1
|
Kopalli SR, Behl T, Baldaniya L, Ballal S, Joshi KK, Arya R, Chaturvedi B, Chauhan AS, Verma R, Patel M, Jain SK, Wal A, Gulati M, Koppula S. Neuroadaptation in neurodegenerative diseases: compensatory mechanisms and therapeutic approaches. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111375. [PMID: 40280271 DOI: 10.1016/j.pnpbp.2025.111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Progressive neuronal loss is a hallmark of neurodegenerative diseases including Alzheimer's, Parkinson's, Huntington's, and Amyotrophic Lateral Sclerosis (ALS), which cause cognitive and motor impairment. Delaying the onset and course of symptoms is largely dependent on neuroadaptation, the brain's ability to restructure in response to damage. The molecular, cellular, and systemic processes that underlie neuroadaptation are examined in this study. These mechanisms include gliosis, neurogenesis, synaptic plasticity, and changes in neurotrophic factors. Axonal sprouting, dendritic remodelling, and compensatory alterations in neurotransmitter systems are important adaptations observed in NDDs; nevertheless, these processes may shift to maladaptive plasticity, which would aid in the advancement of the illness. Amyloid and tau pathology-induced synaptic alterations in Alzheimer's disease emphasize compensatory network reconfiguration. Dopamine depletion causes a major remodelling of the basal ganglia in Parkinson's disease, and non-dopaminergic systems compensate. Both ALS and Huntington's disease rely on motor circuit rearrangement and transcriptional dysregulation to slow down functional deterioration. Neuroadaptation is, however, constrained by oxidative stress, compromised autophagy, and neuroinflammation, particularly in elderly populations. The goal of emerging therapy strategies is to improve neuroadaptation by pharmacologically modifying neurotrophic factors, neuroinflammation, and synaptic plasticity. Neurostimulation, cognitive training, and physical rehabilitation are instances of non-pharmacological therapies that support neuroplasticity. Restoring compensating systems may be possible with the use of stem cell techniques and new gene treatments. The goal of future research is to combine biomarkers and individualized medicines to maximize neuroadaptive responses and decrease the course of illness. In order to reduce neurodegeneration and enhance patient outcomes, this review highlights the dual function of neuroadaptation in NDDs and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab-140306, India
| | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Bhumi Chaturvedi
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Rakesh Verma
- Department of Pharmacology, Institute of Medical Science, BHU, Varanasi, India
| | - Minesh Patel
- Department of Pharmacology & Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Dhanap, Gandhinagar, Gujarat, India
| | - Sanmati Kumar Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur, India, 495009
| | - Ankita Wal
- Pranveer Singh Institute of Technology, Pharmacy, NH-19, Bhauti Road, Kanpur, UP, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
2
|
Pérot JB, Brouillet E, Flament J. The contribution of preclinical magnetic resonance imaging and spectroscopy to Huntington's disease. Front Aging Neurosci 2024; 16:1306312. [PMID: 38414634 PMCID: PMC10896846 DOI: 10.3389/fnagi.2024.1306312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Huntington's disease is an inherited disorder characterized by psychiatric, cognitive, and motor symptoms due to degeneration of medium spiny neurons in the striatum. A prodromal phase precedes the onset, lasting decades. Current biomarkers include clinical score and striatal atrophy using Magnetic Resonance Imaging (MRI). These markers lack sensitivity for subtle cellular changes during the prodromal phase. MRI and MR spectroscopy offer different contrasts for assessing metabolic, microstructural, functional, or vascular alterations in the disease. They have been used in patients and mouse models. Mouse models can be of great interest to study a specific mechanism of the degenerative process, allow better understanding of the pathogenesis from the prodromal to the symptomatic phase, and to evaluate therapeutic efficacy. Mouse models can be divided into three different constructions: transgenic mice expressing exon-1 of human huntingtin (HTT), mice with an artificial chromosome expressing full-length human HTT, and knock-in mouse models with CAG expansion inserted in the murine htt gene. Several studies have used MRI/S to characterized these models. However, the multiplicity of modalities and mouse models available complicates the understanding of this rich corpus. The present review aims at giving an overview of results obtained using MRI/S for each mouse model of HD, to provide a useful resource for the conception of neuroimaging studies using mouse models of HD. Finally, despite difficulties in translating preclinical protocols to clinical applications, many biomarkers identified in preclinical models have already been evaluated in patients. This review also aims to cover this aspect to demonstrate the importance of MRI/S for studying HD.
Collapse
Affiliation(s)
- Jean-Baptiste Pérot
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
- Institut du Cerveau – Paris Brain Institute – ICM, Sorbonne Université, Paris, France
| | - Emmanuel Brouillet
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Flament
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
3
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 PMCID: PMC12001818 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Pérot JB, Célestine M, Palombo M, Dhenain M, Humbert S, Brouillet E, Flament J. Longitudinal multimodal MRI characterization of a knock-in mouse model of Huntington's disease reveals early gray and white matter alterations. Hum Mol Genet 2022; 31:3581-3596. [PMID: 35147158 PMCID: PMC9616570 DOI: 10.1093/hmg/ddac036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Pathogenesis of the inherited neurodegenerative disorder Huntington's disease (HD) is progressive with a long presymptomatic phase in which subtle changes occur up to 15 years before the onset of symptoms. Thus, there is a need for early, functional biomarker to better understand disease progression and to evaluate treatment efficacy far from onset. Recent studies have shown that white matter may be affected early in mutant HTT gene carriers. A previous study performed on 12 months old Ki140CAG mice showed reduced glutamate level measured by Chemical Exchange Saturation Transfer of glutamate (gluCEST), especially in the corpus callosum. In this study, we scanned longitudinally Ki140CAG mice with structural MRI, diffusion tensor imaging, gluCEST and magnetization transfer imaging, in order to assess white matter integrity over the life of this mouse model characterized by slow progression of symptoms. Our results show early defects of diffusion properties in the anterior part of the corpus callosum at 5 months of age, preceding gluCEST defects in the same region at 8 and 12 months that spread to adjacent regions. At 12 months, frontal and piriform cortices showed reduced gluCEST, as well as the pallidum. MT imaging showed reduced signal in the septum at 12 months. Cortical and striatal atrophy then appear at 18 months. Vulnerability of the striatum and motor cortex, combined with alterations of anterior corpus callosum, seems to point out the potential role of white matter in the brain dysfunction that characterizes HD and the pertinence of gluCEST and DTI as biomarkers in HD.
Collapse
Affiliation(s)
- Jean-Baptiste Pérot
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| | - Marina Célestine
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| | - Marco Palombo
- Department of Computer Science, Centre for Medical Image Computing, University College London, London WC1E 6BT, UK
| | - Marc Dhenain
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| | - Sandrine Humbert
- Université Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble 38000 , France
| | - Emmanuel Brouillet
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| | - Julien Flament
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| |
Collapse
|
5
|
Molecular Pathophysiological Mechanisms in Huntington's Disease. Biomedicines 2022; 10:biomedicines10061432. [PMID: 35740453 PMCID: PMC9219859 DOI: 10.3390/biomedicines10061432] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease is an inherited neurodegenerative disease described 150 years ago by George Huntington. The genetic defect was identified in 1993 to be an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 4. In the following almost 30 years, a considerable amount of research, using mainly animal models or in vitro experiments, has tried to unravel the complex molecular cascades through which the transcription of the mutant protein leads to neuronal loss, especially in the medium spiny neurons of the striatum, and identified excitotoxicity, transcriptional dysregulation, mitochondrial dysfunction, oxidative stress, impaired proteostasis, altered axonal trafficking and reduced availability of trophic factors to be crucial contributors. This review discusses the pathogenic cascades described in the literature through which mutant huntingtin leads to neuronal demise. However, due to the ubiquitous presence of huntingtin, astrocytes are also dysfunctional, and neuroinflammation may additionally contribute to Huntington’s disease pathology. The quest for therapies to delay the onset and reduce the rate of Huntington’s disease progression is ongoing, but is based on findings from basic research.
Collapse
|
6
|
Callahan JW, Wokosin DL, Bevan MD. Dysregulation of the Basal Ganglia Indirect Pathway in Early Symptomatic Q175 Huntington's Disease Mice. J Neurosci 2022; 42:2080-2102. [PMID: 35058372 PMCID: PMC8916764 DOI: 10.1523/jneurosci.0782-21.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 11/21/2022] Open
Abstract
The debilitating psychomotor symptoms of Huntington's disease (HD) are linked partly to degeneration of the basal ganglia indirect pathway. At early symptomatic stages, before major cell loss, indirect pathway neurons exhibit numerous cellular and synaptic changes in HD and its models. However, the impact of these alterations on circuit activity remains poorly understood. To address this gap, optogenetic- and reporter-guided electrophysiological interrogation was used in early symptomatic male and female Q175 HD mice. D2 dopamine receptor-expressing striatal projection neurons (D2-SPNs) were hypoactive during synchronous cortical slow-wave activity, consistent with known reductions in dendritic excitability and cortical input strength. Downstream prototypic parvalbumin-expressing external globus pallidus (PV+ GPe) neurons discharged at 2-3 times their normal rate, even during periods of D2-SPN inactivity, arguing that defective striatopallidal inhibition was not the only cause of their hyperactivity. Indeed, PV+ GPe neurons also exhibited abnormally elevated autonomous firing ex vivo Optogenetic inhibition of PV+ GPe neurons in vivo partially and fully ameliorated the abnormal hypoactivity of postsynaptic subthalamic nucleus (STN) and putative PV- GPe neurons, respectively. In contrast to STN neurons whose autonomous firing is impaired in HD mice, putative PV- GPe neuron activity was unaffected ex vivo, implying that excessive inhibition was responsible for their hypoactivity in vivo Together with previous studies, these data demonstrate that (1) indirect pathway nuclei are dysregulated in Q175 mice through changes in presynaptic activity and/or intrinsic cellular and synaptic properties; and (2) prototypic PV+ GPe neuron hyperactivity and excessive target inhibition are prominent features of early HD pathophysiology.SIGNIFICANCE STATEMENT The early symptoms of Huntington's disease (HD) are linked to degenerative changes in the action-suppressing indirect pathway of the basal ganglia. Consistent with this linkage, the intrinsic properties of cells in this pathway exhibit complex alterations in HD and its models. However, the impact of these changes on activity is poorly understood. Using electrophysiological and optogenetic approaches, we demonstrate that the indirect pathway is highly dysregulated in early symptomatic HD mice through changes in upstream activity and/or intrinsic properties. Furthermore, we reveal that hyperactivity of external globus pallidus neurons and excessive inhibition of their targets are key features of early HD pathophysiology. Together, these findings could help to inform the development and targeting of viral-based, gene therapeutic approaches for HD.
Collapse
Affiliation(s)
- Joshua W Callahan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - David L Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Mark D Bevan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
7
|
McGrath T, Baskerville R, Rogero M, Castell L. Emerging Evidence for the Widespread Role of Glutamatergic Dysfunction in Neuropsychiatric Diseases. Nutrients 2022; 14:nu14050917. [PMID: 35267893 PMCID: PMC8912368 DOI: 10.3390/nu14050917] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
The monoamine model of depression has long formed the basis of drug development but fails to explain treatment resistance or associations with stress or inflammation. Recent animal research, clinical trials of ketamine (a glutamate receptor antagonist), neuroimaging research, and microbiome studies provide increasing evidence of glutamatergic dysfunction in depression and other disorders. Glutamatergic involvement across diverse neuropathologies including psychoses, neurodevelopmental, neurodegenerative conditions, and brain injury forms the rationale for this review. Glutamate is the brain's principal excitatory neurotransmitter (NT), a metabolic and synthesis substrate, and an immune mediator. These overlapping roles and multiple glutamate NT receptor types complicate research into glutamate neurotransmission. The glutamate microcircuit comprises excitatory glutamatergic neurons, astrocytes controlling synaptic space levels, through glutamate reuptake, and inhibitory GABA interneurons. Astroglia generate and respond to inflammatory mediators. Glutamatergic microcircuits also act at the brain/body interface via the microbiome, kynurenine pathway, and hypothalamus-pituitary-adrenal axis. Disruption of excitatory/inhibitory homeostasis causing neuro-excitotoxicity, with neuronal impairment, causes depression and cognition symptoms via limbic and prefrontal regions, respectively. Persistent dysfunction reduces neuronal plasticity and growth causing neuronal death and tissue atrophy in neurodegenerative diseases. A conceptual overview of brain glutamatergic activity and peripheral interfacing is presented, including the common mechanisms that diverse diseases share when glutamate homeostasis is disrupted.
Collapse
Affiliation(s)
- Thomas McGrath
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| | - Richard Baskerville
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Correspondence:
| | - Marcelo Rogero
- School of Public Health, University of Sao Paulo, Sao Paulo 01246-904, Brazil;
| | - Linda Castell
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| |
Collapse
|
8
|
Qu ZB, Jiang Y, Zhang J, Chen S, Zeng R, Zhuo Y, Lu M, Shi G, Gu H. Tailoring Oxygen-Containing Groups on Graphene for Ratiometric Electrochemical Measurements of Ascorbic Acid in Living Subacute Parkinson's Disease Mouse Brains. Anal Chem 2021; 93:16598-16607. [PMID: 34844405 DOI: 10.1021/acs.analchem.1c03965] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ascorbic acid (AA), a major antioxidant in the central nervous system (CNS), is involved in withstanding oxidative stress that plays a significant role in the pathogenesis of Parkinson's disease (PD). Exploring the AA disturbance in the process of PD is of great value in understanding the molecular mechanism of PD. Herein, by virtue of a carbon fiber electrode (CFE) as a matric electrode, a three-step electrochemical process for tailoring oxygen-containing groups on graphene was well designed: potentiostatic deposition was carried out to fabricate graphene oxide on CFE, electrochemical reduction that assisted in removing the epoxy groups accelerated the electron transfer kinetics of AA oxidation, and electrochemical oxidation that increased the content of the carbonyl group (C═O) generated an inner-reference signal. The mechanism was solidified by ab initio calculations by comparing AA absorption on defected models of graphene functionalized with different oxygen groups including carboxyl, hydroxyl, epoxy, and carbonyl. It was found that epoxy groups would hinder the physical absorption of AA onto graphene, while other functional groups would be beneficial to it. Biocompatible polyethylenedioxythiophene (PEDOT) was further rationally assembled to improve the antifouling property of graphene. As a result, a new platform for ratiometric electrochemical measurements of AA with high sensitivity, excellent selectivity, and reproducibility was established. In vivo determination of AA levels in different regions of living mouse brains by the proposed method demonstrated that AA decreased remarkably in the hippocampus and cortex of a subacute PD mouse than those of a normal mouse.
Collapse
Affiliation(s)
- Zhi-Bei Qu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yimin Jiang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Jiaxin Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Shu Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Rongjin Zeng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yi Zhuo
- Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Ming Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, P. R. China
| | - Hui Gu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| |
Collapse
|
9
|
Sharma HS, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Li C, Zhang Z, Wiklund L, Sharma A. Cerebrolysin restores balance between excitatory and inhibitory amino acids in brain following concussive head injury. Superior neuroprotective effects of TiO 2 nanowired drug delivery. PROGRESS IN BRAIN RESEARCH 2021; 266:211-267. [PMID: 34689860 DOI: 10.1016/bs.pbr.2021.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Concussive head injury (CHI) often associated with military personnel, soccer players and related sports personnel leads to serious clinical situation causing lifetime disabilities. About 3-4k head injury per 100k populations are recorded in the United States since 2000-2014. The annual incidence of concussion has now reached to 1.2% of population in recent years. Thus, CHI inflicts a huge financial burden on the society for rehabilitation. Thus, new efforts are needed to explore novel therapeutic strategies to treat CHI cases to enhance quality of life of the victims. CHI is well known to alter endogenous balance of excitatory and inhibitory amino acid neurotransmitters in the central nervous system (CNS) leading to brain pathology. Thus, a possibility exists that restoring the balance of amino acids in the CNS following CHI using therapeutic measures may benefit the victims in improving their quality of life. In this investigation, we used a multimodal drug Cerebrolysin (Ever NeuroPharma, Austria) that is a well-balanced composition of several neurotrophic factors and active peptide fragments in exploring its effects on CHI induced alterations in key excitatory (Glutamate, Aspartate) and inhibitory (GABA, Glycine) amino acids in the CNS in relation brain pathology in dose and time-dependent manner. CHI was produced in anesthetized rats by dropping a weight of 114.6g over the right exposed parietal skull from a distance of 20cm height (0.224N impact) and blood-brain barrier (BBB), brain edema, neuronal injuries and behavioral dysfunctions were measured 8, 24, 48 and 72h after injury. Cerebrolysin (CBL) was administered (2.5, 5 or 10mL/kg, i.v.) after 4-72h following injury. Our observations show that repeated CBL induced a dose-dependent neuroprotection in CHI (5-10mL/kg) and also improved behavioral functions. Interestingly when CBL is delivered through TiO2 nanowires superior neuroprotective effects were observed in CHI even at a lower doses (2.5-5mL/kg). These observations are the first to demonstrate that CBL is effectively capable to attenuate CHI induced brain pathology and behavioral disturbances in a dose dependent manner, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Cong Li
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Yuexiu District, Guangzhou, China
| | - Zhiquiang Zhang
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Yuexiu District, Guangzhou, China
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Prados ME, Correa-Sáez A, Unciti-Broceta JD, Garrido-Rodríguez M, Jimenez-Jimenez C, Mazzone M, Minassi A, Appendino G, Calzado MA, Muñoz E. Betulinic Acid Hydroxamate is Neuroprotective and Induces Protein Phosphatase 2A-Dependent HIF-1α Stabilization and Post-transcriptional Dephosphorylation of Prolyl Hydrolase 2. Neurotherapeutics 2021; 18:1849-1861. [PMID: 34339019 PMCID: PMC8608974 DOI: 10.1007/s13311-021-01089-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 02/04/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by unwanted choreatic movements, behavioral and psychiatric disturbances, and dementia. The activation of the hypoxic response pathway through the pharmacological inhibition of hypoxia-inducing factor (HIF) prolyl-hydroxylases (PHDs) is a promising approach for neurodegenerative diseases, including HD. Herein, we have studied the mechanism of action of the compound Betulinic acid hydroxamate (BAH), a hypoximimetic derivative of betulinic acid, and its efficacy against striatal neurodegeneration using complementary approaches. Firstly, we showed the molecular mechanisms through which BAH modifies the activity of the PHD2 prolyl hydroxylase, thus directly affecting HIF-1α stability. BAH treatment reduces PHD2 phosphorylation on Ser-125 residue, responsible for the control of its hydrolase activity. HIF activation by BAH is inhibited by okadaic acid and LB-100 indicating that a protein phosphatase 2A (PP2A) is implicated in the mechanism of action of BAH. Furthermore, in striatal cells bearing a mutated form of the huntingtin protein, BAH stabilized HIF-1α protein, induced Vegf and Bnip3 gene expression and protected against mitochondrial toxin-induced cytotoxicity. Pharmacokinetic analyses showed that BAH has a good brain penetrability and experiments performed in a mouse model of striatal neurodegeneration induced by 3-nitropropionic acid showed that BAH improved the clinical symptoms. In addition, BAH also prevented neuronal loss, decreased reactive astrogliosis and microglial activation, inhibited the upregulation of proinflammatory markers, and improved antioxidant defenses in the brain. Taken together, our results show BAH's ability to activate the PP2A/PHD2/HIF pathway, which may have important implications in the treatment of HD and perhaps other neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Alejandro Correa-Sáez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain
- Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Hospital Reina Sofia, Cordoba, Spain
| | | | - Martín Garrido-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain
- Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Hospital Reina Sofia, Cordoba, Spain
| | - Carla Jimenez-Jimenez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain
- Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Hospital Reina Sofia, Cordoba, Spain
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB-KULeuven, 3000, Leuven, Belgium
| | - Alberto Minassi
- Department of Drug Science, University of Piemonte Orientale, Novara, Italy
| | - Giovanni Appendino
- Department of Drug Science, University of Piemonte Orientale, Novara, Italy
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.
- Hospital Universitario Hospital Reina Sofia, Cordoba, Spain.
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.
- Hospital Universitario Hospital Reina Sofia, Cordoba, Spain.
| |
Collapse
|
11
|
Buren C, Tu G, Raymond LA. Impaired Replenishment of Cortico-Striatal Synaptic Glutamate in Huntington's Disease Mouse Model. J Huntingtons Dis 2021; 9:149-161. [PMID: 32310183 DOI: 10.3233/jhd-200400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Huntington's disease (HD) is an inherited neurodegenerative disorder caused by expansion of CAG repeats in the Huntingtin gene (HTT). Studies suggest cortical to striatal (C-S) projections, which regulate movement and provide cell survival signals to SPNs, are altered in the pre-manifest and early symptomatic stages of HD. But whether and how presynaptic cortical terminals are affected in HD is not well explored. OBJECTIVE Test size and replenishment of readily releasable pool (RRP), and assess glutamate refill of C-S synapses in HD models. METHODS Immunocytochemistry was applied in C-S co-cultures generated from FVB/N (WT: wildtype) mice and YAC128, an HD mouse model expressing human HTT with 128 CAG repeats on the FVB/N background; Whole-cell patch clamp recordings from striatal neurons were performed both in cultures, with or without osmotic stimuli, and in acute brain slices from 6-month-old early symptomatic YAC128 mice and WT following prolonged trains of electrical stimuli in corpus callosum. RESULTS We found no change in the average size or vesicle replenishment rate of RRP in C-S synapses of YAC128, compared with WT, cultures at day in vitro 21, a time when immunocytochemistry showed comparable neuronal survival between the two genotypes. However, YAC128 C-S synapses showed a slowed rate of recovery of glutamate release in co-cultures as well as in acute brain slices. CONCLUSION Mutant HTT expression impairs glutamate refill but not RRP size or replenishment in C-S synapses. This work provides a foundation for examining the contribution of deficits in presynaptic cortical terminals on HD progression.
Collapse
Affiliation(s)
- Caodu Buren
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada.,Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
| | - Gaqi Tu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Lynn A Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Bergonzoni G, Döring J, Biagioli M. D1R- and D2R-Medium-Sized Spiny Neurons Diversity: Insights Into Striatal Vulnerability to Huntington's Disease Mutation. Front Cell Neurosci 2021; 15:628010. [PMID: 33642998 PMCID: PMC7902492 DOI: 10.3389/fncel.2021.628010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder caused by an aberrant expansion of the CAG tract within the exon 1 of the HD gene, HTT. HD progressively impairs motor and cognitive capabilities, leading to a total loss of autonomy and ultimate death. Currently, no cure or effective treatment is available to halt the disease. Although the HTT gene is ubiquitously expressed, the striatum appears to be the most susceptible district to the HD mutation with Medium-sized Spiny Neurons (MSNs) (D1R and D2R) representing 95% of the striatal neuronal population. Why are striatal MSNs so vulnerable to the HD mutation? Particularly, why do D1R- and D2R-MSNs display different susceptibility to HD? Here, we highlight significant differences between D1R- and D2R-MSNs subpopulations, such as morphology, electrophysiology, transcriptomic, functionality, and localization in the striatum. We discuss possible reasons for their selective degeneration in the context of HD. Our review suggests that a better understanding of cell type-specific gene expression dysregulation within the striatum might reveal new paths to therapeutic intervention or prevention to ameliorate HD patients' life expectancy.
Collapse
Affiliation(s)
| | | | - Marta Biagioli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
13
|
Ferrazzoli D, Ortelli P, Volpe D, Cucca A, Versace V, Nardone R, Saltuari L, Sebastianelli L. The Ties That Bind: Aberrant Plasticity and Networks Dysfunction in Movement Disorders-Implications for Rehabilitation. Brain Connect 2021; 11:278-296. [PMID: 33403893 DOI: 10.1089/brain.2020.0971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Movement disorders encompass various conditions affecting the nervous system. The pathological processes underlying movement disorders lead to aberrant synaptic plastic changes, which in turn alter the functioning of large-scale brain networks. Therefore, clinical phenomenology does not only entail motor symptoms but also cognitive and motivational disturbances. The result is the disruption of motor learning and motor behavior. Due to this complexity, the responsiveness to standard therapies could be disappointing. Specific forms of rehabilitation entailing goal-based practice, aerobic training, and the use of noninvasive brain stimulation techniques could "restore" neuroplasticity at motor-cognitive circuitries, leading to clinical gains. This is probably associated with modulations occurring at both molecular (synaptic) and circuitry levels (networks). Several gaps remain in our understanding of the relationships among plasticity and neural networks and how neurorehabilitation could promote clinical gains is still unclear. Purposes: In this review, we outline first the networks involved in motor learning and behavior and analyze which mechanisms link the pathological synaptic plastic changes with these networks' disruption in movement disorders. Therefore, we provide theoretical and practical bases to be applied for treatment in rehabilitation.
Collapse
Affiliation(s)
- Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Paola Ortelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Daniele Volpe
- Fresco Parkinson Center, Villa Margherita, S. Stefano Riabilitazione, Vicenza, Italy
| | - Alberto Cucca
- Fresco Parkinson Center, Villa Margherita, S. Stefano Riabilitazione, Vicenza, Italy.,Department of Neurology, The Marlene & Paolo Fresco Institute for Parkinson's & Movement Disorders, NYU School of Medicine, New York, New York, USA.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital (SABES-ASDAA), Merano-Meran, Italy.,Department of Neurology, Christian Doppler Medical Center, Paracelsus University Salzburg, Salzburg, Austria
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| |
Collapse
|
14
|
Butėnaitė A, Strumila R, Lengvenytė A, Pakutkaitė IK, Morkūnienė A, Matulevičienė A, Dlugauskas E, Utkus A. Significant Association Between Huntingtin Gene Mutation and Prevalence of Hopelessness, Depression and Anxiety Symptoms. Acta Med Litu 2021; 28:77-85. [PMID: 34393630 PMCID: PMC8311852 DOI: 10.15388/amed.2020.28.1.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/22/2022] Open
Abstract
SUMMARY BACKGROUND In Huntington's disease psychiatric symptoms may manifest prior to motor dysfunction. Such symptoms negatively impact people's quality of life and can worsen the course of the primary disease. The aim of the present study was to assess and compare depression, anxiety and hopelessness rates in individuals with and without an abnormal expansion of CAG repeats in the huntingtin (HTT) gene and healthy controls. MATERIALS AND METHODS Study involved 31 individuals referred for genetic testing for Huntington's disease and a control group of 41. Depressive and anxiety symptoms were assessed using Beck Hopelessness Scale (BHS) and Hospital Anxiety and Depression Scale (HADS). Results between groups were compared using the Mann-Whitney U test. Two-sided Bonferroni corrected p-value was set at ≤0.017. RESULTS Individuals with HTT gene mutation ("gene mutation positive", GMP) (N=20) scored higher on the HADS depression subscale (5.90 ± 4.52 vs 1.36 ± 1.91; p ≤ 0.017) than those without HTT gene mutation ("gene mutation negative", GMN) (N=11). GMP and control groups scored higher than the GMN group on the BHS (5.65 ± 3.91 vs 2.09 ± 1.64 and 5.27 ± 4.11 vs 2.09 ± 1.64, respectively; p ≤ 0.017). No differences in anxiety levels were found. CONCLUSIONS Depressive symptoms and hopelessness were more prevalent in individuals with HTT gene mutation than in individuals who were tested but had no said mutation. Such results emphasise the importance of timely diagnosis and treatment of psychiatric comorbidities in individuals affected by Huntington's disease.
Collapse
Affiliation(s)
- Adelė Butėnaitė
- Psychiatric Clinic, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Robertas Strumila
- Psychiatric Clinic, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Aistė Lengvenytė
- Psychiatric Clinic, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | - Aušra Morkūnienė
- Centre for Medical Genetics, Vilnius University Hospital Santaros Klinikos, Vilnius, LithuaniaDepartment of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Aušra Matulevičienė
- Centre for Medical Genetics, Vilnius University Hospital Santaros Klinikos, Vilnius, LithuaniaDepartment of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University,
Vilnius, Lithuania
| | - Edgaras Dlugauskas
- Psychiatric Clinic, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, LithuaniaVilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Algirdas Utkus
- Centre for Medical Genetics, Vilnius University Hospital Santaros Klinikos, Vilnius, LithuaniaDepartment of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
15
|
Blumenstock S, Dudanova I. Cortical and Striatal Circuits in Huntington's Disease. Front Neurosci 2020; 14:82. [PMID: 32116525 PMCID: PMC7025546 DOI: 10.3389/fnins.2020.00082] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 12/28/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder that typically manifests in midlife with motor, cognitive, and/or psychiatric symptoms. The disease is caused by a CAG triplet expansion in exon 1 of the huntingtin gene and leads to a severe neurodegeneration in the striatum and cortex. Classical electrophysiological studies in genetic HD mouse models provided important insights into the disbalance of excitatory, inhibitory and neuromodulatory inputs, as well as progressive disconnection between the cortex and striatum. However, the involvement of local cortical and striatal microcircuits still remains largely unexplored. Here we review the progress in understanding HD-related impairments in the cortical and basal ganglia circuits, and outline new opportunities that have opened with the development of modern circuit analysis methods. In particular, in vivo imaging studies in mouse HD models have demonstrated early structural and functional disturbances within the cortical network, and optogenetic manipulations of striatal cell types have started uncovering the causal roles of certain neuronal populations in disease pathogenesis. In addition, the important contribution of astrocytes to HD-related circuit defects has recently been recognized. In parallel, unbiased systems biology studies are providing insights into the possible molecular underpinnings of these functional defects at the level of synaptic signaling and neurotransmitter metabolism. With these approaches, we can now reach a deeper understanding of circuit-based HD mechanisms, which will be crucial for the development of effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sonja Blumenstock
- Department of Molecules – Signaling – Development, Max Planck Institute of Neurobiology, Martinsried, Germany
- Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Irina Dudanova
- Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
16
|
Treadmill exercise rescues mitochondrial function and motor behavior in the CAG140 knock-in mouse model of Huntington's disease. Chem Biol Interact 2020; 315:108907. [DOI: 10.1016/j.cbi.2019.108907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
|
17
|
Li W, Pozzo-Miller L. Dysfunction of the corticostriatal pathway in autism spectrum disorders. J Neurosci Res 2019; 98:2130-2147. [PMID: 31758607 DOI: 10.1002/jnr.24560] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
The corticostriatal pathway that carries sensory, motor, and limbic information to the striatum plays a critical role in motor control, action selection, and reward. Dysfunction of this pathway is associated with many neurological and psychiatric disorders. Corticostriatal synapses have unique features in their cortical origins and striatal targets. In this review, we first describe axonal growth and synaptogenesis in the corticostriatal pathway during development, and then summarize the current understanding of the molecular bases of synaptic transmission and plasticity at mature corticostriatal synapses. Genes associated with autism spectrum disorder (ASD) have been implicated in axonal growth abnormalities, imbalance of the synaptic excitation/inhibition ratio, and altered long-term synaptic plasticity in the corticostriatal pathway. Here, we review a number of ASD-associated high-confidence genes, including FMR1, KMT2A, GRIN2B, SCN2A, NLGN1, NLGN3, MET, CNTNAP2, FOXP2, TSHZ3, SHANK3, PTEN, CHD8, MECP2, DYRK1A, RELN, FOXP1, SYNGAP1, and NRXN, and discuss their relevance to proper corticostriatal function.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
18
|
Acute lysine overload provokes marked striatum injury involving oxidative stress signaling pathways in glutaryl-CoA dehydrogenase deficient mice. Neurochem Int 2019; 129:104467. [DOI: 10.1016/j.neuint.2019.104467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022]
|
19
|
Creus-Muncunill J, Ehrlich ME. Cell-Autonomous and Non-cell-Autonomous Pathogenic Mechanisms in Huntington's Disease: Insights from In Vitro and In Vivo Models. Neurotherapeutics 2019; 16:957-978. [PMID: 31529216 PMCID: PMC6985401 DOI: 10.1007/s13311-019-00782-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant disorder caused by an expansion in the trinucleotide CAG repeat in exon-1 in the huntingtin gene, located on chromosome 4. When the number of trinucleotide CAG exceeds 40 repeats, disease invariably is manifested, characterized by motor, cognitive, and psychiatric symptoms. The huntingtin (Htt) protein and its mutant form (mutant huntingtin, mHtt) are ubiquitously expressed but although multiple brain regions are affected, the most vulnerable brain region is the striatum. Striatal medium-sized spiny neurons (MSNs) preferentially degenerate, followed by the cortical pyramidal neurons located in layers V and VI. Proposed HD pathogenic mechanisms include, but are not restricted to, excitotoxicity, neurotrophic support deficits, collapse of the protein degradation mechanisms, mitochondrial dysfunction, transcriptional alterations, and disorders of myelin. Studies performed in cell type-specific and regionally selective HD mouse models implicate both MSN cell-autonomous properties and cell-cell interactions, particularly corticostriatal but also with non-neuronal cell types. Here, we review the intrinsic properties of MSNs that contribute to their selective vulnerability and in addition, we discuss how astrocytes, microglia, and oligodendrocytes, together with aberrant corticostriatal connectivity, contribute to HD pathophysiology. In addition, mHtt causes cell-autonomous dysfunction in cell types other than MSNs. These findings have implications in terms of therapeutic strategies aimed at preventing neuronal dysfunction and degeneration.
Collapse
Affiliation(s)
- Jordi Creus-Muncunill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
20
|
Ballaz SJ, Rebec GV. Neurobiology of vitamin C: Expanding the focus from antioxidant to endogenous neuromodulator. Pharmacol Res 2019; 146:104321. [PMID: 31229562 DOI: 10.1016/j.phrs.2019.104321] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Ascorbic acid (AA) is a water-soluble vitamin (C) found in all bodily organs. Most mammals synthesize it, humans are required to eat it, but all mammals need it for healthy functioning. AA reaches its highest concentration in the brain where both neurons and glia rely on tightly regulated uptake from blood via the glucose transport system and sodium-coupled active transport to accumulate and maintain AA at millimolar levels. As a prototype antioxidant, AA is not only neuroprotective, but also functions as a cofactor in redox-coupled reactions essential for the synthesis of neurotransmitters (e.g., dopamine and norepinephrine) and paracrine lipid mediators (e.g., epoxiecoisatrienoic acids) as well as the epigenetic regulation of DNA. Although redox capacity led to the promotion of AA in high doses as potential treatment for various neuropathological and psychiatric conditions, ample evidence has not supported this therapeutic strategy. Here, we focus on some long-neglected aspects of AA neurobiology, including its modulatory role in synaptic transmission as demonstrated by the long-established link between release of endogenous AA in brain extracellular fluid and the clearance of glutamate, an excitatory amino acid. Evidence that this link can be disrupted in animal models of Huntington´s disease is revealing opportunities for new research pathways and therapeutic applications (e.g., epilepsy and pain management). In fact, we suggest that improved understanding of the regulation of endogenous AA and its interaction with key brain neurotransmitter systems, rather than administration of AA in excess, should be the target of future brain-based therapies.
Collapse
Affiliation(s)
- Santiago J Ballaz
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuqui, Ecuador.
| | - George V Rebec
- Program in Neuroscience, Department Psychological & Brain Sciences, Indiana University, Bloomington, USA.
| |
Collapse
|
21
|
Amantadine enhances nigrostriatal and mesolimbic dopamine function in the rat brain in relation to motor and exploratory activity. Pharmacol Biochem Behav 2019; 179:156-170. [DOI: 10.1016/j.pbb.2018.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/11/2018] [Accepted: 12/27/2018] [Indexed: 01/01/2023]
|
22
|
Cepeda C, Tong XP. Huntington's disease: From basic science to therapeutics. CNS Neurosci Ther 2018; 24:247-249. [PMID: 29582586 DOI: 10.1111/cns.12841] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Xiao-Ping Tong
- Discipline of Neuroscience and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Rosas-Arellano A, Estrada-Mondragón A, Piña R, Mantellero CA, Castro MA. The Tiny Drosophila Melanogaster for the Biggest Answers in Huntington's Disease. Int J Mol Sci 2018; 19:E2398. [PMID: 30110961 PMCID: PMC6121572 DOI: 10.3390/ijms19082398] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/18/2022] Open
Abstract
The average life expectancy for humans has increased over the last years. However, the quality of the later stages of life is low and is considered a public health issue of global importance. Late adulthood and the transition into the later stage of life occasionally leads to neurodegenerative diseases that selectively affect different types of neurons and brain regions, producing motor dysfunctions, cognitive impairment, and psychiatric disorders that are progressive, irreversible, without remission periods, and incurable. Huntington's disease (HD) is a common neurodegenerative disorder. In the 25 years since the mutation of the huntingtin (HTT) gene was identified as the molecule responsible for this neural disorder, a variety of animal models, including the fruit fly, have been used to study the disease. Here, we review recent research that used Drosophila as an experimental tool for improving knowledge about the molecular and cellular mechanisms underpinning HD.
Collapse
Affiliation(s)
- Abraham Rosas-Arellano
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Argel Estrada-Mondragón
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden.
| | - Ricardo Piña
- Laboratorio de Neurociencias, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile.
- Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago 8370993, Chile.
| | - Carola A Mantellero
- Facultad de Ciencias de la Salud, Universidad de Las Américas, Santiago 7500972, Chile.
| | - Maite A Castro
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile.
| |
Collapse
|
24
|
Kaplan SV, Limbocker RA, Levant B, Johnson MA. Regional differences in dopamine release in the R6/2 mouse caudate putamen. ELECTROANAL 2018; 30:1066-1072. [PMID: 29955208 PMCID: PMC6016844 DOI: 10.1002/elan.201700827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/09/2018] [Indexed: 01/23/2023]
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder that is characterized by degeneration of the striatum. Here, fast-scan cyclic voltammetry at carbon-fiber microelectrodes was used to uncover regional differences in dopamine (DA) release in the caudate putamen of R6/2 and wild-type control mice. We found a decreasing ventral-to-dorsal gradient in DA release, evoked by a single electrical stimulus pulse, in aged R6/2 mice. Moreover, under more intense stimulation conditions (120 pulses), DA release was significantly attenuated in the dorsal, but not in the ventral caudate. Autoradiography measurements using [3H]WIN 35,428 revealed that the overall density of DA transporter (DAT) protein molecules was significantly less in R6/2 mice compared to WT control mice; however, quadrants of the caudate putamen were not differentially altered in the R6/2 mice. These data collectively suggest that DA release in the dorsal caudate region is more vulnerable with age progression compared to the ventral region.
Collapse
Affiliation(s)
- Sam V. Kaplan
- Department of Chemistry and R. N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045 USA
| | - Ryan A. Limbocker
- Department of Chemistry and R. N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045 USA
| | - Beth Levant
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
| | - Michael A. Johnson
- Department of Chemistry and R. N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045 USA
- Neuroscience Program, University of Kansas, Lawrence, Kansas 66045 USA
| |
Collapse
|
25
|
Rebec GV. Corticostriatal network dysfunction in Huntington's disease: Deficits in neural processing, glutamate transport, and ascorbate release. CNS Neurosci Ther 2018; 24:281-291. [PMID: 29464896 PMCID: PMC6489880 DOI: 10.1111/cns.12828] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/10/2018] [Accepted: 01/27/2018] [Indexed: 12/25/2022] Open
Abstract
AIMS This review summarizes evidence for dysfunctional connectivity between cortical and striatal neurons in Huntington's disease (HD), a fatal neurodegenerative condition caused by a single gene mutation. The focus is on data derived from recording of electrophysiological signals in behaving transgenic mouse models. DISCUSSIONS Firing patterns of individual neurons and the frequency oscillations of local field potentials indicate a disruption in corticostriatal processing driven, in large part, by interactions between cells that contain the mutant gene rather than the mutant gene alone. Dysregulation of glutamate, an excitatory amino acid released by cortical afferents, plays a key role in the breakdown of corticostriatal communication, a process modulated by ascorbate, an antioxidant vitamin found in high concentration in striatum. Up-regulation of glutamate transport by drug administration or viral-vector delivery improves ascorbate homeostasis and neurobehavioral processing in HD mice. Further analysis of electrophysiological data, including the use of sophisticated computational strategies, is required to discern how behavioral demands modulate the flow of corticostriatal information and its disruption by HD. CONCLUSIONS Long before massive cell loss occurs, HD impairs the mechanisms by which cortical and striatal neurons communicate. A key problem identified in transgenic animal models is dysregulation of the dynamic changes in extracellular glutamate and ascorbate. Improved understanding of how these neurochemical systems impact corticostriatal communication is necessary before an effective therapeutic strategy can emerge.
Collapse
Affiliation(s)
- George V. Rebec
- Program in NeuroscienceDepartment of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA
| |
Collapse
|