosis process, although the mechanisms are not understood. Methods In this study, we present the frequency of Leptospira serovars in human samples. We then evaluated the profile of various chemokines in sera from patients diagnosed with leptospirosis, assessing the possible correlation between them. Moreover, we evaluated the changes in the chemokine profile on different days after the first symptoms. The frequency of the Leptospira serovars in human samples is presented. Results and discussion The main findings were that CCL5, CXCL5, and CXCL9 are highly expressed during leptospirosis, indicating a special role of these molecules in the immunity and pathogenesis of the disease. The correlation analysis of detected chemokines CXCL11, CXCL9, CCL3, and CCL2 helps to clarify the role of each cytokine in leptospirosis. The possible use of CCL5 as a biomarker for complementary diagnosis of the disease is suggested.
Collapse
Affiliation(s)
- Iago H. de Miranda Mariano
- Laboratory of Bacteriology, Butantan Institute, Sao Paulo, Brazil
- Biosciences Department, Rice University, Houston, TX, United States
| | - Roberta M. Blanco
- Laboratory of Bacteriology, Adolfo Lutz Institute, Sao Paulo, Brazil
| | | | | | - Paulo Lee Ho
- Bioindustrial Division, Butantan Institute, São Paulo, Brazil
| | | | - Eliete C. Romero
- Laboratory of Bacteriology, Adolfo Lutz Institute, Sao Paulo, Brazil
| | | |
Collapse
|
4
|
Ruiz-Pacheco JA, Reyes-Martínez JE, Gómez-Navarro B, Castillo-Díaz LA, Portilla de Buen E. Leptospirosis: A dual threat - predisposing risk for renal transplant and trigger for renal transplant dysfunction. Hum Immunol 2024; 85:110835. [PMID: 38972268 DOI: 10.1016/j.humimm.2024.110835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Leptospirosis (LTPS) is a bacterial infection that affects humans, often with mild or no symptoms. It is estimated that approximately 10 % of patients with LTPS may experience multi-organ dysfunction, including renal abnormalities. In regions where LTPS is widespread, a considerable number of instances involving acute kidney injury (AKI) and chronic kidney disease (CKD) of unknown etiology (CKDu) have been reported. Additionally, studies have shown a correlation between kidney graft dysfunction in patients with stable kidney transplants after LTPS. These findings indicate that exposure to LTPS may increase the likelihood of kidney transplantation due to the onset of both acute and chronic kidney injuries. Simultaneously, it poses a potential risk to the stability of kidney grafts. Unfortunately, there is limited scientific literature addressing this issue, making it difficult to determine the negative impact that LTPS may have, such as its role as a risk factor for the need of kidney transplantation or as a threat to individuals who have undergone kidney transplants. This study aims to shed light on the immune mechanisms triggered during LTPS infection and their importance in both kidney damage and allograft dysfunction.
Collapse
Affiliation(s)
- Juan Alberto Ruiz-Pacheco
- Investigador por México-CONAHCYT, División de Investigación Quirúrgica, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jalisco, Mexico.
| | | | - Benjamín Gómez-Navarro
- Servicio de Nefrología y trasplantes, Hospital Country 2000, Guadalajara, Jalisco, Mexico
| | - Luis Alberto Castillo-Díaz
- Departamento de Medicina y Ciencias de la Salud, Facultad Interdiciplinaria de Ciencias Biólogicas y de la Salud, Universidad de Sonora, Hermosillo, Mexico
| | - Eliseo Portilla de Buen
- Laboratorio de Investigación quirúrgica, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jalisco, Mexico
| |
Collapse
|
5
|
Ortiz Wilczyñski JM, Mena HA, Ledesma MM, Olexen CM, Podaza E, Schattner M, Negrotto S, Errasti AE, Carrera Silva EA. The synthetic phospholipid C8-C1P determines pro-angiogenic and pro-reparative features in human macrophages restraining the proinflammatory M1-like phenotype. Front Immunol 2023; 14:1162671. [PMID: 37398671 PMCID: PMC10311553 DOI: 10.3389/fimmu.2023.1162671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Monocytes (Mo) are highly plastic myeloid cells that differentiate into macrophages after extravasation, playing a pivotal role in the resolution of inflammation and regeneration of injured tissues. Wound-infiltrated monocytes/macrophages are more pro-inflammatory at early time points, while showing anti-inflammatory/pro-reparative phenotypes at later phases, with highly dynamic switching depending on the wound environment. Chronic wounds are often arrested in the inflammatory phase with hampered inflammatory/repair phenotype transition. Promoting the tissue repair program switching represents a promising strategy to revert chronic inflammatory wounds, one of the major public health loads. We found that the synthetic lipid C8-C1P primes human CD14+ monocytes, restraining the inflammatory activation markers (HLA-DR, CD44, and CD80) and IL-6 when challenged with LPS, and preventing apoptosis by inducing BCL-2. We also observed increased pseudo-tubule formation of human endothelial-colony-forming cells (ECFCs) when stimulated with the C1P-macrophages secretome. Moreover, C8-C1P-primed monocytes skew differentiation toward pro-resolutive-like macrophages, even in the presence of inflammatory PAMPs and DAMPs by increasing anti-inflammatory and pro-angiogenic gene expression patterns. All these results indicate that C8-C1P could restrain M1 skewing and promote the program of tissue repair and pro-angiogenic macrophage.
Collapse
Affiliation(s)
- Juan Manuel Ortiz Wilczyñski
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
| | - Hebe Agustina Mena
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
| | - Martin Manuel Ledesma
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
| | - Cinthia Mariel Olexen
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
- Institute of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Enrique Podaza
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Mirta Schattner
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
| | - Soledad Negrotto
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
| | - Andrea Emilse Errasti
- Institute of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Eugenio Antonio Carrera Silva
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
| |
Collapse
|
6
|
Huete SG, Benaroudj N. The Arsenal of Leptospira Species against Oxidants. Antioxidants (Basel) 2023; 12:1273. [PMID: 37372003 DOI: 10.3390/antiox12061273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Reactive oxygen species (ROS) are byproducts of oxygen metabolism produced by virtually all organisms living in an oxic environment. ROS are also produced by phagocytic cells in response to microorganism invasion. These highly reactive molecules can damage cellular constituents (proteins, DNA, and lipids) and exhibit antimicrobial activities when present in sufficient amount. Consequently, microorganisms have evolved defense mechanisms to counteract ROS-induced oxidative damage. Leptospira are diderm bacteria form the Spirochaetes phylum. This genus is diverse, encompassing both free-living non-pathogenic bacteria as well as pathogenic species responsible for leptospirosis, a widespread zoonotic disease. All leptospires are exposed to ROS in the environment, but only pathogenic species are well-equipped to sustain the oxidative stress encountered inside their hosts during infection. Importantly, this ability plays a pivotal role in Leptospira virulence. In this review, we describe the ROS encountered by Leptospira in their different ecological niches and outline the repertoire of defense mechanisms identified so far in these bacteria to scavenge deadly ROS. We also review the mechanisms controlling the expression of these antioxidants systems and recent advances in understanding the contribution of Peroxide Stress Regulators in Leptospira adaptation to oxidative stress.
Collapse
Affiliation(s)
- Samuel G Huete
- Institut Pasteur, Université Paris Cité, Biologie des Spirochètes, CNRS UMR 6047, F-75015 Paris, France
| | - Nadia Benaroudj
- Institut Pasteur, Université Paris Cité, Biologie des Spirochètes, CNRS UMR 6047, F-75015 Paris, France
| |
Collapse
|
7
|
Petakh P, Isevych V, Kamyshnyi A, Oksenych V. Weil's Disease-Immunopathogenesis, Multiple Organ Failure, and Potential Role of Gut Microbiota. Biomolecules 2022; 12:1830. [PMID: 36551258 PMCID: PMC9775223 DOI: 10.3390/biom12121830] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Leptospirosis is an important zoonotic disease, causing about 60,000 deaths annually. In this review, we have described in detail the immunopathogenesis of leptospirosis, the influence of cytokines, genetic susceptibility on the course of the disease, and the evasion of the immune response. These data are combined with information about immunological and pathomorphological changes in the kidneys, liver, and lungs, which are most affected by Weil's disease. The review also suggests a possible role of the gut microbiota in the clinical course of leptospirosis, the main mechanisms of the influence of gut dysbiosis on damage in the liver, kidneys, and lungs through several axes, i.e., gut-liver, gut-kidney, and gut-lungs. Modulation of gut microbiota by probiotics and/or fecal microbiota transplantation in leptospirosis may become an important area of scientific research.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine
| | - Vitaliia Isevych
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| |
Collapse
|
8
|
The phytoactive constituents of Eugenia selloi B.D. Jacks (pitangatuba): Toxicity and elucidation of their anti-inflammatory mechanism(s) of action. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 4:100093. [PMID: 35415693 PMCID: PMC8991978 DOI: 10.1016/j.fochms.2022.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/20/2022]
Abstract
Purified subfraction from Eugenia selloi fruit, showed anti-inflammatory activity. It were identified isomers of quercetrin, vanillic acid, and coumaric acid. S8 reduced NF-κB, IL-1β, IL-6, IL-10, MDC and MCP-1 levels in macrophages. S8 reduced neutrophil migration and ICAM-1 expression in mice. S8 showed scavenging capacity against ROO•, HOCl and NO• biological radicals.
We determined the phytochemical composition, anti-inflammatory mechanism of action, ROS/RNS scavenging capacity and systemic toxicity of a purified subfraction (S8) of Eugenia selloi. The composition of S8 was assessed by LC-ESI-QTOF-MS; the anti-inflammatory activity in RAW264.7 macrophages through NF-κB activation and biomarkers by multiplex in THP-1 cells; neutrophil migration, intravital microscopy and ICAM-1 expression in mice; NETs formation and CD11b expression; S8 scavenging capacity of ROS/RNS; toxicity in Galleria mellonella larvae model. Coumaric acid, quercetrin and vanillic acid were identified. S8 decreased NF-κB activation, IL-1β, IL-6, IL-10, MDC and MCP-1 levels, reduced neutrophil migration and ICAM-1 expression in mice; S8 did not interfere NET formation and CD11b expression, exhibited high antioxidant and showed negligible toxicity. E. selloi proved to be a promising, yet underexplored source of bioactive compounds, which can be useful employed in agribusiness and in the pharmaceutical and food industry to develop new products or human health supplies.
Collapse
|
9
|
Philip N, Priya SP, Jumah Badawi AH, Mohd Izhar MH, Mohtarrudin N, Tengku Ibrahim TA, Sekawi Z, Neela VK. Pulmonary haemorrhage as the earliest sign of severe leptospirosis in hamster model challenged with Leptospira interrogans strain HP358. PLoS Negl Trop Dis 2022; 16:e0010409. [PMID: 35584087 PMCID: PMC9116642 DOI: 10.1371/journal.pntd.0010409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/10/2022] [Indexed: 11/18/2022] Open
Abstract
Background Severe leptospirosis is challenging as it could evolve rapidly and potentially fatal if appropriate management is not performed. An understanding of the progression and pathophysiology of Leptospira infection is important to determine the early changes that could be potentially used to predict the severe occurrence of leptospirosis. This study aimed to understand the kinetics pathogenesis of Leptospira interrogans strain HP358 in the hamster model and identify the early parameters that could be used as biomarkers to predict severe leptospirosis. Methodology/Principal findings Male Syrian hamsters were infected with Leptospira interrogans strain HP358 and euthanized after 24 hours, 3, 4, 5, 6 and 7 days post-infection. Blood, lungs, liver and kidneys were collected for leptospiral detection, haematology, serum biochemistry and differential expression of pro- and anti-inflammatory markers. Macroscopic and microscopic organ damages were investigated. Leptospira interrogans strain HP358 was highly pathogenic and killed hamsters within 6–7 days post-infection. Pulmonary haemorrhage and blood vessel congestion in organs were noticed as the earliest pathological changes. The damages in organs and changes in biochemistry value were preceded by changes in haematology and immune gene expression. Conclusion/Significance This study deciphered haemorrhage as the earliest manifestation of severe leptospirosis and high levels of IL-1β, CXCL10/IP-10, CCL3/MIP-α, neutrophils and low levels of lymphocytes and platelets serve as a cumulative panel of biomarkers in severe leptospirosis. As the severe form of leptospirosis could progress rapidly and be potentially fatal if not treated earlier, deciphering the pathophysiology kinetics of infection is crucial to determine the parameters of disease severity. To understand this, we challenged hamsters with the highly virulent Leptospira interrogans strain HP358. Pulmonary haemorrhage was observed as the earliest pathological change followed by liver and kidneys damages. The increased expression of IL-1β, CXCL10/IP-10, CCL3/MIP-α, high neutrophils and low lymphocytes and platelets production observed in the present study indicate that these parameters could serve as a cumulative panel of biomarkers in severe leptospirosis.
Collapse
Affiliation(s)
- Noraini Philip
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sivan Padma Priya
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- RAK College of Dental Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Ahmad Hussein Jumah Badawi
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Hafidz Mohd Izhar
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tengku Azmi Tengku Ibrahim
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Vasantha Kumari Neela
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
10
|
Kundu S, Shetty A, Gomes-Solecki M. Necroptosis Contributes to Persistent Inflammation During Acute Leptospirosis. Front Immunol 2022; 13:810834. [PMID: 35392072 PMCID: PMC8980737 DOI: 10.3389/fimmu.2022.810834] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Leptospirosis is an emerging infectious disease. Recently, canine and human leptospirosis outbreaks were reported in California and New York, respectively. In this study we evaluated the role that cell death processes play in the inflammatory response to Leptospira. Groups of male C3H/HeJ mice were infected with pathogenic L. interrogans and non-pathogenic L. biflexa for 24 and 72 hours; inflammatory processes were characterized for apoptosis and necroptosis by flowcytometry of spleen cells and were further assessed for expression of biomarkers of necroptosis by western blot. We found that pathogenic L. interrogans promotes apoptosis in myeloid neutrophils and monocytes at 24h and 72h post-infection, whereas L. biflexa promotes apoptosis of myeloid monocytes only at 24h post-infection. It is interesting that the immune cells undergoing the common programmed cell death pathway (apoptosis) are the cell types which were not increased in frequency in spleen of mice infected with L. interrogans (neutrophils) and L. biflexa (monocytes) in our previous study. The same trend was observed with pathogenic L. interrogans inducing necroptosis of myeloid neutrophils in addition to monocytes and macrophages at 24h and/or 72h post-infection, whereas L. biflexa promoted this pro-inflammatory cell death process in monocytes and macrophages only at 24h post-infection. Thus, early apoptosis and necroptosis of these cell types may explain its absence in frequency in spleen. Furthermore, at 24h and 72h, expression of the necroptosis molecular biomarkers p-MLKL, p-RIP1 and p-RIP3 was increased post infection with pathogenic L. interrogans. These data suggest that the underlying cell death processes involved in immune responses to pathogenic Leptospira contribute directly to persistent inflammation during the early stages of leptospirosis.
Collapse
Affiliation(s)
- Suman Kundu
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Advait Shetty
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Maria Gomes-Solecki
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States,Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States,*Correspondence: Maria Gomes-Solecki,
| |
Collapse
|
11
|
He Z, Xiao J, Wang J, Lu S, Zheng K, Yu M, Liu J, Wang C, Ding N, Liang M, Wu Y. The Chlamydia psittaci Inclusion Membrane Protein 0556 Inhibits Human Neutrophils Apoptosis Through PI3K/AKT and NF-κB Signaling Pathways. Front Immunol 2021; 12:694573. [PMID: 34484191 PMCID: PMC8414580 DOI: 10.3389/fimmu.2021.694573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/23/2021] [Indexed: 01/09/2023] Open
Abstract
Inclusion membrane proteins (Incs) play an important role in the structure and stability of chlamydial inclusion and the interaction between Chlamydia spp. and their hosts. Following Chlamydia infection through the respiratory tract, human polymorphonuclear neutrophils (hPMN) not only act as the primary immune cells reaching the lungs, but also serve as reservoir for Chlamydia. We have previously identified a Chlamydia psittaci hypothetical protein, CPSIT_0556, as a medium expressed inclusion membrane protein. However, the role of inclusion membrane protein, CPSIT_0556 in regulating hPMN functions remains unknown. In the present study, we found that CPSIT_0556 could not only inhibit hPMN apoptosis through the PI3K/Akt and NF-κB signaling pathways by releasing IL-8, but also delays procaspase-3 processing and inhibits caspase-3 activity in hPMN. Up-regulating the expression of anti-apoptotic protein Mcl-1 and down-regulating the expression of pro-apoptotic protein Bax could also inhibit the translocalization of Bax in the cytoplasm into the mitochondria, as well as induce the transfer of p65 NF-κB from the cytoplasm to the nucleus. Overall, our findings demonstrate that CPSIT_0556 could inhibit hPMN apoptosis through PI3K/Akt and NF-κB pathways and provide new insights towards understanding a better understanding of the molecular pathogenesis and immune escape mechanisms of C. psittaci.
Collapse
Affiliation(s)
- Zhangping He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Jian Xiao
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital of University of South China, Hengyang, China
| | - Jianye Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Simin Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Kang Zheng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Maoying Yu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Jie Liu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Nan Ding
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Mingxing Liang
- Department of Clinical Laboratory, The Affiliated Huaihua Hospital of University of South China, Huaihua, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| |
Collapse
|
12
|
Shetty A, Kundu S, Gomes-Solecki M. Inflammatory Signatures of Pathogenic and Non-Pathogenic Leptospira Infection in Susceptible C3H-HeJ Mice. Front Cell Infect Microbiol 2021; 11:677999. [PMID: 34249775 PMCID: PMC8264587 DOI: 10.3389/fcimb.2021.677999] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022] Open
Abstract
The exact global impact of leptospirosis is unknown due to inadequate surveillance systems in place in most low-income countries. In this study, we analyzed the differences in mouse inflammatory signatures involved in pathogenic versus non-pathogenic Leptospira recognition at 24h and 72h post infection. Injection of C3H-HeJ mice with non-pathogenic L. biflexa increased circulation of a few chemokines (5/21, 24%) without secretion of cytokines in blood that resulted in engagement of resident macrophages, dendritic cells, neutrophils and NK cells without engagement of T cells. In contrast, pathogenic L. interrogans induced circulation of a much higher panel of chemokines (18/21, 86%) and pro- and anti-inflammatory cytokines (11/19, 58%) in blood with a resulting signaling cascade leading to engagement of macrophages, dendritic cells, monocytes, NK cells and T cells without engagement of neutrophils. Although neutrophils do not appear to be engaged, a considerable number of chemokines that recruit other granulocytes such as eosinophils and basophils were also increased at 72h post infection with L. interrogans. Overall, the data suggest that prevention of dissemination of L. biflexa is associated with an early engagement of the innate immune response characterized by upregulation of a few chemokines that results in an efficacious phagocytic response without an overwhelming increase of pro-inflammatory cytokines. However, when macrophages fail to clear a pathogenic serovar such as L. interrogans, the adaptive response (T cells) is engaged to help out, but the resulting chemo-cytokine storm mediates a robust but non-resolving inflammatory response to pathogenic Leptospira that results in dissemination, kidney colonization, pathology and disease.
Collapse
Affiliation(s)
- Advait Shetty
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Suman Kundu
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Maria Gomes-Solecki
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States,Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States,*Correspondence: Maria Gomes-Solecki,
| |
Collapse
|
13
|
Santecchia I, Ferrer MF, Vieira ML, Gómez RM, Werts C. Phagocyte Escape of Leptospira: The Role of TLRs and NLRs. Front Immunol 2020; 11:571816. [PMID: 33123147 PMCID: PMC7573490 DOI: 10.3389/fimmu.2020.571816] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
The spirochetal bacteria Leptospira spp. are causative agents of leptospirosis, a globally neglected and reemerging zoonotic disease. Infection with these pathogens may lead to an acute and potentially fatal disease but also to chronic asymptomatic renal colonization. Both forms of disease demonstrate the ability of leptospires to evade the immune response of their hosts. In this review, we aim first to recapitulate the knowledge and explore the controversial data about the opsonization, recognition, intracellular survival, and killing of leptospires by scavenger cells, including platelets, neutrophils, macrophages, and dendritic cells. Second, we will summarize the known specificities of the recognition or escape of leptospire components (the so-called microbial-associated molecular patterns; MAMPs) by the pattern recognition receptors (PRRs) of the Toll-like and NOD-like families. These PRRs are expressed by phagocytes, and their stimulation by MAMPs triggers pro-inflammatory cytokine and chemokine production and bactericidal responses, such as antimicrobial peptide secretion and reactive oxygen species production. Finally, we will highlight recent studies suggesting that boosting or restoring phagocytic functions by treatments using agonists of the Toll-like or NOD receptors represents a novel prophylactic strategy and describe other potential therapeutic or vaccine strategies to combat leptospirosis.
Collapse
Affiliation(s)
- Ignacio Santecchia
- Institut Pasteur, Microbiology Department, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie intégrative et Moléculaire, Paris, France
- INSERM, Equipe Avenir, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - María Florencia Ferrer
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Monica Larucci Vieira
- Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Martín Gómez
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Catherine Werts
- Institut Pasteur, Microbiology Department, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie intégrative et Moléculaire, Paris, France
| |
Collapse
|
14
|
Felix CR, Siedler BS, Barbosa LN, Timm GR, McFadden J, McBride AJA. An overview of human leptospirosis vaccine design and future perspectives. Expert Opin Drug Discov 2019; 15:179-188. [PMID: 31777290 DOI: 10.1080/17460441.2020.1694508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: It's been 20 years since the first report of a recombinant vaccine that protected against leptospirosis. Since then, numerous recombinant vaccines have been evaluated; however, no recombinant vaccine candidate has advanced to clinical trials. With the ever-increasing burden of leptospirosis, there is an urgent need for a universal vaccine against leptospirosis.Areas covered: This review covers the most promising vaccine candidates that induced significant, reproducible, protection and how advances in the field of bioinformatics has led to the discovery of hundreds of novel protein targets. The authors also discuss the most recent findings regarding the innate immune response and host-pathogen interactions and their impact on the discovery of novel vaccine candidates. In addition, the authors have identified what they believe are the most challenging problems for the discovery and development of a universal vaccine and their potential solutions.Expert opinion: A universal vaccine for leptospirosis will likely only be achieved using a recombinant vaccine as the bacterins are of limited use due to the lack of a cross-protective immune response. Although there are hundreds of novel targets, due to the lack of immune correlates and the need for more research into the basic microbiology of Leptospira spp., a universal vaccine is 10-15 years away.
Collapse
Affiliation(s)
- Carolina R Felix
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| | - Bianca S Siedler
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil.,School of Biosciences and Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Liana N Barbosa
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| | - Gabriana R Timm
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| | - Johnjoe McFadden
- School of Biosciences and Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Alan J A McBride
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|