1
|
Zawiasa A, Olejnik-Schmidt A. The Genetic Determinants of Listeria monocytogenes Resistance to Bacteriocins Produced by Lactic Acid Bacteria. Genes (Basel) 2025; 16:50. [PMID: 39858597 PMCID: PMC11765107 DOI: 10.3390/genes16010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Listeria monocytogenes is a Gram-positive bacterium responsible for listeriosis, a serious foodborne disease that can lead to serious health complications. Pregnant women, newborns, the elderly, and patients with weakened immune systems are particularly susceptible to infection. Due to the ability of L. monocytogenes to survive in extreme environmental conditions, such as low temperatures, high salinity, and acidity, this bacterium poses a serious threat to food production plants and is particularly difficult to eliminate from these plants. One of the promising solutions to reduce the presence of this bacterium in food products is bacteriocins as natural control agents. These are substances with antibacterial activity produced by other bacteria, mainly lactic acid bacteria (LAB), which can effectively inhibit the development of pathogens such as L. monocytogenes. The use of bacteriocins in the food industry is beneficial due to their natural origin, specificity of action, and consumer safety. However, the problem of resistance to these substances exists. RESULTS This review focuses on the mechanisms of bacteriocin resistance, such as modifications of bacteriocin docking receptors, changes in the structure of the cell wall and membrane, and the occurrence of cross-resistance to different bacteriocins. Genetic factors determining these mechanisms and strategies to cope with the problem of resistance are also presented. CONCLUSIONS Research on this issue is crucial for developing effective preventive methods that will enable the safe and long-term use of bacteriocins in food production.
Collapse
Affiliation(s)
| | - Agnieszka Olejnik-Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland;
| |
Collapse
|
2
|
Barbachowska M, Harivel T, Nicchi S, Danckaert A, Ghazarian M, Chiaravalli J, Buchrieser C, Rolando M, Arimondo PB. High Content Screening Assay of Inhibitors of the Legionella Pneumophila Histone Methyltransferase RomA in Infected Cells. Chembiochem 2024:e202400293. [PMID: 39252664 DOI: 10.1002/cbic.202400293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
Resistance to anti-microbial agents is a world-wide health threat. Thus, there is an urgent need for new treatments. An alternative approach to disarm pathogens consists in developing drugs targeting epigenetic modifiers. Bacterial pathogens can manipulate epigenetic regulatory systems of the host to bypass defences to proliferate and survive. One example is Legionella pneumophila, a Gram-negative intracellular pathogen that targets host chromatin with a specific, secreted bacterial SET-domain methyltransferase named RomA. This histone methyltransferase specifically methylates H3 K14 during infection and is responsible for changing the host epigenetic landscape upon L. pneumophila infection. To inhibit RomA activity during infection, we developed a reliable high-content imaging screening assay, which we used to screen an in-house chemical library developed to inhibit DNA and histone methyltransferases. This assay was optimised using monocytic leukemic THP-1 cells differentiated into macrophages infected with L. pneumophila in a 96- or 384-well plate format using the Opera Phenix (Perkin Elmer) confocal microscope, combined with Columbus software for automated image acquisition and analysis. H3 K14 methylation was followed in infected, single cells and cytotoxicity was assessed in parallel. A first pilot screening of 477 compounds identified a potential starting point for inhibitors of H3 K14 methylation.
Collapse
Affiliation(s)
- Magdalena Barbachowska
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR n°3523 Chem4Life, F-75015, Paris, France
- Université Paris Cité, Ecole Doctorale MTCI, Paris, 75006, France
- Pasteur-Paris University (PPU), Oxford International Doctoral program, Institut Pasteur, F-75015, Paris, France
| | - Thomas Harivel
- Biology of Intracellular Bacteria, Department of Microbiology, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Sonia Nicchi
- Biology of Intracellular Bacteria, Department of Microbiology, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Anne Danckaert
- UtechS PBI - C2RT, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Marine Ghazarian
- Chemogenomic and Biological Screening Core Facility - C2RT, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Jeanne Chiaravalli
- Chemogenomic and Biological Screening Core Facility - C2RT, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Carmen Buchrieser
- Biology of Intracellular Bacteria, Department of Microbiology, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Monica Rolando
- Biology of Intracellular Bacteria, Department of Microbiology, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR n°3523 Chem4Life, F-75015, Paris, France
| |
Collapse
|
3
|
Singh PR, Dadireddy V, Udupa S, Kalladi SM, Shee S, Khosla S, Rajmani RS, Singh A, Ramakumar S, Nagaraja V. The Mycobacterium tuberculosis methyltransferase Rv2067c manipulates host epigenetic programming to promote its own survival. Nat Commun 2023; 14:8497. [PMID: 38129415 PMCID: PMC10739865 DOI: 10.1038/s41467-023-43940-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Mycobacterium tuberculosis has evolved several mechanisms to counter host defense arsenals for its proliferation. Here we report that M. tuberculosis employs a multi-pronged approach to modify host epigenetic machinery for its survival. It secretes methyltransferase (MTase) Rv2067c into macrophages, trimethylating histone H3K79 in a non-nucleosomal context. Rv2067c downregulates host MTase DOT1L, decreasing DOT1L-mediated nucleosomally added H3K79me3 mark on pro-inflammatory response genes. Consequent inhibition of caspase-8-dependent apoptosis and enhancement of RIPK3-mediated necrosis results in increased pathogenesis. In parallel, Rv2067c enhances the expression of SESTRIN3, NLRC3, and TMTC1, enabling the pathogen to overcome host inflammatory and oxidative responses. We provide the structural basis for differential methylation of H3K79 by Rv2067c and DOT1L. The structures of Rv2067c and DOT1L explain how their action on H3K79 is spatially and temporally separated, enabling Rv2067c to effectively intercept the host epigenetic circuit and downstream signaling.
Collapse
Affiliation(s)
- Prakruti R Singh
- Department of Microbiology & Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | | | - Shubha Udupa
- Department of Microbiology & Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Shashwath Malli Kalladi
- Department of Microbiology & Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Somnath Shee
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Sanjeev Khosla
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh (CSIR -IMTech), Chandigarh, India
| | - Raju S Rajmani
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Amit Singh
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | | | - Valakunja Nagaraja
- Department of Microbiology & Cell Biology, Indian Institute of Science (IISc), Bengaluru, India.
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India.
| |
Collapse
|
4
|
Rolando M, Wah Chung IY, Xu C, Gomez-Valero L, England P, Cygler M, Buchrieser C. The SET and ankyrin domains of the secreted Legionella pneumophila histone methyltransferase work together to modify host chromatin. mBio 2023; 14:e0165523. [PMID: 37795993 PMCID: PMC10653858 DOI: 10.1128/mbio.01655-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Legionella pneumophila is an intracellular bacterium responsible of Legionnaires' disease, a severe pneumonia that is often fatal when not treated promptly. The pathogen's ability to efficiently colonize the host resides in its ability to replicate intracellularly. Essential for intracellular replication is translocation of many different protein effectors via a specialized secretion system. One of them, called RomA, binds and directly modifies the host chromatin at a unique site (tri-methylation of lysine 14 of histone H3 [H3K14me]). However, the molecular mechanisms of binding are not known. Here, we resolve this question through structural characterization of RomA together with the H3 peptide. We specifically reveal an active role of the ankyrin repeats located in its C-terminal in the interaction with the histone H3 tail. Indeed, without the ankyrin domains, RomA loses its ability to act as histone methyltransferase. These results discover the molecular mechanisms by which a bacterial histone methyltransferase that is conserved in L. pneumophila strains acts to modify chromatin.
Collapse
Affiliation(s)
- Monica Rolando
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires, Paris, France
| | - Ivy Yeuk Wah Chung
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Caishuang Xu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Laura Gomez-Valero
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires, Paris, France
| | - Patrick England
- Institut Pasteur, Université de Paris, Plateforme de Biophysique Moléculaire, Paris, France
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires, Paris, France
| |
Collapse
|
5
|
Asai M, Li Y, Newton SM, Robertson BD, Langford PR. Galleria mellonella-intracellular bacteria pathogen infection models: the ins and outs. FEMS Microbiol Rev 2023; 47:fuad011. [PMID: 36906279 PMCID: PMC10045907 DOI: 10.1093/femsre/fuad011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
Galleria mellonella (greater wax moth) larvae are used widely as surrogate infectious disease models, due to ease of use and the presence of an innate immune system functionally similar to that of vertebrates. Here, we review G. mellonella-human intracellular bacteria pathogen infection models from the genera Burkholderia, Coxiella, Francisella, Listeria, and Mycobacterium. For all genera, G. mellonella use has increased understanding of host-bacterial interactive biology, particularly through studies comparing the virulence of closely related species and/or wild-type versus mutant pairs. In many cases, virulence in G. mellonella mirrors that found in mammalian infection models, although it is unclear whether the pathogenic mechanisms are the same. The use of G. mellonella larvae has speeded up in vivo efficacy and toxicity testing of novel antimicrobials to treat infections caused by intracellular bacteria: an area that will expand since the FDA no longer requires animal testing for licensure. Further use of G. mellonella-intracellular bacteria infection models will be driven by advances in G. mellonella genetics, imaging, metabolomics, proteomics, and transcriptomic methodologies, alongside the development and accessibility of reagents to quantify immune markers, all of which will be underpinned by a fully annotated genome.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Sandra M Newton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Brian D Robertson
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, South Kensington campus, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
6
|
Host-microbiota interactions and oncogenesis: Crosstalk and its implications in etiology. Microb Pathog 2023; 178:106063. [PMID: 36893903 DOI: 10.1016/j.micpath.2023.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 09/03/2022] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
A number of articles have discussed the potential of microbiota in oncogenesis. Several of these have evaluated the modulation of microbiota and its influence on cancer development. Even in recent past, a plethora of studies have gathered in order to understand the difference in microbiota population among different cancer and normal individuals. Although in majority of studies, microbiota mediated oncogenesis has been primarily attributed to the inflammatory mechanisms, there are several other ways through which microbiota can influence oncogenesis. These relatively less discussed aspects including the hormonal modulation through estrobolome and endobolome, production of cyclomodulins, and lateral gene transfer need more attention of scientific community. We prepared this article to discuss the role of microbiota in oncogenesis in order to provide concise information on these relatively less discussed microbiota mediated oncogenesis mechanisms.
Collapse
|
7
|
Biological control of pathogens in artisanal cheeses. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Huitian G, Xiuai D, Chenglin Z, Xinfeng W, Yuanyuan L, Yanan S, Qihang C, Huiwen X. Transcriptional Analysis of Listeria monocytogenes Invasion of Macrophages. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s000368382203005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Abstract
Like many intracellular pathogens, the protozoan parasite Toxoplasma gondii has evolved sophisticated mechanisms to promote its transmission and persistence in a variety of hosts by injecting effector proteins that manipulate many processes in the cells it invades. Specifically, the parasite diverts host epigenetic modulators and modifiers from their native functions to rewire host gene expression to counteract the innate immune response and to limit its strength. The arms race between the parasite and its hosts has led to accelerated adaptive evolution of effector proteins and the unconventional secretion routes they use. This review provides an up-to-date overview of how T. gondii effectors, through the evolution of intrinsically disordered domains, the formation of supramolecular complexes, and the use of molecular mimicry, target host transcription factors that act as coordinating nodes, as well as chromatin-modifying enzymes, to control the fate of infected cells and ultimately the outcome of infection. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France;
| |
Collapse
|
10
|
Descoeudres N, Jouneau L, Henry C, Gorrichon K, Derré-Bobillot A, Serror P, Gillespie LL, Archambaud C, Pagliuso A, Bierne H. An Immunomodulatory Transcriptional Signature Associated With Persistent Listeria Infection in Hepatocytes. Front Cell Infect Microbiol 2021; 11:761945. [PMID: 34858876 PMCID: PMC8631403 DOI: 10.3389/fcimb.2021.761945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Listeria monocytogenes causes severe foodborne illness in pregnant women and immunocompromised individuals. After the intestinal phase of infection, the liver plays a central role in the clearance of this pathogen through its important functions in immunity. However, recent evidence suggests that during long-term infection of hepatocytes, a subpopulation of Listeria may escape eradication by entering a persistence phase in intracellular vacuoles. Here, we examine whether this long-term infection alters hepatocyte defense pathways, which may be instrumental for bacterial persistence. We first optimized cell models of persistent infection in human hepatocyte cell lines HepG2 and Huh7 and primary mouse hepatocytes (PMH). In these cells, Listeria efficiently entered the persistence phase after three days of infection, while inducing a potent interferon response, of type I in PMH and type III in HepG2, while Huh7 remained unresponsive. RNA-sequencing analysis identified a common signature of long-term Listeria infection characterized by the overexpression of a set of genes involved in antiviral immunity and the under-expression of many acute phase protein (APP) genes, particularly involved in the complement and coagulation systems. Infection also altered the expression of cholesterol metabolism-associated genes in HepG2 and Huh7 cells. The decrease in APP transcripts was correlated with lower protein abundance in the secretome of infected cells, as shown by proteomics, and also occurred in the presence of APP inducers (IL-6 or IL-1β). Collectively, these results reveal that long-term infection with Listeria profoundly deregulates the innate immune functions of hepatocytes, which could generate an environment favorable to the establishment of persistent infection.
Collapse
Affiliation(s)
- Natalie Descoeudres
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Céline Henry
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Kevin Gorrichon
- Université Paris-Saclay, Institut de Biologie Intégrative de la Cellule, CEA, CNRS UMR 9198, Université Paris-Sud, Gif-sur-Yvette, France
| | | | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Laura Lee Gillespie
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Cristel Archambaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alessandro Pagliuso
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Hélène Bierne
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
11
|
|
12
|
Zhou J, Horton JR, Yu D, Ren R, Blumenthal RM, Zhang X, Cheng X. Repurposing epigenetic inhibitors to target the Clostridioides difficile-specific DNA adenine methyltransferase and sporulation regulator CamA. Epigenetics 2021; 17:970-981. [PMID: 34523387 PMCID: PMC9487755 DOI: 10.1080/15592294.2021.1976910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Epigenetically targeted therapeutic development, particularly for SAM-dependent methylations of DNA, mRNA and histones has been proceeding rapidly for cancer treatments over the past few years. However, this approach has barely begun to be exploited for developing new antibiotics, despite an overwhelming global need to counter antimicrobial resistance. Here, we explore whether SAM analogues, some of which are in (pre)clinical studies as inhibitors of human epigenetic enzymes, can also inhibit Clostridioides difficile-specific DNA adenine methyltransferase (CamA), a sporulation regulator present in all C. difficile genomes sequenced to date, but found in almost no other bacteria. We found that SGC0946 (an inhibitor of DOT1L), JNJ-64619178 (an inhibitor of PRMT5) and SGC8158 (an inhibitor of PRMT7) inhibit CamA enzymatic activity in vitro at low micromolar concentrations. Structural investigation of the ternary complexes of CamA-DNA in the presence of SGC0946 or SGC8158 revealed conformational rearrangements of the N-terminal arm, with no apparent disturbance of the active site. This N-terminal arm and its modulation of exchanges between SAM (the methyl donor) and SAH (the reaction product) during catalysis of methyl transfer are, to date, unique to CamA. Our work presents a substantial first step in generating potent and selective inhibitors of CamA that would serve in the near term as chemical probes to investigate the cellular mechanism(s) of CamA in controlling spore formation and colonization, and eventually as therapeutic antivirulence agents useful in treating C. difficile infection.
Collapse
Affiliation(s)
- Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Hanford HE, Von Dwingelo J, Abu Kwaik Y. Bacterial nucleomodulins: A coevolutionary adaptation to the eukaryotic command center. PLoS Pathog 2021; 17:e1009184. [PMID: 33476322 PMCID: PMC7819608 DOI: 10.1371/journal.ppat.1009184] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Through long-term interactions with their hosts, bacterial pathogens have evolved unique arsenals of effector proteins that interact with specific host targets and reprogram the host cell into a permissive niche for pathogen proliferation. The targeting of effector proteins into the host cell nucleus for modulation of nuclear processes is an emerging theme among bacterial pathogens. These unique pathogen effector proteins have been termed in recent years as "nucleomodulins." The first nucleomodulins were discovered in the phytopathogens Agrobacterium and Xanthomonas, where their nucleomodulins functioned as eukaryotic transcription factors or integrated themselves into host cell DNA to promote tumor induction, respectively. Numerous nucleomodulins were recently identified in mammalian pathogens. Bacterial nucleomodulins are an emerging family of pathogen effector proteins that evolved to target specific components of the host cell command center through various mechanisms. These mechanisms include: chromatin dynamics, histone modification, DNA methylation, RNA splicing, DNA replication, cell cycle, and cell signaling pathways. Nucleomodulins may induce short- or long-term epigenetic modifications of the host cell. In this extensive review, we discuss the current knowledge of nucleomodulins from plant and mammalian pathogens. While many nucleomodulins are already identified, continued research is instrumental in understanding their mechanisms of action and the role they play during the progression of pathogenesis. The continued study of nucleomodulins will enhance our knowledge of their effects on nuclear chromatin dynamics, protein homeostasis, transcriptional landscapes, and the overall host cell epigenome.
Collapse
Affiliation(s)
- Hannah E. Hanford
- Department of Microbiology and Immunology, University of Louisville, Kentucky, United States of America
| | - Juanita Von Dwingelo
- Department of Microbiology and Immunology, University of Louisville, Kentucky, United States of America
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Kentucky, United States of America
- Center for Predicative Medicine, College of Medicine, University of Louisville, Kentucky, United States of America
| |
Collapse
|
14
|
Bunkar N, Sharma J, Chouksey A, Kumari R, Gupta PK, Tiwari R, Lodhi L, Srivastava RK, Bhargava A, Mishra PK. Clostridium perfringens phospholipase C impairs innate immune response by inducing integrated stress response and mitochondrial-induced epigenetic modifications. Cell Signal 2020; 75:109776. [PMID: 32916276 DOI: 10.1016/j.cellsig.2020.109776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/27/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
Clostridium perfringens, a rod-shaped, gram-positive, anaerobic, spore-forming bacterium is one of the most widely occurring bacterial pathogens, associated with a spectrum of diseases in humans. A major virulence factor during its infection is the enzyme phospholipase C encoded by the plc gene, known as Clostridium perfringens phospholipase C (CpPLC). The present study was designed to understand the role of CpPLC in inducing survival mechanisms and mitochondrial-induced epigenetic changes in a human lymphocyte cell culture model. Following exposure to CpPLC, a significant generation of mitochondrial reactive oxygen species was observed, which coincided with the changes in the expression of vital components of MAP/ERK/RTK signaling cascade that regulates the downstream cellular functions. These disturbances further led to alterations in the mitochondrial genome and functioning. This was supported by the observed upregulation in the expression of mitochondrial fission genes Drp1, Fis1, and Mff, and mitochondrial fusion genes MFN1, MFN2, and OPA1 following CpPLC exposure. CpPLC exposed cells showed upregulation of OMA1, DELE1, and HRI genes involved in the integrated stress response (ISR), which suggests that it may induce the ISR that provides a pro-survival mechanism to the host cell. CpPLC also initiated immune patho-physiologic mechanisms including mitochondrial-induced epigenetic modifications through a mitochondrial-ROS driven signaling pathway. Interestingly, epigenetic machinery not only play a pivotal role in lymphocyte homeostasis by contributing to cell-fate decisions but thought to be one of the mechanisms by which intracellular pathogens survive within the host cells. Importantly, the impairment of mtDNA repair among the CpPLC exposed cells, induced alterations within mtDNA methylation, and led to the deregulation of MT-CO1, MT-ND6, MT-ATPase 6, and MT-ATPase8 gene expression profiles that are important for mitochondrial bioenergetics and subsequent metabolic pathways. This was further confirmed by the changes in the activity of mitochondrial electron chain complexes (complex I, II, III, IV and V). The altered mtDNA methylation profile was also found to be closely associated with the varied expression of mitomiRs and their targets. CpPLC exposed cells showed up-regulation of miR24 expression and down-regulation of miR34a, miR150, and miR155, while the increased expression of mitomiR target genes i.e. of K-Ras, MYC, EGFR, and NF-kβ was also observed in these cells. Altogether, our findings provide novel insights into the derailment of redox signaling machinery in CpPLC treated lymphocytes and its role in the induction of survival mechanisms and mitochondrial-induced epigenetic modifications.
Collapse
Affiliation(s)
- Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Jahnavi Sharma
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Anju Chouksey
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pushpendra Kumar Gupta
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Lalit Lodhi
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
15
|
Peignier A, Parker D. Trained immunity and host-pathogen interactions. Cell Microbiol 2020; 22:e13261. [PMID: 32902895 DOI: 10.1111/cmi.13261] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a leading cause of death worldwide with over 8 million fatalities accounted for in 2016. Solicitation of host immune defenses by vaccination is the treatment of choice to prevent these infections. It has long been thought that vaccine immunity was solely mediated by the adaptive immune system. However, over the past decade, numerous studies have shown that innate immune cells can also retain memory of these encounters. This process, called innate immune memory, is mediated by metabolic and epigenetic changes that make cells either hyperresponsive (trained immunity) or hyporesponsive (tolerance) to subsequent challenges. In this review, we discuss the concepts of trained immunity and tolerance in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Adeline Peignier
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
16
|
Bacterial Factors Targeting the Nucleus: The Growing Family of Nucleomodulins. Toxins (Basel) 2020; 12:toxins12040220. [PMID: 32244550 PMCID: PMC7232420 DOI: 10.3390/toxins12040220] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/23/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022] Open
Abstract
Pathogenic bacteria secrete a variety of proteins that manipulate host cell function by targeting components of the plasma membrane, cytosol, or organelles. In the last decade, several studies identified bacterial factors acting within the nucleus on gene expression or other nuclear processes, which has led to the emergence of a new family of effectors called “nucleomodulins”. In human and animal pathogens, Listeria monocytogenes for Gram-positive bacteria and Anaplasma phagocytophilum, Ehrlichia chaffeensis, Chlamydia trachomatis, Legionella pneumophila, Shigella flexneri, and Escherichia coli for Gram-negative bacteria, have led to pioneering discoveries. In this review, we present these paradigms and detail various mechanisms and core elements (e.g., DNA, histones, epigenetic regulators, transcription or splicing factors, signaling proteins) targeted by nucleomodulins. We particularly focus on nucleomodulins interacting with epifactors, such as LntA of Listeria and ankyrin repeat- or tandem repeat-containing effectors of Rickettsiales, and nucleomodulins from various bacterial species acting as post-translational modification enzymes. The study of bacterial nucleomodulins not only generates important knowledge about the control of host responses by microbes but also creates new tools to decipher the dynamic regulations that occur in the nucleus. This research also has potential applications in the field of biotechnology. Finally, this raises questions about the epigenetic effects of infectious diseases.
Collapse
|