1
|
Li Z, Xu Y, Wang Q, Yuan G, Shu J, Liu S, Gong X. The natural immune molecules urinary Tamm-Horsfall protein and pentraxin 3 as predictors for recurrent urinary tract infection severity: a single-center self-control study. Ren Fail 2025; 47:2449574. [PMID: 39780518 PMCID: PMC11721855 DOI: 10.1080/0886022x.2024.2449574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE The innate immune defense plays a pivotal role in protecting the urinary tract from uropathogenic invasion and maintaining immune homeostasis. Dysregulation of the innate immune system can result in recurrent urinary tract infections (RUTI) due to heightened susceptibility to uropathogens. Despite this, predicting the risk of recurrence and the degree of immune compromise in patients who have had one urinary tract infection remains challenging. Also identifying which patients are more susceptible to developing pyelonephritis rather than the more local disease of cystitis is imperfect, although delayed diagnosis of a UTI is a good indicator for developing pyelonephritis. This study aims to assess the potential of urinary Tamm-Horsfall protein (THP) and Pentraxin 3 (PTX3) as predictors of RUTI symptom severity and recurrence, while also evaluating the efficacy of the Chinese herbal formulation Tailin Formula (TLF) as a clinical therapeutic intervention for RUTI. METHODS A single-center cohort study was conducted involving 142 participants, consisting of 31 healthy individuals (non-RUTI group, n = 31) and 111 patients with RUTI. The RUTI patients were divided into two groups: one group received continuous low-dose antibiotic therapy (CLAT group, n = 55), and the other group received herbal preparations (Tailin formula) (TLF group, n = 56). All patients received consistent lifestyle guidance. Descriptive analysis was performed on the RUTI cohort. RESULTS Urinary THP levels were significantly lower in RUTI patients (TLF and CLAT groups) compared to the non-RUTI, whereas PTX3 levels showed a tendency toward elevation. After treatment, urinary THP levels were markedly higher in the TLF group (27.43 ± 7.07) compared to pretreatment levels (10.00 ± 2.79), while levels remained lower in the CLAT group (8.91 ± 2.23) than in the TLF group. Urinary PTX3 levels decreased post-treatment in both groups after treatment than before (CLAT: 0.30 ± 0.13 vs. 1.04 ± 0.38; TLF: 0.29 ± 0.12 vs. 1.15 ± 0.36). Additionally, THP was negatively correlated with renal tubular injury markers NAG/Cr and β2-MG in RUTI patients (r = -0.5041 and -0.6169, respectively), while PTX3 showed a positive correlation with NAG/Cr and β2-MG (r = 0.28 and 0.498, respectively). Notably, as RUTI symptoms improved and recurrence rates decreased, urinary THP levels increased, while PTX3 levels decreased. CONCLUSION This study suggests that urinary THP and PTX3 are likely involved in the pathogenesis of RUTI. These biomarkers may serve as valuable predictors for assessing symptom severity, recurrence risk, and therapeutic efficacy in patients with RUTI at risk of disease progression.
Collapse
Affiliation(s)
- Zongping Li
- Department of Nephrology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingru Xu
- Department of Chinese Internal Medicine, Taihe County People’s Hospital, Wannan Medical College, Anhui, China
| | - Qian Wang
- Department of Nephrology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gang Yuan
- Department of Chinese Internal Medicine, Xidu Street Community Healthcare Center, Shanghai, China
| | - Jing Shu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuezhong Gong
- Department of Nephrology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Choi JY, Park S, Shim JS, Park HJ, Kuh SU, Jeong Y, Park MG, Noh TI, Yoon SG, Park YM, Lee SJ, Kim H, Kang SH, Lee KH. Explainable artificial intelligence-driven prostate cancer screening using exosomal multi-marker based dual-gate FET biosensor. Biosens Bioelectron 2025; 267:116773. [PMID: 39277920 DOI: 10.1016/j.bios.2024.116773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Prostate Imaging Reporting and Data System (PI-RADS) score, a reporting system of prostate MRI cases, has become a standard prostate cancer (PCa) screening method due to exceptional diagnosis performance. However, PI-RADS 3 lesions are an unmet medical need because PI-RADS provides diagnosis accuracy of only 30-40% at most, accompanied by a high false-positive rate. Here, we propose an explainable artificial intelligence (XAI) based PCa screening system integrating a highly sensitive dual-gate field-effect transistor (DGFET) based multi-marker biosensor for ambiguous lesions identification. This system produces interpretable results by analyzing sensing patterns of three urinary exosomal biomarkers, providing a possibility of an evidence-based prediction from clinicians. In our results, XAI-based PCa screening system showed a high accuracy with an AUC of 0.93 using 102 blinded samples with the non-invasive method. Remarkably, the PCa diagnosis accuracy of patients with PI-RADS 3 was more than twice that of conventional PI-RADS scoring. Our system also provided a reasonable explanation of its decision that TMEM256 biomarker is the leading factor for screening those with PI-RADS 3. Our study implies that XAI can facilitate informed decisions, guided by insights into the significance of visualized multi-biomarkers and clinical factors. The XAI-based sensor system can assist healthcare professionals in providing practical and evidence-based PCa diagnoses.
Collapse
Affiliation(s)
- Jae Yi Choi
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Medical Device Engineering and Management, College of Medicine, Yonsei University, Seoul, 06229, Republic of Korea
| | - Sungwook Park
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Ji Sung Shim
- Department of Urology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Hyung Joon Park
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02481, Republic of Korea
| | - Sung Uk Kuh
- Department of Medical Device Engineering and Management, College of Medicine, Yonsei University, Seoul, 06229, Republic of Korea; Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Youngdo Jeong
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of HY-KIST Bio-convergence, Hanyang University, Seoul, 04763, Republic of Korea
| | - Min Gu Park
- Department of Urology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Tae Il Noh
- Department of Urology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Sung Goo Yoon
- Department of Urology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Yoo Min Park
- Center for Nano Bio Development, National Nanofab Center (NNFC), Daejeon, 34141, Republic of Korea
| | - Seok Jae Lee
- Center for Nano Bio Development, National Nanofab Center (NNFC), Daejeon, 34141, Republic of Korea
| | - Hojun Kim
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Seok Ho Kang
- Department of Urology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Kwan Hyi Lee
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02481, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Sun J, Cheng K, Xie Y. Urinary Tract Infections Detection with Molecular Biomarkers. Biomolecules 2024; 14:1540. [PMID: 39766247 PMCID: PMC11673847 DOI: 10.3390/biom14121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Urinary tract infection (UTI) is the most prevalent kind of pathogenic bacteria infection, and the midstream urine culture is regarded as the gold standard in UTI diagnosis. Recently, even with modern media and techniques such as polymerase chain reaction (PCR), urinary cultures still create a considerable workload for hospital laboratories. Other UTI-detecting methods, such as flow cytometry and lateral flow immunoassay, suffer from various drawbacks like long time consumption and low sensitivity. Therefore, looking for reliable biomarkers in UTI is urgently needed. In this review, the current definitions of UTI can be basically divided into two main categories: uncomplicated UTI and complicated UTI. In light of anatomical sites, it can be classified as either lower UTI or upper UTI. We take the classification of UTI as a clue and review the reported extensive literature to classify the existing studied markers into the following three categories: Biomarkers used clinically; Promising biomarkers; and Controversial biomarkers. Particularly, the nucleic acid-associated, metabolomic, and lipidomic biomarkers are highlighted. At the end, we discuss the challenges and prospects of biomarkers in UTI, hoping to further inspire the diagnosis of UTI.
Collapse
Affiliation(s)
- Jiayi Sun
- Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Kai Cheng
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
4
|
Wang Z, Jiang Z, Zhang Y, Wang C, Liu Z, Jia Z, Bhushan S, Yang J, Zhang Z. Exosomes derived from bladder epithelial cells infected with uropathogenic Escherichia coli increase the severity of urinary tract infections (UTIs) by impairing macrophage function. PLoS Pathog 2024; 20:e1011926. [PMID: 38190378 PMCID: PMC10798623 DOI: 10.1371/journal.ppat.1011926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/19/2024] [Accepted: 12/24/2023] [Indexed: 01/10/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the primary causative agent of urinary tract infections (UTIs) in humans. Moreover, as one of the most common bacterial pathogens, UPEC imposes a substantial burden on healthcare systems worldwide. Epithelial cells and macrophages are two major components of the innate immune system, which play critical roles in defending the bladder against UPEC invasion. Yet, the routes of communication between these cells during UTI pathogenesis are still not fully understood. In the present study, we investigated the role of membrane-bound nanovesicles (exosomes) in the communication between bladder epithelial cells and macrophages during UPEC infection, using an array of techniques such as flow cytometry, miRNA profiling, RNA sequencing, and western blotting. Moreover, our in vitro findings were validated in a mouse model of UPEC-induced cystitis. We found that UPEC infection induced the bladder epithelial MB49 cell line to secrete large numbers of exosomes (MB49-U-Exo), which were efficiently absorbed by macrophages both in vivo and in vitro. Assimilation of MB49-U-Exo induced macrophages to produce proinflammatory cytokines, including tumor necrosis factor (TNF)α. Exposure of macrophages to MB49-U-Exo reduced their phagocytic activity (by downregulating the expression of phagocytosis-related genes) and increased their rate of apoptosis. Mechanistically, we showed that MB49-U-Exo were enriched in miR-18a-5p, which induced TNFα expression in macrophages by targeting PTEN and activating the MAPK/JNK signaling pathway. Moreover, administration of the exosome secretion inhibitor GW4869 or a TNFα-neutralizing antibody alleviated UPEC-mediated tissue damage in mice with UPEC-induced cystitis by reducing the bacterial burden of the bladder and dampening the associated inflammatory response. Collectively, these findings suggest that MB49-U-Exo regulate macrophage function in a way that exacerbates UPEC-mediated tissue impairment. Thus, targeting exosomal -release or TNFα signaling during UPEC infection may represent promising non-antibiotic strategies for treating UTIs.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ziming Jiang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Congwei Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaoyang Liu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhankui Jia
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sudhanshu Bhushan
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jinjian Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengguo Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Zhu S, Tang X, Zhang J, Hu J, Gao X, Li D, Jia W. Urinary extracellular vesicles prevent di-(2-ethylhexyl) phthalate-induced hypospadias by facilitating epithelial-mesenchymal transition via PFN2 delivery. Cell Biol Toxicol 2023; 39:2569-2586. [PMID: 37953354 DOI: 10.1007/s10565-023-09838-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Urinary extracellular vesicles (EVs) have gained increasing interest in recent years as a potential source of noninvasive biomarkers of diseases related to urinary organs, but knowledge of the mechanism is still limited. The current study sought to clarify the mechanism of urinary EVs behind di-(2-ethylhexyl) phthalate (DEHP)-induced hypospadias via PFN2 delivery. METHOD PFN2 expression in hypospadias was predicted by bioinformatics analysis. Following the induction of a hypospadias rat model using DEHP, rats were injected with EVs and/or underwent alteration of PFN2 and TGF-β1 to assess their effects in vivo. The extracted rat urothelial cells (UECs) were co-cultured with EVs extracted from urine for in vitro experiments. RESULT Microarray analysis predicted poor PFN2 expression in hypospadias. Upregulated PFN2 was found in urinary EVs, and restrained epithelial-mesenchymal transition (EMT) was observed in DEHP-exposed rats. Urinary EVs or PFN2 overexpression increased SMAD2, SMAD3, and TGF-β1 protein expression and SMAD2 and SMAD3 phosphorylation in UECs and DEHP-exposed rats. UEC migration, invasion, and EMT were augmented by EV co-culture or upregulation of PFN2. Of note, the silencing of TGF-β1 counterweighed the effect of PFN2. Besides, EV co-culture or overexpression of PFN2 or TGF-β1 elevated the body weight, anal-genital distance (AGD), anal-genital index (AGI), and EMT of DEHP-exposed rats. CONCLUSION In summary, urinary EVs activated the SMAD/TGF-β1 pathway to induce EMT via PFN2 delivery, thus protecting against DEHP-induced hypospadias. (1) EMT in epithelial cells inhibits DEHP-induced hypospadias. (2) Urine-derived EVs deliver PFN2 to promote EMT in epithelial cells. (3) PFN2 can activate the SMAD/TGF-β1 signaling axis. (4) Urine-derived EVs can transmit PFN2 to activate the SMAD/TGF-β1 signaling axis, thus promoting EMT and inhibiting the occurrence of hypospadias.
Collapse
Affiliation(s)
- Shibo Zhu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Xiangliang Tang
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Jin Zhang
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Jinhua Hu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Xiaofeng Gao
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Dian Li
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China.
| |
Collapse
|
6
|
Lee J, Kim E, Park J, Choi S, Lee MS, Park J. Pre-analytical handling conditions and protein marker recovery from urine extracellular vesicles for bladder cancer diagnosis. PLoS One 2023; 18:e0291198. [PMID: 37676879 PMCID: PMC10484439 DOI: 10.1371/journal.pone.0291198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Extracellular vesicles (EVs) contain a variety of biomolecules and provide information about the cells that produce them. EVs from cancer cells found in urine can be used as biomarkers to detect cancer, enabling early diagnosis and treatment. The potential of alpha-2-macroglobulin (A2M) and clusterin (CLU) as novel diagnostic urinary EV (uEV) biomarkers for bladder cancer (BC) was demonstrated previously. To validate the diagnostic value of these proteins in uEVs in a large BC cohort, urine handling conditions before uEV isolation should be optimized during sample transportation from medical centers. In this study, we analyzed the uEV protein quantity, EV particle number, and uEV-A2M/CLU after urine storage at 20°C and 4°C for 0-6 days, each. A2M and CLU levels in uEVs were relatively stable when stored at 4°C for a maximum of three days and at 20°C for up to 24 h, with minimal impact on analysis results. Interestingly, pre-processing to remove debris and cells by centrifugation and filtration of urine did not show any beneficial effects on the preservation of protein biomarkers of uEVs during storage. Here, the importance of optimizing shipping conditions to minimize the impact of pre-analytical handling on the uEVs protein biomarkers was emphasized. These findings provide insights for the development of clinical protocols that use uEVs for diagnostic purposes.
Collapse
Affiliation(s)
- Jisu Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Eunha Kim
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Joohee Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Seokjoo Choi
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Jinsung Park
- Department of Urology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si, Republic of Korea
| |
Collapse
|
7
|
Gan Y, Zhao G, Wang Z, Zhang X, Wu MX, Lu M. Bacterial Membrane Vesicles: Physiological Roles, Infection Immunology, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301357. [PMID: 37357142 PMCID: PMC10477901 DOI: 10.1002/advs.202301357] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Bacterial or fungal membrane vesicles, traditionally considered as microbial metabolic wastes, are secreted mainly from the outer membrane or cell membrane of microorganisms. However, recent studies have shown that these vesicles play essential roles in direct or indirect communications among microorganisms and between microorganisms and hosts. This review aims to provide an updated understanding of the physiological functions and emerging applications of bacterial membrane vesicles, with a focus on their biogenesis, mechanisms of adsorption and invasion into host cells, immune stimulatory effects, and roles in the much-concerned problem of bacterial resistance. Additionally, the potential applications of these vesicles as biomarkers, vaccine candidates, and drug delivery platforms are discussed.
Collapse
Affiliation(s)
- Yixiao Gan
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Gang Zhao
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Zhicheng Wang
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Mei X. Wu
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School, 50 Blossom StreetBostonMA02114USA
| | - Min Lu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| |
Collapse
|
8
|
Bertolone L, Castagna A, Manfredi M, De Santis D, Ambrosani F, Antinori E, Mulatero P, Danese E, Marengo E, Barberis E, Veneri M, Martinelli N, Friso S, Pizzolo F, Olivieri O. Proteomic analysis of urinary extracellular vesicles highlights specific signatures for patients with primary aldosteronism. Front Endocrinol (Lausanne) 2023; 14:1096441. [PMID: 37223008 PMCID: PMC10200877 DOI: 10.3389/fendo.2023.1096441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023] Open
Abstract
Background Urinary extracellular vesicles (uEVs) can be released by different cell types facing the urogenital tract and are involved in cellular trafficking, differentiation and survival. UEVs can be easily detected in urine and provide pathophysiological information "in vivo" without the need of a biopsy. Based on these premises, we hypothesized that uEVs proteomic profile may serve as a valuable tool in the differential characterization between Essential Hypertension (EH) and primary aldosteronism (PA). Methods Patients with essential hypertension (EH) and PA were enrolled in the study (EH= 12, PA=24: 11 Bilateral Primary Aldosteronism subtype (BPA) and 13 Aldosterone Producing Adenoma (APA)). Clinical and biochemical parameters were available for all the subjects. UEVs were isolated from urine by ultracentrifugation and analysed by Transmission Electron Microscopy (TEM) and nanotrack particle analysis (NTA). UEVs protein content was investigated through an untargeted MS-based approach. Statistical and network analysis was performed to identify potential candidates for the identification and classification of PA. Results MS analysis provided more than 300 protein identifications. Exosomal markers CD9 and CD63 were detected in all samples. Several molecules characterizing EH vs PA patients as well as BPA and APA subtypes were identified after statistical elaboration and filtering of the results. In particular, some key proteins involved in water reabsorption mechanisms, such as AQP1 and AQP2, were among the best candidates for discriminating EH vs PA, as well as A1AG1 (AGP1). Conclusion Through this proteomic approach, we identified uEVs molecular indicators that can improve PA characterization and help in the gain of insights of the pathophysiological features of this disease. In particular, PA was characterized by a reduction of AQP1 and AQP2 expression as compared with EH.
Collapse
Affiliation(s)
- Lorenzo Bertolone
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Annalisa Castagna
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Domenica De Santis
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Francesca Ambrosani
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Elisa Antinori
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Paolo Mulatero
- Department of Medical Sciences, Division of Internal Medicine and Hypertension University of Torino, Torino, Italy
| | - Elisa Danese
- Section of Clinical Biochemistry, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Elettra Barberis
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Mariangela Veneri
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Nicola Martinelli
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Simonetta Friso
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Francesca Pizzolo
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Oliviero Olivieri
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Abstract
Exosomes are nanoscale vesicles derived from endocytosis, formed by fusion of multivesicular bodies with membranes and secreted into the extracellular matrix or body fluids. Many studies have shown that exosomes can be present in a variety of biological fluids, such as plasma, urine, saliva, amniotic fluid, ascites, and sweat, and most types of cells can secrete exosomes. Exosomes play an important role in many aspects of human development, including immunity, cardiovascular diseases, neurodegenerative diseases, and neoplasia. Urine can be an alternative to blood or tissue samples as a potential source of disease biomarkers because of its simple, noninvasive, sufficient, and stable characteristics. Therefore, urinary exosomes have valuable potential for early screening, monitoring disease progression, prognosis, and treatment. The method for isolating urinary exosomes has been perfected, and exosome proteomics is widely used. Therefore, we review the potential use of urinary exosomes for disease diagnosis and summarize the related literature.
Collapse
Affiliation(s)
- Yizhao Wang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| |
Collapse
|
10
|
Qian X, Xie F, Cui D. Exploring Purification Methods of Exosomes from Different Biological Samples. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2336536. [PMID: 37124929 PMCID: PMC10132896 DOI: 10.1155/2023/2336536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 05/02/2023]
Abstract
Objective Exosomes were extracted from a variety of biological samples using several different purification processes, and our goal was to determine which method and sample were the most effective for exosome extraction. Methods We used ExoQuick-TC combined with ultrafiltration to separate and purify exosomes from the supernatant of gastric cancer cells, while we used the ExoQuick kit and ultracentrifugation to purify exosomes from human serum samples. Furthermore, exosomes were isolated and purified from human urine samples by diafiltration and from postparturition human breast milk samples by the filtration-polyethylene glycol precipitation method. The isolated exosomes were morphologically analyzed using a transmission electron microscope, the particle size was measured by NanoSight, and the protein content was analyzed by western blotting. Results The isolated exosomes showed an obvious cup holder shape, with a clear outline and typical exosome morphological characteristics. The sizes of exosomes derived from gastric cancer cell supernatant, serum, urine, and milk were 65.8 ± 26.9 nm, 87.6 ± 50.9 nm, 197.5 ± 55.2 nm, and 184.1 ± 68.7 nm, respectively. Western blot results showed that CD9 and TSG101 on the exosomes were expressed to varying degrees based on the exosome source. Exosome abundance was higher in the serum, urine, and breast milk than in the supernatant. It is suggested that its exosomes can be extracted to obtain an excellent potential biological source of exosomes. Conclusion In this study, the extraction and separation methods of foreign bodies from different biological samples were obtained, and it was found that human breast milk was a potential excellent material for administration because of its high abundance.
Collapse
Affiliation(s)
- Xiaoqing Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Xie
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Daxiang Cui
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Xiang H, Zhang C, Xiong J. Emerging role of extracellular vesicles in kidney diseases. Front Pharmacol 2022; 13:985030. [PMID: 36172178 PMCID: PMC9510773 DOI: 10.3389/fphar.2022.985030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Many types of renal disease eventually progress to end-stage renal disease, which can only be maintained by renal replacement therapy. Therefore, kidney diseases now contribute significantly to the health care burden in many countries. Many new advances and strategies have been found in the research involving kidney diseases; however, there is still no efficient treatment. Extracellular vesicles (EVs) are cell-derived membrane structures, which contains proteins, lipids, and nucleic acids. After internalization by downstream cells, these components can still maintain functional activity and regulate the phenotype of downstream cells. EVs drive the information exchange between cells and tissues. Majority of the cells can produce EVs; however, its production, contents, and transportation may be affected by various factors. EVs have been proved to play an important role in the occurrence, development, and treatment of renal diseases. However, the mechanism and potential applications of EVs in kidney diseases remain unclear. This review summarizes the latest research of EVs in renal diseases, and provides new therapeutic targets and strategies for renal diseases.
Collapse
|
12
|
Zou C, Zhang Y, Liu H, Wu Y, Zhou X. Extracellular Vesicles: Recent Insights Into the Interaction Between Host and Pathogenic Bacteria. Front Immunol 2022; 13:840550. [PMID: 35693784 PMCID: PMC9174424 DOI: 10.3389/fimmu.2022.840550] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Extracellular vesicles (EVs) are nanosized lipid particles released by virtually every living cell. EVs carry bioactive molecules, shuttle from cells to cells and transduce signals, regulating cell growth and metabolism. Pathogenic bacteria can cause serious infections via a wide range of strategies, and host immune systems also develop extremely complex adaptations to counteract bacterial infections. As notable carriers, EVs take part in the interaction between the host and bacteria in several approaches. For host cells, several strategies have been developed to resist bacteria via EVs, including expelling damaged membranes and bacteria, neutralizing toxins, triggering innate immune responses and provoking adaptive immune responses in nearly the whole body. For bacteria, EVs function as vehicles to deliver toxins and contribute to immune escape. Due to their crucial functions, EVs have great application potential in vaccines, diagnosis and treatments. In the present review, we highlight the most recent advances, application potential and remaining challenges in understanding EVs in the interaction between the host and bacteria.
Collapse
Affiliation(s)
- Chaoyu Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
- Department of Hematology and Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Yige Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yu Wu
- Department of Hematology and Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
13
|
Screening Biomarkers and Constructing a Predictive Model for Symptomatic Urinary Tract Infection and Asymptomatic Bacteriuria in Patients Undergoing Cutaneous Ureterostomy: A Metagenomic Next-Generation Sequencing Study. DISEASE MARKERS 2022; 2022:7056517. [PMID: 35531475 PMCID: PMC9072028 DOI: 10.1155/2022/7056517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/02/2022] [Indexed: 11/17/2022]
Abstract
Objectives. To investigate the clinical diagnostic value of differential flora as biomarkers in patients with symptomatic urinary tract infection (UTI) and asymptomatic bacteriuria (ASB) undergoing cutaneous ureterostomy based on metagenomic next-generation sequencing and construct predictive models to provide a scientific reference for clinical diagnosis and treatment. Material and Methods. According to standard procedures, samples were taken from each patient for routine tests (urine, ureteral stent, and skin swab around the stoma). Cytokine levels in the blood were also detected. Urinary microflora were measured by mNGS, and potential biomarkers for distinguishing UTI and ASB were identified by differential flora. Finally, we generated the predictive models for ASB and UTI using the Lasso method and cytokine levels. Results. Urine culture was performed for 50 patients with cutaneous ureterostomy; 44 of these patients developed bacteriuria. The incidence of symptomatic bacteriuria was 54.55%. Biomarker analysis showed that Propionimicrobium lymphophilum, Staphylococcus haemolyticus, Stenotrophomonas maltophilia, Ralstonia insidiosa, and Aspergillus sydowii all had good predictive performance and were combined in a single model. The predictive model exhibited good prediction performance (area under the curve
,
,
, and
). We also identified a significant negative correlation between the weight sum of the abundance for these five characteristic pathogens (Sum_weighted_Reads) and levels of the cytokine IL-6 and IL-1β (
). Conclusion. mNGS had a higher positive detection rate for pathogens in urine samples. The selected differential bacteria can be used as biomarkers of ASB and UTI, and the prediction model has good predictive performance. Analysis also showed that the occurrence of symptoms was related to individual immunity. Combined with the Sum_weighted_Reads cutoff and cytokine levels (IL-6 and IL-1β) of differential flora, it was possible to judge the severity of symptoms in cutaneous ureterostomy patients with bacteriuria and provide new insights for the treatment and intervention of ASB and UTI.
Collapse
|
14
|
Xie Y, Chen W, Zhao M, Xu Y, Yu H, Qin J, Li H. Exploration of Exosomal miRNAs from Serum and Synovial Fluid in Arthritis Patients. Diagnostics (Basel) 2022; 12:diagnostics12020239. [PMID: 35204330 PMCID: PMC8871287 DOI: 10.3390/diagnostics12020239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/05/2021] [Accepted: 12/23/2021] [Indexed: 01/01/2023] Open
Abstract
Arthritis is caused by inflammation, infection, degeneration, trauma, or other factors that affect approximately 250 million people all over the world. Early diagnosis and prediction are essential for treatment. Exosomes are nanoscale vesicles that participate in the process of joint disease. Serum is the mainly used sources in the study of arthritis-related exosomes, while whether serum exosomes can reflect the contents of synovial fluid exosomes is still unknown. In this work, we separated exosomes from serum and the synovial fluid of osteoarthritis patients and compared their miRNA expression utilizing miRNA sequencing. The results revealed that 31 upregulated and 33 downregulated miRNAs were found in synovial fluid compared to serum. Transcriptome analysis showed that these differentially expressed miRNAs were mainly associated with intercellular processes and metabolic pathways. Our results show that serum-derived exosomes cannot fully represent the exosomes of synovial fluid, which may be helpful for the study of joint diseases and the discovery of early diagnostic biomarkers of arthritis.
Collapse
Affiliation(s)
- Yingying Xie
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.X.); (W.C.); (M.Z.); (H.Y.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Wenwen Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.X.); (W.C.); (M.Z.); (H.Y.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Mengqian Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.X.); (W.C.); (M.Z.); (H.Y.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Yuhai Xu
- First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China;
| | - Hao Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.X.); (W.C.); (M.Z.); (H.Y.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Jianhua Qin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.X.); (W.C.); (M.Z.); (H.Y.)
- University of Chinese Academy of Sciences, Beijing 100864, China
- Correspondence: (J.Q.); (H.L.)
| | - Hongjing Li
- First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China;
- Correspondence: (J.Q.); (H.L.)
| |
Collapse
|
15
|
Akbar A, Malekian F, Baghban N, Kodam SP, Ullah M. Methodologies to Isolate and Purify Clinical Grade Extracellular Vesicles for Medical Applications. Cells 2022; 11:186. [PMID: 35053301 PMCID: PMC8774122 DOI: 10.3390/cells11020186] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The use of extracellular vesicles (EV) in nano drug delivery has been demonstrated in many previous studies. In this study, we discuss the sources of extracellular vesicles, including plant, salivary and urinary sources which are easily available but less sought after compared with blood and tissue. Extensive research in the past decade has established that the breadth of EV applications is wide. However, the efforts on standardizing the isolation and purification methods have not brought us to a point that can match the potential of extracellular vesicles for clinical use. The standardization can open doors for many researchers and clinicians alike to experiment with the proposed clinical uses with lesser concerns regarding untraceable side effects. It can make it easier to identify the mechanism of therapeutic benefits and to track the mechanism of any unforeseen effects observed.
Collapse
Affiliation(s)
- Asma Akbar
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (A.A.); (F.M.); (N.B.); (S.P.K.)
| | - Farzaneh Malekian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (A.A.); (F.M.); (N.B.); (S.P.K.)
| | - Neda Baghban
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (A.A.); (F.M.); (N.B.); (S.P.K.)
| | - Sai Priyanka Kodam
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (A.A.); (F.M.); (N.B.); (S.P.K.)
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (A.A.); (F.M.); (N.B.); (S.P.K.)
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA 94080, USA
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
16
|
Nwokwu CD, Ishraq Bari SM, Hutson KH, Brausell C, Nestorova GG. ExoPRIME: Solid-phase immunoisolation and OMICS analysis of surface-marker-specific exosomal subpopulations. Talanta 2022; 236:122870. [PMID: 34635251 DOI: 10.1016/j.talanta.2021.122870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022]
Abstract
Exosomes encapsulate genomic and proteomic biomarkers for non-invasive diagnosis and disease monitoring. However, exosome surface-markers heterogeneity is a major drawback of current isolation methods. Here, we report a direct, one-step exosome sampling technology, ExoPRIME, for selective capture of CD63+ exosome subpopulations using an immune-affinity protocol. Microneedles (300μm × 30 mm), functionalized with anti-CD63 antibodies, were incubated under various experimental conditions in conditioned astrocyte medium and astrocyte-derived exosome suspension. The probe's capture efficiency and specificity were validated using FluoroCet assay, immunofluorescent imaging, and OMICS analyses. Significantly higher exosomes were captured by probes incubated for 16 h at 4 0C in enriched exosomal suspension (23 × 10 6 exosomes per probe) vis-à-vis 2 h at 4 0 C (12 × 10 6) and 16 h at 22 0C (3 × 10 6) in conditioned cell media. Our results demonstrate the application of ExoPRIME over a broad dynamic range of temperature and incubation parameters, offering flexibility for any desired application. ExoPRIME permits the use and re-use of minimal sample volumes (≤200 μL), can be multiplexed in arrays, and integrated into a lab-on-a-chip platform to achieve parallel, high-throughput isolation of different exosome classes in a semi-automated workstation. This platform could provide direct exosomal analysis of biological fluids since it can elegantly interface with existing room-temperature, picomolar-range nucleic acid assays to provide a clinical diagnostic tool at the point of care.
Collapse
Affiliation(s)
| | | | - K Hope Hutson
- Molecular Sciences and Nanotechnology, Louisiana Tech University, Ruston, LA, USA
| | - Clay Brausell
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, USA
| | | |
Collapse
|
17
|
Li J, Cai S, Zeng C, Chen L, Zhao C, Huang Y, Cai W. Urinary exosomal vitronectin predicts vesicoureteral reflux in patients with neurogenic bladders and spinal cord injuries. Exp Ther Med 2021; 23:65. [PMID: 34934436 PMCID: PMC8649849 DOI: 10.3892/etm.2021.10988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Neurogenic bladder (NGB) is an important complication of urinary tract dysfunction after spinal cord injury (SCI). However, using urodynamics and urography to guide therapy remains invasive and complicated. Therefore, the present study aimed to identify potential noninvasive biomarkers from urinary exosomes that can facilitate diagnosis and guide prognosis of patients with NGB subsequent to SCI. Urinary exosomes were isolated, and their proteome profile was analyzed by mass spectrometry. Transmission electron microscopy and Nanoparticle Tracking Analysis confirmed the size and morphological characteristics of urinary exosomes. In addition, bioinformatics analysis and parallel reaction monitoring (PRM) were used to screen candidate biomarkers. The selected biomarkers were validated using western blotting and ELISA. Mass spectrometry identified 134 upregulated proteins and 99 downregulated proteins between the vesicoureteral reflux (VUR) and non-VUR groups. A total of 18 candidate proteins were selected for PRM validation, but only vitronectin (VTN) and α-1 type I collagen (COL1A1) demonstrated significant differences. In the validation experiments using western blotting and ELISA, VTN was exclusively highly expressed in VUR patients compared with non-VUR patients. However, the ELISA results of COL1A1 revealed no significant difference when a larger sample size was used. Furthermore, a receiver operating characteristic curve of ELISA-based VTN demonstrated an area under the curve of 0.795 and 80% sensitivity at a threshold set to give 82.9% specificity. Collectively, these results suggested that VTN in urinary exosomes may be used as a biomarker to predict the progression and guide the prognosis of NGB.
Collapse
Affiliation(s)
- Jue Li
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China.,School of Nursing, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shiying Cai
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Chunxian Zeng
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Ling Chen
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Chun Zhao
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Ying Huang
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Wenzhi Cai
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China.,School of Nursing, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
18
|
Karpman D, Tontanahal A. Extracellular vesicles in renal inflammatory and infectious diseases. Free Radic Biol Med 2021; 171:42-54. [PMID: 33933600 DOI: 10.1016/j.freeradbiomed.2021.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles can mediate cell-to-cell communication, or relieve the parent cell of harmful substances, in order to maintain cellular integrity. The content of extracellular vesicles includes miRNAs, mRNAs, growth factors, complement factors, cytokines, chemokines and receptors. These may contribute to inflammatory and infectious diseases by the exposure or transfer of potent effectors that induce vascular inflammation by leukocyte recruitment and thrombosis. Furthermore, vesicles release cytokines and induce their release from cells. Extracellular vesicles possess immune modulatory and anti-microbial properties, and induce receptor signaling in the recipient cell, not least by the transfer of pro-inflammatory receptors. Additionally, the vesicles may carry virulence factors systemically. Extracellular vesicles in blood and urine can contribute to the development of kidney diseases or exhibit protective effects. In this review we will describe the role of EVs in inflammation, thrombosis, immune modulation, angiogenesis, oxidative stress, renal tubular regeneration and infection. Furthermore, we will delineate their contribution to renal ischemia/reperfusion, vasculitis, glomerulonephritis, lupus nephritis, thrombotic microangiopathies, IgA nephropathy, acute kidney injury, urinary tract infections and renal transplantation. Due to their content of miRNAs and growth factors, or when loaded with nephroprotective modulators, extracellular vesicles have the potential to be used as therapeutics for renal regeneration.
Collapse
Affiliation(s)
- Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185, Lund, Sweden.
| | - Ashmita Tontanahal
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185, Lund, Sweden
| |
Collapse
|
19
|
Hishida S, Kawakami K, Fujita Y, Kato T, Takai M, Iinuma K, Nakane K, Tsuchiya T, Koie T, Miura Y, Ito M, Mizutani K. Proteomic analysis of extracellular vesicles identified PI3K pathway as a potential therapeutic target for cabazitaxel-resistant prostate cancer. Prostate 2021; 81:592-602. [PMID: 33905554 DOI: 10.1002/pros.24138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/07/2021] [Accepted: 04/11/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Cabazitaxel (CBZ) is now widely used for prostate cancer (PC) patients resistant to docetaxel (DOC), however, most patients eventually acquire resistance. It will, therefore, be of great benefit to discover novel therapeutic target for the resistance. We aimed to identify candidate therapeutic targets for CBZ-resistance by proteomic analysis of extracellular vesicles (EVs) isolated from serum of DOC-resistant PC patients who later developed CBZ-resistance as well as those harvested from culture medium of DOC- and CBZ-resistant PC cell lines. METHODS Using T-cell immunoglobulin domain and mucin domain-containing protein 4 (Tim4) conjugated to magnetic beads, EVs were purified from serum of PC patients with DOC-resistance that was collected before and after acquiring CBZ-resistance and conditioned medium of DOC-resistant (22Rv1DR) and CBZ-resistant (22Rv1CR) PC cell lines. Protein analysis of EVs was performed by nanoLC-MS/MS, followed by a comparative analysis of protein expression and network analysis. The cytotoxic effect of a phosphatidylinositol-3-kinase (PI3K) inhibitor, ZSTK474, was evaluated by WST-1 assay. The expression and phosphorylation of PI3K and PTEN were examined by western blot analysis. RESULTS Among differentially regulated proteins, 77 and 61 proteins were significantly increased in EVs from CBZ-resistant PC cell line and patients, respectively. A comparison between the two datasets revealed that six proteins, fructose-bisphosphate aldolase, cytosolic nonspecific dipeptidase, CD63, CD151, myosin light chain 9, and peroxiredoxin-6 were elevated in EVs from both cell line and patients. Network analysis of the increased EV proteins identified pathways associated with CBZ-resistance including PI3K signaling pathway. ZSTK474 significantly inhibited growth of 22Rv1CR cells and improved their sensitivity to CBZ. In 22Rv1CR cells, PI3K was activated and PTEN that inhibits PI3K was deactivated. CONCLUSIONS Proteomic analysis of serum EVs was successfully accomplished by using Tim-4 as a tool to isolate highly purified EVs. Our results suggest that the combination use of CBZ and PI3K inhibitor could be a promising treatment option for CBZ-resistant PC patients.
Collapse
Affiliation(s)
- Seiji Hishida
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kyojiro Kawakami
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yasunori Fujita
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Taku Kato
- Department of Urology, Asahi University Hospital, Gifu, Japan
| | - Manabu Takai
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Koji Iinuma
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Keita Nakane
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomohiro Tsuchiya
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takuya Koie
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Masafumi Ito
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kosuke Mizutani
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
20
|
Muramatsu-Maekawa Y, Kawakami K, Fujita Y, Takai M, Kato D, Nakane K, Kato T, Tsuchiya T, Koie T, Miura Y, Ito M, Mizutani K. Profiling of Serum Extracellular Vesicles Reveals miRNA-4525 as a Potential Biomarker for Advanced Renal Cell Carcinoma. Cancer Genomics Proteomics 2021; 18:253-259. [PMID: 33893078 DOI: 10.21873/cgp.20256] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
AIM To identify novel diagnostic markers for renal cell carcinoma (RCC), we analyzed miRNAs in serum extracellular vesicles (EVs). MATERIALS AND METHODS EVs were purified from serum of healthy controls and patients with localized and advanced RCC using T-cell immunoglobulin domain and mucin domain-containing protein 4 conjugated to magnetic beads. miRNA profiling of EVs was conducted by microarray analysis. miRNA expression was examined by quantitative reverse transcription-polymerase chain reaction. Lastly, proteomic analysis of RCC cells transfected with a miRNA inhibitor was performed to identify its potential targets. RESULTS Microarray analysis revealed that nine miRNAs were increased by more than 1.5-fold in EVs from patients with RCC. Among them, miRNA-4525 was significantly elevated; miRNA-4525 expression was higher in RCC tissue than in the adjacent normal tissue. Proteomic analysis identified alpha fetoprotein and albumin as its potential targets. CONCLUSION These findings suggest the potential of miRNA-4525 in serum EVs as a novel biomarker for advanced RCC.
Collapse
Affiliation(s)
| | - Kyojiro Kawakami
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yasunori Fujita
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Manabu Takai
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Daiki Kato
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Keita Nakane
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Taku Kato
- Department of Urology, Asahi University Hospital, Gifu, Japan
| | - Tomohiro Tsuchiya
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takuya Koie
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Masafumi Ito
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan;
| | - Kosuke Mizutani
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan; .,Clinical Genetics Center, Gifu University Hospital, Gifu, Japan
| |
Collapse
|
21
|
Yan H, Li Y, Cheng S, Zeng Y. Advances in Analytical Technologies for Extracellular Vesicles. Anal Chem 2021; 93:4739-4774. [PMID: 33635060 DOI: 10.1021/acs.analchem.1c00693] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- He Yan
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yutao Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Shibo Cheng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.,University of Florida Health Cancer Center, Gainesville, Florida 32610, United States
| |
Collapse
|
22
|
Sonoda Y, Kano F, Murata M. Applications of cell resealing to reconstitute microRNA loading to extracellular vesicles. Sci Rep 2021; 11:2900. [PMID: 33536479 PMCID: PMC7859222 DOI: 10.1038/s41598-021-82452-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/20/2021] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are cargo carried by extracellular vesicles (EVs) and are associated with cell-cell interactions. The response to the cellular environment, such as disease states, genetic/metabolic changes, or differences in cell type, highly regulates cargo sorting to EVs. However, morphological features during EV formation and secretion involving miRNA loading are unknown. This study developed a new method of EV loading using cell resealing and reconstituted the elementary miRNA-loading processes. Morphology, secretory response, and cellular uptake ability of EVs obtained from intact and resealed HeLa cells were comparable. Exogenously added soluble factors were introduced into multivesicular endosomes (MVEs) and their subsequent secretion to the extracellular region occurred in resealed HeLa cells. In addition, miRNA transport to MVEs and miRNA encapsulation to EVs followed a distinct pathway regulated by RNA-binding proteins, such as Argonaute and Y-box binding protein 1, depending on miRNA types. Our cell-resealing system can analyze disease-specific EVs derived from disease model cells, where pathological cytosol is introduced into cells. Thus, EV formation in resealed cells can be used not only to create a reconstitution system to give mechanistic insight into EV encapsulation but also for applications such as loading various molecules into EVs and identifying disease-specific EV markers.
Collapse
Affiliation(s)
- Yuki Sonoda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Masayuki Murata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
| |
Collapse
|
23
|
Xi XJ, Zeng JJ, Lu Y, Chen SH, Jiang ZW, He PJ, Mi H. Extracellular vesicles enhance oxidative stress through P38/NF-kB pathway in ketamine-induced ulcerative cystitis. J Cell Mol Med 2020; 24:7609-7624. [PMID: 32441055 PMCID: PMC7339200 DOI: 10.1111/jcmm.15397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/18/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
Long‐term abuse of ketamine causes ketamine‐induced cystitis. The functional alterations of bladder epithelial cells in microenvironment during cystitis remain poorly understood. Here, we explored extracellular vesicles (EV) alteration in ketamine‐induced toxicity. To simulate the high‐concentration ketamine environment in vivo, we established an in vitro model of high ketamine using human uroepithelial cells (SV‐HUC‐1). Cell viability and proliferation were assessed to evaluate the effects of various concentrations (0, 0.25, 0.5, 1, 2, 4 and 8 mmol/L) of ketamine on SV‐HUC‐1 cells. The cell supernatant cultured at a concentration (0, 1, 2, 4 mmol/L) of ketamine was selected for EV extraction and identified. Subsequently, we assessed different groups (ketamine, ketamine plus EV blocker, EV, EV plus extracellular vesicles blocker) of oxidative stress and expression of inflammation. Last, luciferase reporter assay was performed to study the transcriptional regulation of EV on the NF‐kB and P38 pathway. The results of our study suggested that treatment with 0, 1, 2 or 4 mmol/L ketamine altered the morphology and secretion capacity of extracellular vesicles. As the concentration of ketamine increased, the average particle size of EV decreased, but the crest size, particle concentration and EV protein increased. Moreover, after the addition of EV blocker, EV secreted at different concentrations were blocked outside the cell membrane, and the degree of oxidative stress decreased. Our study provided evidence that ketamine alters the secretion of EV by directly stimulating cells in inflammation microenvironment and EV play significant roles in intercellular signal communication and the formation of KIC.EV
Collapse
Affiliation(s)
- Xiao Jian Xi
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jin Jiang Zeng
- Department of Urology, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Yong Lu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shao Hua Chen
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhi Wen Jiang
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Peng Jie He
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hua Mi
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
24
|
Lin S, Yu Z, Chen D, Wang Z, Miao J, Li Q, Zhang D, Song J, Cui D. Progress in Microfluidics-Based Exosome Separation and Detection Technologies for Diagnostic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903916. [PMID: 31663295 DOI: 10.1002/smll.201903916] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/30/2019] [Indexed: 05/05/2023]
Abstract
Exosomes are secreted by most cell types and circulate in body fluids. Recent studies have revealed that exosomes play a significant role in intercellular communication and are closely associated with the pathogenesis of disease. Therefore, exosomes are considered promising biomarkers for disease diagnosis. However, exosomes are always mixed with other components of body fluids. Consequently, separation methods for exosomes that allow high-purity and high-throughput separation with a high recovery rate and detection techniques for exosomes that are rapid, highly sensitive, highly specific, and have a low detection limit are indispensable for diagnostic applications. For decades, many exosome separation and detection techniques have been developed to achieve the aforementioned goals. However, in most cases, these two techniques are performed separately, which increases operation complexity, time consumption, and cost. The emergence of microfluidics offers a promising way to integrate exosome separation and detection functions into a single chip. Herein, an overview of conventional and microfluidics-based techniques for exosome separation and detection is presented. Moreover, the advantages and drawbacks of these techniques are compared.
Collapse
Affiliation(s)
- Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zixian Yu
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhigang Wang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jianmin Miao
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qichao Li
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daoyuan Zhang
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Song
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
25
|
Ren J, Liu N, Sun N, Zhang K, Yu L. Mesenchymal Stem Cells and their Exosomes: Promising Therapeutics for Chronic Pain. Curr Stem Cell Res Ther 2019; 14:644-653. [PMID: 31512998 DOI: 10.2174/1574888x14666190912162504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/27/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
Abstract
Chronic pain is a common condition that seriously affects the quality of human life with
variable etiology and complicated symptoms; people who suffer from chronic pain may experience
anxiety, depression, insomnia, and other harmful emotions. Currently, chronic pain treatments are nonsteroidal
anti-inflammatory drugs and opioids; these drugs are demonstrated to be insufficient and
cause severe side effects. Therefore, research into new therapeutic strategies for chronic pain is a top
priority. In recent years, stem cell transplantation has been demonstrated to be a potent alternative for
the treatment of chronic pain. Mesenchymal stem cells (MSCs), a type of pluripotent stem cell, exhibit
multi-directional differentiation, promotion of stem cell implantation, and immune regulation; they
have also been shown to exert analgesic effects in several chronic pain models. Exosomes produced by
MSCs have been demonstrated to relieve painful symptoms with fewer side effects. In this review, we
summarize the therapeutic use of MSCs in various chronic pain studies. We also discuss ways to enhance
the treatment effect of MSCs. We predict in the future, cell-free therapies for chronic pain will
develop from exosomes secreted by MSCs.
Collapse
Affiliation(s)
- Jinxuan Ren
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Na Liu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Na Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Kehan Zhang
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|