1
|
Shao Q, Ndzie Noah ML, Golubnitschaja O, Zhan X. Mitochondrial medicine: "from bench to bedside" 3PM-guided concept. EPMA J 2025; 16:239-264. [PMID: 40438494 PMCID: PMC12106218 DOI: 10.1007/s13167-025-00409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/27/2025] [Indexed: 06/01/2025]
Abstract
Mitochondria are the primary sites for aerobic respiration and play a vital role in maintaining physiologic function at the cellular and organismal levels. Physiologic mitochondrial homeostasis, functions, health, and any kind of mitochondrial impairments are associated with systemic effects that are linked to the human health and pathologies. Contextually, mitochondria are acting as a natural vital biosensor in humans controlling status of physical and mental health in a holistic manner. So far, no any disorder is known as happening to humans independently from a compromised mitochondrial health as the cause (primary mitochondrial dysfunction) or a target of collateral damage (secondary mitochondrial injury). This certainty makes mitochondrial medicine be the superior instrument to reach highly ambitious objectives of predictive, preventive, and personalized medicine (PPPM/3PM). 3PM effectively implements the paradigm change from the economically ineffective reactive medical services to a predictive approach, targeted prevention and treatments tailored to individualized patient profiles in primary (protection against health-to-disease transition) and secondary (protection against disease progression) healthcare. Mitochondrial DNA (mtDNA) properties differ significantly from those of nuclear DNA (nDNA). For example, mtDNA as the cell-free DNA molecule is much more stable compared to nDNA, which makes mtDNA be an attractive diagnostic target circulating in human body fluids such as blood and tear fluid. Further, genetic variations in mtDNA contribute to substantial individual differences in disease susceptibility and treatment response. To this end, the current gene editing technologies, such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas, are still immature in mtDNA modification, and cannot be effectively applied in clinical practice posing a challenge for mtDNA-based therapies. In contrast, comprehensive multiomics technologies offer new insights into mitochondrial homeostasis, health, and functions, which enables to develop more effective multi-level diagnostics and targeted treatment strategies. This review article highlights health- and disease-relevant mitochondrial particularities and assesses involvement of mitochondrial medicine into implementing the 3PM objectives. By discussing the interrelationship between 3PM and mitochondrial medicine, we aim to provide a foundation for advancing early and predictive diagnostics, cost-effective targeted prevention in primary and secondary care, and exemplify personalized treatments creating proof-of-concept approaches for 3PM-guided clinical applications.
Collapse
Affiliation(s)
- Qianwen Shao
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Marie Louise Ndzie Noah
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, University Hospital Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Xianquan Zhan
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
- Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Jinan Key Laboratory of Cancer Multiomics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
2
|
de Oliveira MR. Pre-clinical evidence for mitochondria as a therapeutic target for luteolin: A mechanistic view. Chem Biol Interact 2025; 413:111492. [PMID: 40154935 DOI: 10.1016/j.cbi.2025.111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Pre-clinical evidence indicates that mitochondria may be a therapeutic target for luteolin (3',4',5,7-tetrahydroxyflavone; LUT) in different conditions. LUT modulates mitochondrial physiology in in vitro, ex vivo, and in vivo experimental models. This flavone exerted mitochondria-related antioxidant and anti-apoptotic effects, stimulated mitochondrial fusion and fission, induced mitophagy, and promoted mitochondrial biogenesis in human and animal cells and tissues. Moreover, LUT modulated the activity of components of the oxidative phosphorylation (OXPHOS) system, improving the ability of mitochondria to produce adenosine triphosphate (ATP) in certain circumstances. The mechanism of action by which LUT promoted mitochondrial benefits and protection are not completely clear yet. Nonetheless, LUT is a potential candidate to be utilized in mitochondrial therapy in the future. In this work, it is explored the mechanisms of action by which LUT modulates mitochondrial physiology in different pre-clinical experimental models.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), CEP 78060-900, Cuiaba, Mato Grosso, Brazil; Grupo de Estudos em Terapia Mitocondrial, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
3
|
Caron C, McCullagh EA, Bertolin G. Sex-specific loss of mitochondrial membrane integrity in the auditory brainstem of a mouse model of Fragile X Syndrome. Open Biol 2025; 15:240384. [PMID: 40359994 PMCID: PMC12082877 DOI: 10.1098/rsob.240384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 05/15/2025] Open
Abstract
Sound sensitivity is a common sensory complaint for people with autism spectrum disorder (ASD). How and why sounds are perceived as overwhelming by affected people is unknown. To process sound information properly, the brain requires high activity and fast processing, as seen in areas like the medial nucleus of the trapezoid body (MNTB) of the auditory brainstem. Recent work has shown dysfunction in mitochondria in a genetic model of ASD, Fragile X Syndrome (FXS). Whether mitochondrial functions are also altered in sound-processing neurons has not been characterized yet. To address this question, we imaged MNTB in a mouse model of FXS. We stained MNTB brain slices from wild-type and FXS mice with two mitochondrial markers, TOMM20 and PMPCB, located on the outer mitochondrial membrane and in the matrix, respectively. Our imaging reveals significant sex-specific differences between genotypes. Colocalization analyses between TOMM20 and PMPCB show that the integrity of mitochondrial subcompartments is most disrupted in female FXS mice compared with female wild-type mice. We highlight a quantitative fluorescence microscopy pipeline to monitor mitochondrial functions in the MNTB from control or FXS mice and provide four complementary readouts, paving the way to understanding how cellular mechanisms important to sound encoding are altered in ASD.
Collapse
Affiliation(s)
- Claire Caron
- CNRS IGDR (Institute of Genetics and Development of Rennes), University of Rennes, Rennes, F-35000UMR 6290, France
| | | | - Giulia Bertolin
- CNRS IGDR (Institute of Genetics and Development of Rennes), University of Rennes, Rennes, F-35000UMR 6290, France
| |
Collapse
|
4
|
Yordanov A, Tsoneva E. ROMO1: A Distinct Mitochondrial Protein with Dual Roles in Dynamics and Function. Antioxidants (Basel) 2025; 14:540. [PMID: 40427422 PMCID: PMC12108320 DOI: 10.3390/antiox14050540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/15/2025] [Accepted: 04/27/2025] [Indexed: 05/29/2025] Open
Abstract
Reactive oxygen species modulator 1 (ROMO1) is a nuclear-encoded inner mitochondrial protein known for its dual role as a modulator of reactive oxygen species (ROS) and a non-selective ion channel. Initially identified for its role in ROS production, ROMO1 has garnered attention for its functional properties as a non-selective ion channel that regulates ion homeostasis in mitochondria. This article examines ROMO1 from both perspectives, emphasizing its structural and functional characteristics, physiological roles, and implications in health and disease. Understanding ROMO1's dual functionality provides insight into its potential as a therapeutic target for oxidative stress-related disorders, especially cancer progression.
Collapse
Affiliation(s)
- Angel Yordanov
- Department of Gynaecological Oncology, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Eva Tsoneva
- Department of Reproductive Medicine, Specialized Hospital for Active Treatment of Obstetrics and Gynaecology Dr Shterev, 1330 Sofia, Bulgaria;
| |
Collapse
|
5
|
Liu Y, Yu X, Jiang W. The Role of Mitochondrial Pyruvate Carrier in Neurological Disorders. Mol Neurobiol 2025; 62:2846-2856. [PMID: 39177735 DOI: 10.1007/s12035-024-04435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
The mitochondrial pyruvate carrier (MPC) is a specific protein complex located in the inner mitochondrial membrane. Comprising a heterodimer of two homodimeric membrane proteins, mitochondrial pyruvate carrier 1 and mitochondrial pyruvate carrier 2, MPC connects cytoplasmic metabolism to mitochondrial metabolism by transferring pyruvate from the cytoplasm to the mitochondria. The nervous system requires substantial energy to maintain its function, and the mitochondrial energy supply is closely linked to neurological function. Mitochondrial dysfunction can induce or exacerbate intracerebral pathologies. MPC influences mitochondrial function due to its specific role as a pyruvate transporter. However, recent studies on MPC and mitochondrial dysfunction in neurological disorders have yielded controversial results, and the underlying mechanisms remain unclear. In this brief review, we provide an overview of the structure and function of MPC. We further discuss the potential mechanisms and feasibility of targeting MPC in treating Parkinson's disease, Alzheimer's disease, and cerebral ischemia/hypoxia injury. This review aims to offer insights into MPC as a target for clinical treatment.
Collapse
Affiliation(s)
- Yue Liu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiying Yu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Jiang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
6
|
Liu M, Li B, Yin Z, Yin L, Luo Y, Zeng Q, Zhang D, Wu A, Chen L. Targeting mitochondrial dynamics: A promising approach for intracerebral hemorrhage therapy. Life Sci 2025; 361:123317. [PMID: 39674268 DOI: 10.1016/j.lfs.2024.123317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Intracerebral hemorrhage (ICH) is a major global health issue with high mortality and disability rates. Following ICH, the hematoma exerts direct pressure on brain tissue, and blood entering the brain directly damages neurons and the blood-brain barrier. Subsequently, oxidative stress, inflammatory responses, apoptosis, brain edema, excitotoxicity, iron toxicity, and metabolic dysfunction around the hematoma further exacerbate brain tissue damage, leading to secondary brain injury (SBI). Mitochondria, essential for energy production and the regulation of oxidative stress, are damaged after ICH, resulting in impaired ATP production, excessive reactive oxygen species (ROS) generation, and disrupted calcium homeostasis, all of which contribute to SBI. Therefore, a central factor in SBI is mitochondrial dysfunction. Mitochondrial dynamics regulate the shape, size, distribution, and quantity of mitochondria through fusion and fission, both of which are crucial for maintaining their function. Fusion repairs damaged mitochondria and preserves their health, while fission helps mitochondria adapt to cellular stress and removes damaged mitochondria through mitophagy. When this balance is disrupted following ICH, mitochondrial dysfunction worsens, oxidative stress and metabolic failure are exacerbated, ultimately contributing to SBI. Targeting mitochondrial dynamics offers a promising therapeutic approach to restoring mitochondrial function, reducing cellular damage, and improving recovery. This review explores the latest research on modulating mitochondrial dynamics and highlights its potential to enhance outcomes in ICH patients.
Collapse
Affiliation(s)
- Mengnan Liu
- Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Binru Li
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China.
| | - Zhixue Yin
- Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Lu Yin
- Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Ye Luo
- Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Qi Zeng
- Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Dechou Zhang
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Department of Cardiology, The Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Luzhou 646000, Sichuan, China; Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Li Chen
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
7
|
Wang S, Liao Z, Zhang Q, Han X, Liu C, Wang J. Mitochondrial dysfunction in Alzheimer's disease: a key frontier for future targeted therapies. Front Immunol 2025; 15:1484373. [PMID: 39877373 PMCID: PMC11772192 DOI: 10.3389/fimmu.2024.1484373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, accounting for approximately 70% of dementia cases worldwide. Patients gradually exhibit cognitive decline, such as memory loss, aphasia, and changes in personality and behavior. Research has shown that mitochondrial dysfunction plays a critical role in the onset and progression of AD. Mitochondrial dysfunction primarily leads to increased oxidative stress, imbalances in mitochondrial dynamics, impaired mitophagy, and mitochondrial genome abnormalities. These mitochondrial abnormalities are closely associated with amyloid-beta and tau protein pathology, collectively accelerating the neurodegenerative process. This review summarizes the role of mitochondria in the development of AD, the latest research progress, and explores the potential of mitochondria-targeted therapeutic strategies for AD. Targeting mitochondria-related pathways may significantly improve the quality of life for AD patients in the future.
Collapse
Affiliation(s)
- Shuguang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zuning Liao
- Department of Neurology, Fourth People’s Hospital of Jinan, Jinan, China
| | - Qiying Zhang
- Department of Internal Medicine, Jinan Municipal Government Hospital, Jinan, China
| | - Xinyuan Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changqing Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Baek K. The Dual Role of Survival Genes in Neurons and Cancer Cells: a Strategic Clinical Application of DX2 in Neurodegenerative Diseases and Cancer. Biomol Ther (Seoul) 2025; 33:75-85. [PMID: 39711064 PMCID: PMC11704411 DOI: 10.4062/biomolther.2024.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 12/24/2024] Open
Abstract
In cancer cells, survival genes contribute to uncontrolled growth and the survival of malignant cells, leading to tumor progression. Neurons are post-mitotic cells, fully differentiated and non-dividing after neurogenesis and survival genes are essential for cellular longevity and proper functioning of the nervous system. This review explores recent research findings regarding the role of survival genes, particularly DX2, in degenerative neuronal tissue cells and cancer cells. Survival gene DX2, an exon 2-deleted splice variant of AIMP2 (aminoacyl-tRNA synthetase-interacting multi-functional protein 2), was found to be overexpressed in various cancer types. The potential of DX2 inhibitors as an anti-cancer drug arises from its unique ability to interact with various oncoproteins, such as KRAS and HSP70. Meanwhile, AIMP2 has been reported as a multifunctional cell death-inducing gene, and survival gene DX2 directly and indirectly inhibits AIMP2-induced cell death. DX2 plays multifaceted survival roles in degenerating neurons via various signaling pathways, including PARP 1, TRAF2, and p53 pathways. It is noteworthy that genes that were previously classified as oncogenes, such as AKT and XBP1, are now being considered as curative transgenes for targeting neurodegenerative diseases. A strategic direction for clinical application of survival genes in neurodegenerative disease and in cancer is justified.
Collapse
Affiliation(s)
- Kyunghwa Baek
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
- Generoath Ltd, Seoul 04168, Republic of Korea
| |
Collapse
|
9
|
Luo M, Wang YM, Zhao FK, Luo Y. Recent Advances in Nanomaterial-Mediated Cell Death for Cancer Therapy. Adv Healthc Mater 2025; 14:e2402697. [PMID: 39498722 DOI: 10.1002/adhm.202402697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Indexed: 11/07/2024]
Abstract
Nanomedicine has shown great anticancer potential by disrupting redox homeostasis and increasing the levels of oxidative stress, but the therapeutic effect is limited by factors including the intrinsic self-protection mechanism of tumors. Cancer cell death can be induced by the exploration of different cell death mechanisms, such as apoptosis, pyroptosis, necroptosis, cuproptosis, and ferroptosis. The merging of nanotechnology with biomedicine has provided tremendous opportunities to construct cell death-based nanomedicine for innovative cancer therapy. Nanocarriers are not only used for the targeted delivery of cell death inducers, but also as therapeutic components to induce cell death to achieve efficient tumor treatment. This review focuses on seven cell death modalities mediated by nanomaterials, such as apoptosis, pyroptosis, necroptosis, ferroptosis, cuprotosis, immunogenic cell death, and autophagy. The mechanisms of these seven cell death modalities are described in detail, as well as the preparation of nanomaterials that induce them and the mechanisms, they used to exert their effects. Finally, this work describes the potential future development based on the current knowledge related to cell death induced by nanomaterials.
Collapse
Affiliation(s)
- Min Luo
- Department of Clinical Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Yuan-Min Wang
- Department of Clinical Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Fu-Kun Zhao
- Department of Clinical Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Yong Luo
- Department of Neurology, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| |
Collapse
|
10
|
Panda M, Markaki M, Tavernarakis N. Mitostasis in age-associated neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167547. [PMID: 39437856 DOI: 10.1016/j.bbadis.2024.167547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Mitochondria are essential organelles that play crucial roles in various metabolic and signalling pathways. Proper neuronal function is highly dependent on the health of these organelles. Of note, the intricate structure of neurons poses a critical challenge for the transport and distribution of mitochondria to specific energy-intensive domains, such as synapses and dendritic appendages. When faced with chronic metabolic challenges and bioenergetic deficits, neurons undergo degeneration. Unsurprisingly, disruption of mitostasis, the process of maintaining cellular mitochondrial content and function within physiological limits, has been implicated in the pathogenesis of several age-associated neurodegenerative disorders. Indeed, compromised integrity and metabolic activity of mitochondria is a principal hallmark of neurodegeneration. In this review, we survey recent findings elucidating the role of impaired mitochondrial homeostasis and metabolism in the onset and progression of age-related neurodegenerative disorders. We also discuss the importance of neuronal mitostasis, with an emphasis on the major mitochondrial homeostatic and metabolic pathways that contribute to the proper functioning of neurons. A comprehensive delineation of these pathways is crucial for the development of early diagnostic and intervention approaches against neurodegeneration.
Collapse
Affiliation(s)
- Mrutyunjaya Panda
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece; Department of Medicine, University of Verona, Verona 37134, Italy; Faculdade de Farmácia, University of Lisbon, Lisbon 1649-003, Portugal
| | - Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion 71003, Crete, Greece.
| |
Collapse
|
11
|
Wankhede NL, Rajendra Kopalli S, Dhokne MD, Badnag DJ, Chandurkar PA, Mangrulkar SV, Shende PV, Taksande BG, Upaganlawar AB, Umekar MJ, Koppula S, Kale MB. Decoding mitochondrial quality control mechanisms: Identifying treatment targets for enhanced cellular health. Mitochondrion 2024; 78:101926. [PMID: 38944367 DOI: 10.1016/j.mito.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/09/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Mitochondria are singular cell organelles essential for many cellular functions, which includes responding to stress, regulating calcium levels, maintaining protein homeostasis, and coordinating apoptosis response. The vitality of cells, therefore, hinges on the optimal functioning of these dynamic organelles. Mitochondrial Quality Control Mechanisms (MQCM) play a pivotal role in ensuring the integrity and functionality of mitochondria. Perturbations in these mechanisms have been closely associated with the pathogenesis of neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Compelling evidence suggests that targeting specific pathways within the MQCM could potentially offer a therapeutic avenue for rescuing mitochondrial integrity and mitigating the progression of neurodegenerative diseases. The intricate interplay of cellular stress, protein misfolding, and impaired quality control mechanisms provides a nuanced understanding of the underlying pathology. Consequently, unravelling the specific MQCM dysregulation in neurodegenerative disorders becomes paramount for developing targeted therapeutic strategies. This review delves into the impaired MQCM pathways implicated in neurodegenerative disorders and explores emerging therapeutic interventions. By shedding light on pharmaceutical and genetic manipulations aimed at restoring MQCM efficiency, the discussion aims to provide insights into novel strategies for ameliorating the progression of neurodegenerative diseases. Understanding and addressing mitochondrial quality control mechanisms not only underscore their significance in cellular health but also offer a promising frontier for advancing therapeutic approaches in the realm of neurodegenerative disorders.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | - Mrunali D Dhokne
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh (UP) - 226002, India.
| | - Dishant J Badnag
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Pranali A Chandurkar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Shubhada V Mangrulkar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad- 423101, Nashik, Maharashtra, India.
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| |
Collapse
|
12
|
Caron C, McCullagh EA, Bertolin G. Sex-specific loss of mitochondrial membrane integrity in the auditory brainstem of a mouse model of Fragile X syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601649. [PMID: 39005428 PMCID: PMC11244983 DOI: 10.1101/2024.07.02.601649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Sound sensitivity is one of the most common sensory complaints for people with autism spectrum disorders (ASDs). How and why sounds are perceived as overwhelming by affected people is unknown. To process sound information properly, the brain requires high activity and fast processing, as seen in areas like the medial nucleus of the trapezoid body (MNTB) of the auditory brainstem. Recent work has shown dysfunction in mitochondria, which are the primary source of energy in cells, in a genetic model of ASD, Fragile X syndrome (FXS). Whether mitochondrial functions are also altered in sound-processing neurons, has not been characterized yet. To address this question, we imaged the MNTB in a mouse model of FXS. We stained MNTB brain slices from wild-type and FXS mice with two mitochondrial markers, TOMM20 and PMPCB, located on the Outer Mitochondrial Membrane and in the matrix, respectively. These markers allow exploration of mitochondrial subcompartments. Our integrated imaging pipeline reveals significant sex-specific differences between genotypes. Colocalization analyses between TOMM20 and PMPCB reveal that the integrity of mitochondrial subcompartments is most disrupted in female FXS mice compared to female wildtype mice. We highlight a quantitative fluorescence microscopy pipeline to monitor mitochondrial functions in the MNTB from control or FXS mice and provide four complementary readouts. Our approach paves the way to understanding how cellular mechanisms important to sound encoding are altered in ASDs.
Collapse
Affiliation(s)
- Claire Caron
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, F-35000 Rennes, France
| | | | - Giulia Bertolin
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, F-35000 Rennes, France
| |
Collapse
|
13
|
Bogdańska-Chomczyk E, Wojtacha P, Tsai ML, Huang ACW, Kozłowska A. Age-related changes in the architecture and biochemical markers levels in motor-related cortical areas of SHR rats-an ADHD animal model. Front Mol Neurosci 2024; 17:1414457. [PMID: 39246601 PMCID: PMC11378348 DOI: 10.3389/fnmol.2024.1414457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/25/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder whose exact pathophysiology has not been fully understood yet. Numerous studies have suggested disruptions in the cellular architecture and neuronal activity within brain structures of individuals with ADHD, accompanied by imbalances in the immune system, oxidative stress, and metabolism. Methods This study aims to assess two functionally and histologically distinct brain areas involved in motor control and coordination: the motor cortex (MC) and prefrontal cortex (PFC). Namely, the morphometric analysis of the MC throughout the developmental stages of Spontaneously Hypertensive Rats (SHRs) and Wistar Kyoto Rats (WKYs). Additionally, the study aimed to investigate the levels and activities of specific immune, oxidative stress, and metabolic markers in the PFC of juvenile and maturing SHRs in comparison to WKYs. Results The most significant MC volume reductions occurred in juvenile SHRs, accompanied by alterations in neuronal density in these brain areas compared to WKYs. Furthermore, juvenile SHRs exhibit heightened levels and activity of various markers, including interleukin-1α (IL-1α), IL-6, serine/threonine-protein mammalian target of rapamycin, RAC-alpha serine/threonine-protein kinase, glucocorticoid receptor β, malondialdehyde, sulfhydryl groups, superoxide dismutase, peroxidase, glutathione reductase, glutathione S-transferase, glucose, fructosamine, iron, lactic acid, alanine, aspartate transaminase, and lactate dehydrogenase. Discussion Significant changes in the MC morphometry and elevated levels of inflammatory, oxidative, and metabolic markers in PFC might be associated with disrupted brain development and maturation in ADHD.
Collapse
Affiliation(s)
- E Bogdańska-Chomczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - P Wojtacha
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - M L Tsai
- Department of Biomechatronic Engineering, National Ilan University, Yilan, Taiwan
| | - A C W Huang
- Department of Psychology, Fo Guang University, Yilan, Taiwan
| | - A Kozłowska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
14
|
Chen M, Liu J, Wu W, Guo T, Yuan J, Wu Z, Zheng Z, Zhao Z, Lin Q, Liu N, Chen H. SIRT1 restores mitochondrial structure and function in rats by activating SIRT3 after cerebral ischemia/reperfusion injury. Cell Biol Toxicol 2024; 40:31. [PMID: 38767771 PMCID: PMC11106166 DOI: 10.1007/s10565-024-09869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Mitochondrial dysfunction contributes to cerebral ischemia-reperfusion (CI/R) injury, which can be ameliorated by Sirtuin-3 (SIRT3). Under stress conditions, the SIRT3-promoted mitochondrial functional recovery depends on both its activity and expression. However, the approach to enhance SIRT3 activity after CI/R injury remains unelucidated. In this study, Sprague-Dawley (SD) rats were intracranially injected with either adeno-associated viral Sirtuin-1 (AAV-SIRT1) or AAV-sh_SIRT1 before undergoing transient middle cerebral artery occlusion (tMCAO). Primary cortical neurons were cultured and transfected with lentiviral SIRT1 (LV-SIRT1) and LV-sh_SIRT1 respectively before oxygen-glucose deprivation/reoxygenation (OGD/R). Afterwards, rats and neurons were respectively treated with a selective SIRT3 inhibitor, 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP). The expression, function, and related mechanism of SIRT1 were investigated by Western Blot, flow cytometry, immunofluorescence staining, etc. After CI/R injury, SIRT1 expression decreased in vivo and in vitro. The simulation and immune-analyses reported strong interaction between SIRT1 and SIRT3 in the cerebral mitochondria before and after CI/R. SIRT1 overexpression enhanced SIRT3 activity by increasing the deacetylation of SIRT3, which ameliorated CI/R-induced cerebral infarction, neuronal apoptosis, oxidative stress, neurological and motor dysfunction, and mitochondrial respiratory chain dysfunction, promoted mitochondrial biogenesis, and retained mitochondrial integrity and mitochondrial morphology. Meanwhile, SIRT1 overexpression alleviated OGD/R-induced neuronal death and mitochondrial bioenergetic deficits. These effects were reversed by AAV-sh_SIRT1 and the neuroprotective effects of SIRT1 were partially offset by 3-TYP. These results suggest that SIRT1 restores the structure and function of mitochondria by activating SIRT3, offering neuroprotection against CI/R injury, which signifies a potential approach for the clinical management of cerebral ischemia.
Collapse
Affiliation(s)
- Manli Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Ji Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Wenwen Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Ting Guo
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Jinjin Yuan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zhiyun Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zhijian Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zijun Zhao
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Qiang Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China.
| | - Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
15
|
Dithmar S, Zare A, Salehi S, Briese M, Sendtner M. hnRNP R regulates mitochondrial movement and membrane potential in axons of motoneurons. Neurobiol Dis 2024; 193:106454. [PMID: 38408684 DOI: 10.1016/j.nbd.2024.106454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
Axonal mitochondria defects are early events in the pathogenesis of motoneuron disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. The RNA-binding protein hnRNP R interacts with different motoneuron disease-related proteins such as SMN and TDP-43 and has important roles in axons of motoneurons, including axonal mRNA transport. However, whether hnRNP R also modulates axonal mitochondria is currently unknown. Here, we show that axonal mitochondria exhibit altered function and motility in hnRNP R-deficient motoneurons. Motoneurons lacking hnRNP R show decreased anterograde and increased retrograde transport of mitochondria in axons. Furthermore, hnRNP R-deficiency leads to mitochondrial hyperpolarization, caused by decreased complex I and reversed complex V activity within the respiratory chain. Taken together, our data indicate a role for hnRNP R in regulating transport and maintaining functionality of axonal mitochondria in motoneurons.
Collapse
Affiliation(s)
- Sophia Dithmar
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Abdolhossein Zare
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Saeede Salehi
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
16
|
Yao MF, Dang T, Wang HJ, Zhu XZ, Qiao C. Mitochondrial homeostasis regulation: A promising therapeutic target for Parkinson's disease. Behav Brain Res 2024; 459:114811. [PMID: 38103871 DOI: 10.1016/j.bbr.2023.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) and the presence of Lewy bodies (LBs) or Lewy neurites (LNs) which consist of α-synuclein (α-syn) and a complex mix of other biomolecules. Mitochondrial dysfunction is widely believed to play an essential role in the pathogenesis of PD and other related neurodegenerative diseases. But mitochondrial dysfunction is subject to complex genetic regulation. There is increasing evidence that PD-related genes directly or indirectly affect mitochondrial integrity. Therefore, targeted regulation of mitochondrial function has great clinical application prospects in the treatment of PD. However, lots of PD drugs targeting mitochondria have been developed but their clinical therapeutic effects are not ideal. This review aims to reveal the role of mitochondrial dysfunction in the pathogenesis of neurodegenerative diseases based on the mitochondrial structure and function, which may highlight potential interventions and therapeutic targets for the development of PD drugs to recover mitochondrial dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Meng-Fan Yao
- Department of Clinical Pharmabcy, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tao Dang
- Department of Clinical Pharmabcy, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hua-Jun Wang
- Department of Clinical Pharmabcy, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xiao-Zhong Zhu
- Department of Cardiothoracic Surgery, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Chen Qiao
- Department of Clinical Pharmabcy, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
17
|
Rieder GS, Braga MM, Mussulini BHM, Silva ES, Lazzarotto G, Casali EA, Oliveira DL, Franco JL, Souza DOG, Rocha JBT. Diphenyl Diselenide Attenuates Mitochondrial Damage During Initial Hypoxia and Enhances Resistance to Recurrent Hypoxia. Neurotox Res 2024; 42:13. [PMID: 38332435 DOI: 10.1007/s12640-024-00691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
Hypoxia plays a significant role in the development of various cerebral diseases, many of which are associated with the potential risk of recurrence due to mitochondrial damage. Conventional drug treatments are not always effective for hypoxia-related brain diseases, necessitating the exploration of alternative compounds. In this study, we investigated the potential of diphenyl diselenide [(PhSe)2] to ameliorate locomotor impairments and mitigate brain mitochondrial dysfunction in zebrafish subjected to hypoxia. Additionally, we explored whether these improvements could confer resistance to recurrent hypoxia. Through a screening process, an appropriate dose of (PhSe)2 was determined, and animals exposed to hypoxia received a single intraperitoneal injection of 100 mg/kg of the compound or vehicle. After 1 h from the injection, evaluations were conducted on locomotor deficits, (PhSe)2 content, mitochondrial electron transport system, and mitochondrial viability in the brain. The animals were subsequently exposed to recurrent hypoxia to assess the latency time to hypoxia symptoms. The findings revealed that (PhSe)2 effectively crossed the blood-brain barrier, attenuated locomotor deficits induced by hypoxia, and improved brain mitochondrial respiration by modulating complex III. Furthermore, it enhanced mitochondrial viability in the telencephalon, contributing to greater resistance to recurrent hypoxia. These results demonstrate the beneficial effects of (PhSe)2 on both hypoxia and recurrent hypoxia, with cerebral mitochondria being a critical target of its action. Considering the involvement of brain hypoxia in numerous pathologies, (PhSe)2 should be further tested to determine its effectiveness as a potential treatment for hypoxia-related brain diseases.
Collapse
Affiliation(s)
- Guilherme S Rieder
- Programa de Pós Graduação Em Bioquímica Toxicológica, Departamento de Bioquímica E Biologia Molecular, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Marcos M Braga
- Programa de Pós Graduação Em Bioquímica Toxicológica, Departamento de Bioquímica E Biologia Molecular, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Ben Hur M Mussulini
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Emerson S Silva
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Lazzarotto
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Emerson André Casali
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Diogo L Oliveira
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Jeferson L Franco
- Universidade Federal Do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Diogo O G Souza
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - João Batista T Rocha
- Programa de Pós Graduação Em Bioquímica Toxicológica, Departamento de Bioquímica E Biologia Molecular, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
18
|
Blokhin V, Pavlova EN, Katunina EA, Nodel MR, Kataeva GV, Moskalets ER, Pronina TS, Ugrumov MV. Dopamine Synthesis in the Nigrostriatal Dopaminergic System in Patients at Risk of Developing Parkinson's Disease at the Prodromal Stage. J Clin Med 2024; 13:875. [PMID: 38337569 PMCID: PMC10856030 DOI: 10.3390/jcm13030875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is diagnosed by the onset of motor symptoms and treated long after its onset. Therefore, the development of the early diagnosis of PD is a priority for neurology. Advanced methodologies for this include (1) searching for patients at risk of developing prodromal PD based on premotor symptoms; (2) searching for changes in the body fluids in these patients as diagnostic biomarkers; (3) verifying the diagnosis of prodromal PD and diagnostic-value biomarkers using positron emission tomography (PET); (4) anticipating the development of motor symptoms. According to our data, the majority of patients (n = 14) at risk of developing PD selected in our previous study show pronounced interhemispheric asymmetry in the incorporation of 18F-DOPA into dopamine synthesis in the striatum. This was assessed for the caudate nucleus and putamen separately using the specific binding coefficient, asymmetry index, and putamen/caudate nucleus ratio. Interhemispheric asymmetry in the incorporation of 18F-DOPA into the striatum provides strong evidence for its dopaminergic denervation and the diagnostic value of previously identified blood biomarkers. Of the 17 patients at risk of developing prodromal PD studied using PET, 3 patients developed motor symptoms within a year. Thus, our study shows the promise of using the described methodology for the development of early diagnosis of PD.
Collapse
Affiliation(s)
- Victor Blokhin
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| | - Ekaterina N. Pavlova
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| | - Elena A. Katunina
- Federal Center of Brain Research and Neurotechnologies of the Russian Federal Medical and Biological Agency, Moscow 117513, Russia;
- Faculty of Medicine, Department of Neurology, Neurosurgery and Medical Genetics, N.I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Moscow 117997, Russia
| | - Marina R. Nodel
- Department of Nervous Diseases and Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia;
| | - Galina V. Kataeva
- Federal State Budget Institution Granov Russian Research Center of Radiology and Surgical Technologies Ministry of Health of the Russian Federation (RRCRST) 70, Leningradskaya Street, Pesochny, St. Petersburg 197758, Russia;
| | | | - Tatiana S. Pronina
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| | - Michael V. Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| |
Collapse
|
19
|
Gnaiger E. Complex II ambiguities-FADH 2 in the electron transfer system. J Biol Chem 2024; 300:105470. [PMID: 38118236 PMCID: PMC10772739 DOI: 10.1016/j.jbc.2023.105470] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/22/2023] Open
Abstract
The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). CII is the only membrane-bound enzyme in the tricarboxylic acid cycle and is part of the electron transfer system of the mitochondrial inner membrane feeding electrons into the coenzyme Q-junction. The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the β-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
Collapse
|
20
|
El-Ansary A, Al-Ayadhi L. Effects of Walnut and Pumpkin on Selective Neurophenotypes of Autism Spectrum Disorders: A Case Study. Nutrients 2023; 15:4564. [PMID: 37960217 PMCID: PMC10647375 DOI: 10.3390/nu15214564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Special diets or nutritional supplements are regularly given to treat children with autism spectrum disorder (ASD). The increased consumption of particular foods has been demonstrated in numerous trials to lessen autism-related symptoms and comorbidities. A case study on a boy with moderate autism who significantly improved after three years of following a healthy diet consisting of pumpkin and walnuts was examined in this review in connection to a few different neurophenotypes of ASD. We are able to suggest that a diet high in pumpkin and walnuts was useful in improving the clinical presentation of the ASD case evaluated by reducing oxidative stress, neuroinflammation, glutamate excitotoxicity, mitochondrial dysfunction, and altered gut microbiota, all of which are etiological variables. Using illustrated figures, a full description of the ways by which a diet high in pumpkin and nuts could assist the included case is offered.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Autism Center, Lotus Holistic Alternative Medical Center, Abu Dhabi P.O. Box 110281, United Arab Emirates
- Autism Research and Treatment Center, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
- Department of Physiology, Faculty of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
21
|
Noruzi M, Behmadi H, Khankahdani ZH, Sabzevari O, Foroumadi A, Ghahremani MH, Pourahmad J, Hassani S, Gholami M, Moghimi S, Ghazimoradi MM, Taghizadeh G, Sharifzadeh M. Alpha pyrrolidinovalerophenone (α-PVP) administration impairs spatial learning and memory in rats through brain mitochondrial dysfunction. Toxicol Appl Pharmacol 2023; 467:116497. [PMID: 37003365 DOI: 10.1016/j.taap.2023.116497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Novel psychoactive substances (NPS) consumption has increased in recent years, thus NPS-induced cognitive decline is a current source of concern. Alpha-pyrrolidinovalerophenone (α-PVP), as a member of NPS, is consumed throughout regions like Washington, D.C., Eastern Europe, and Central Asia. Mitochondrial dysfunction plays an essential role in NPS-induced cognitive impairment. Meanwhile, no investigations have been conducted regarding the α-PVP impact on spatial learning/memory and associated mechanisms. Consequently, our study investigated the α-PVP effect on spatial learning/memory and brain mitochondrial function. Wistar rats received different α-PVP doses (5, 10, and 20 mg/kg) intraperitoneally for 10 sequential days; 24 h after the last dose, spatial learning/memory was evaluated by the Morris Water Maze (MWM). Furthermore, brain mitochondrial protein yield and function variables (Mitochondrial swelling, succinate dehydrogenase (SDH) activity, lipid peroxidation, Mitochondrial Membrane Potential (MMP), Reactive oxygen species (ROS) level, brain ADP/ATP proportion, cytochrome c release, Mitochondrial Outer Membrane (MOM) damage) were examined. α-PVP higher dose (20 mg/kg) significantly impaired spatial learning/memory, mitochondrial protein yield, and brain mitochondrial function (caused reduced SDH activity, increased mitochondrial swelling, elevated ROS generation, increased lipid peroxidation, collapsed MMP, increased cytochrome c release, and brain ADP/ATP proportion, and MOM damage). Moreover, the lower dose of α-PVP (5 mg/kg) did not alter spatial learning/memory and brain mitochondrial function. These findings provide the first evidence regarding impaired spatial learning and memory following repeated administration of α-PVP and the possible role of brain mitochondrial dysfunction in these cognitive impairments.
Collapse
Affiliation(s)
- Marzieh Noruzi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Homayoon Behmadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Omid Sabzevari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, and Toxicology & Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy; Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Moghimi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ghorban Taghizadeh
- Rehabilitation Research Center, Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Makarov M, Korkotian E. Differential Role of Active Compounds in Mitophagy and Related Neurodegenerative Diseases. Toxins (Basel) 2023; 15:202. [PMID: 36977093 PMCID: PMC10058020 DOI: 10.3390/toxins15030202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease, significantly reduce the quality of life of patients and eventually result in complete maladjustment. Disruption of the synapses leads to a deterioration in the communication of nerve cells and decreased plasticity, which is associated with a loss of cognitive functions and neurodegeneration. Maintaining proper synaptic activity depends on the qualitative composition of mitochondria, because synaptic processes require sufficient energy supply and fine calcium regulation. The maintenance of the qualitative composition of mitochondria occurs due to mitophagy. The regulation of mitophagy is usually based on several internal mechanisms, as well as on signals and substances coming from outside the cell. These substances may directly or indirectly enhance or weaken mitophagy. In this review, we have considered the role of some compounds in process of mitophagy and neurodegeneration. Some of them have a beneficial effect on the functions of mitochondria and enhance mitophagy, showing promise as novel drugs for the treatment of neurodegenerative pathologies, while others contribute to a decrease in mitophagy.
Collapse
Affiliation(s)
| | - Eduard Korkotian
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot 7630031, Israel
| |
Collapse
|
23
|
Wang Q, Adil MZ, Xie X, Zhao S, Zhang J, Huang Z. Therapeutic targeting of mitochondria–proteostasis axis by antioxidant polysaccharides in neurodegeneration. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023. [PMID: 37437985 DOI: 10.1016/bs.apcsb.2023.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Aging is a major risk factor for many age-associated disorders, including neurodegenerative diseases. Both mitochondrial dysfunction and proteostatic decline are well-recognized hallmarks of aging and age-related neurodegeneration. Despite a lack of therapies for neurodegenerative diseases, a number of interventions promoting mitochondrial integrity and protein homeostasis (proteostasis) have been shown to delay aging-associated neurodegeneration. For example, many antioxidant polysaccharides are shown to have pharmacological potentials in Alzheimer's, Parkinson's and Huntington's diseases through regulation of mitochondrial and proteostatic pathways, including oxidative stress and heat shock responses. However, how mitochondrial and proteostatic mechanisms work together to exert the antineurodegenerative effect of the polysaccharides remains largely unexplored. Interestingly, recent studies have provided a growing body of evidence to support the crosstalk between mitostatic and proteostatic networks as well as the impact of the crosstalk on neurodegeneration. Here we summarize the recent progress of antineurodegenerative polysaccharides with particular attention in the mitochondrial and proteostatic context and provide perspectives on their implications in the crosstalk along the mitochondria-proteostasis axis.
Collapse
|
24
|
Thangaleela S, Sivamaruthi BS, Kesika P, Bharathi M, Chaiyasut C. Role of the Gut-Brain Axis, Gut Microbial Composition, Diet, and Probiotic Intervention in Parkinson's Disease. Microorganisms 2022; 10:1544. [PMID: 36013962 PMCID: PMC9412530 DOI: 10.3390/microorganisms10081544] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative or neuropsychiatric disease, affecting 1% of seniors worldwide. The gut microbiota (GM) is one of the key access controls for most diseases and disorders. Disturbance in the GM creates an imbalance in the function and circulation of metabolites, resulting in unhealthy conditions. Any dysbiosis could affect the function of the gut, consequently disturbing the equilibrium in the intestine, and provoking pro-inflammatory conditions in the gut lumen, which send signals to the central nervous system (CNS) through the vagus enteric nervous system, possibly disturbing the blood-brain barrier. The neuroinflammatory conditions in the brain cause accumulation of α-syn, and progressively develop PD. An important aspect of understanding and treating the disease is access to broad knowledge about the influence of dietary supplements on GM. Probiotics are live microorganisms which, when administered in adequate amounts, confer a health benefit on the host. Probiotic supplementation improves the function of the CNS, and improves the motor and non-motor symptoms of PD. Probiotic supplementation could be an adjuvant therapeutic method to manage PD. This review summarizes the role of GM in health, the GM-brain axis, the pathogenesis of PD, the role of GM and diet in PD, and the influence of probiotic supplementation on PD. The study encourages further detailed clinical trials in PD patients with probiotics, which aids in determining the involvement of GM, intestinal mediators, and neurological mediators in the treatment or management of PD.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
| | | | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muruganantham Bharathi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
| |
Collapse
|
25
|
Chang CH, Chang ST, Liao VHC. Potential anti-Parkinsonian's effect of S-(+)-linalool from Cinnamomum osmophloeum ct. linalool leaves are associated with mitochondrial regulation via gas-1, nuo-1, and mev-1 in Caenorhabditis elegans. Phytother Res 2022; 36:3325-3334. [PMID: 35665972 DOI: 10.1002/ptr.7516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/24/2022] [Accepted: 05/17/2022] [Indexed: 11/11/2022]
Abstract
Parkinson's disease (PD) is one of the prevalent neurodegenerative diseases, and developing new treatments from natural products is of particular interest. Essential oils from Cinnamomum osmophloeum ct. linalool leaves contain high levels (~95%) of S-(+)-linalool. The neuroprotective effects of linalool have been previously described, yet the underlying molecular mechanisms remain largely unknown. This study aimed to investigate the potential anti-Parkinsonian's effect of S-(+)-linalool on mitochondrial regulation and decipher the underlying molecular mechanisms in Caenorhabditis elegans PD model. Essential oils at 20 mg/L and 20 mg/L S-(+)-linalool each significantly attenuated the damaging effects of 6-hydroxydopamine (6-OHDA) on dopaminergic (DA) neurons and decreased the mitochondrial unfolded protein response (UPRmt ) to antimycin. RNAi knockdown of mitochondrial complex I (gas-1, nuo-1), and complex II (mev-1) genes prevented the improvement of mitochondrial activity by S-(+)-linalool. The protective effects of S-(+)-linalool on 6-OHDA-induced behavior changes were absent in a DA-specific strain of C. elegans produced by gas-1, nuo-1, and mev-1 RNAi knockdown. These results suggest the potential anti-Parkinsonian's effect of S-(+)-linalool is associated with mitochondrial activity and regulated by gas-1, nuo-1, and mev-1 in C. elegans. Our findings suggest that S-(+)-linalool might be a promising candidate for therapeutic application to inhibit the progression of PD.
Collapse
Affiliation(s)
- Chun-Han Chang
- School of Forest and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Shang-Tzen Chang
- School of Forest and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Mehra S, Ul Ahsan A, Seth E, Chopra M. Critical Evaluation of Valproic Acid-Induced Rodent Models of Autism: Current and Future Perspectives. J Mol Neurosci 2022; 72:1259-1273. [DOI: 10.1007/s12031-022-02033-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/21/2022] [Indexed: 11/29/2022]
|
27
|
Brasil FB, de Almeida FJS, Luckachaki MD, Dall'Oglio EL, de Oliveira MR. A Pretreatment with Isoorientin Attenuates Redox Disruption, Mitochondrial Impairment, and Inflammation Caused by Chlorpyrifos in a Dopaminergic Cell Line: Involvement of the Nrf2/HO-1 Axis. Neurotox Res 2022; 40:1043-1056. [PMID: 35583593 DOI: 10.1007/s12640-022-00517-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
The C-glucosyl flavone isoorientin (ISO) is obtained by humans from the diet and exhibits several cytoprotective effects, as demonstrated in different experimental models. However, it was not previously shown whether ISO would be able to prevent mitochondrial impairment in cells exposed to a chemical stressor. Thus, we treated the human neuroblastoma SH-SY5Y cells with ISO (0.5-20 µM) for 18 h before a challenge with chlorpyrifos (CPF) at 100 µM for additional 24 h. We observed that ISO prevented the CPF-induced lipid peroxidation and protein carbonylation and nitration in the membranes of mitochondria extracted from CPF-treated cells. ISO also attenuated the CPF-elicited increase in the production of reactive species in this experimental model. Moreover, ISO prevented the CPF-induced disruption in the activity of components of the oxidative phosphorylation (OXPHOS) system in the SH-SY5Y cells. ISO also promoted an anti-inflammatory action in the cells exposed to CPF. CPF caused a decrease in the activity of the enzyme heme oxygenase-1 (HO-1), a cytoprotective agent. On the other hand, ISO upregulated HO-1 activity in SH-SY5Y cells. Inhibition of HO-1 by zinc protoporphyrin-IX (ZnPP-IX) suppressed the cytoprotection induced by ISO in the CPF-treated cells. Besides, silencing of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) abolished the ISO-induced HO-1 upregulation and mitochondrial benefits induced by this flavone on the CPF-challenged cells. Thus, ISO protected mitochondria of the CPF-treated cells by an Nrf2/HO-1-dependent fashion in the SH-SY5Y cells.
Collapse
Affiliation(s)
- Flávia Bittencourt Brasil
- Departamento de Ciências da Natureza, Campus Universitário de Rio das Ostras - Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
| | - Fhelipe Jolner Souza de Almeida
- Programa de Pós-Graduação Em Ciências da Saúde (PPGCS), Universidade Federal de Mato Grosso (UFMT), Cuiaba, Mato Grosso, Brazil.,Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, Mato Grosso, CEP 78060-900, Brazil
| | - Matheus Dargesso Luckachaki
- Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, Mato Grosso, CEP 78060-900, Brazil
| | - Evandro Luiz Dall'Oglio
- Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, Mato Grosso, CEP 78060-900, Brazil
| | - Marcos Roberto de Oliveira
- Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, Mato Grosso, CEP 78060-900, Brazil.
| |
Collapse
|
28
|
Recent trends of natural based therapeutics for mitochondria targeting in Alzheimer’s disease. Mitochondrion 2022; 64:112-124. [DOI: 10.1016/j.mito.2022.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022]
|
29
|
Neurons undergo pathogenic metabolic reprogramming in models of familial ALS. Mol Metab 2022; 60:101468. [PMID: 35248787 PMCID: PMC8958550 DOI: 10.1016/j.molmet.2022.101468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Objectives Methods Results Conclusions Our work is the first to perform a comprehensive and quantitative analysis of intermediary metabolism in neurons in the setting of fALS causing gene products. Because the cardinal feature of ALS is death of motor neurons, these new studies are directly relevant to the pathogenesis of ALS. Our functional interrogations begin to unpack how metabolic re-wiring is induced by fALS genes and it will be very interesting, in the future, to gain insight in amino acid fueling of the TCA cycle. We suspect pleiotropic effects of amino acid fueling, and this may lead to very targeted therapeutic interventions.
Collapse
|
30
|
Roufayel R, Younes K, Al-Sabi A, Murshid N. BH3-Only Proteins Noxa and Puma Are Key Regulators of Induced Apoptosis. Life (Basel) 2022; 12:life12020256. [PMID: 35207544 PMCID: PMC8875537 DOI: 10.3390/life12020256] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/29/2022] Open
Abstract
Apoptosis is an evolutionarily conserved and tightly regulated cell death pathway. Physiological cell death is important for maintaining homeostasis and optimal biological conditions by continuous elimination of undesired or superfluous cells. The BH3-only pro-apoptotic members are strong inducers of apoptosis. The pro-apoptotic BH3-only protein Noxa activates multiple death pathways by inhibiting the anti-apoptotic Bcl-2 family protein, Mcl-1, and other protein members leading to Bax and Bak activation and MOMP. On the other hand, Puma is induced by p53-dependent and p53-independent apoptotic stimuli in several cancer cell lines. Moreover, this protein is involved in several physiological and pathological processes, such as immunity, cancer, and neurodegenerative diseases. Future heat shock research could disclose the effect of hyperthermia on both Noxa and BH3-only proteins. This suggests post-transcriptional mechanisms controlling the translation of both Puma and Noxa mRNA in heat-shocked cells. This study was also the chance to recapitulate the different reactional mechanisms investigated for caspases.
Collapse
|
31
|
Sun Q, Li Y, Shi L, Hussain R, Mehmood K, Tang Z, Zhang H. Heavy metals induced mitochondrial dysfunction in animals: Molecular mechanism of toxicity. Toxicology 2022; 469:153136. [DOI: 10.1016/j.tox.2022.153136] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022]
|
32
|
Alvarez-Mora MI, Podlesniy P, Riazuelo T, Molina-Porcel L, Gelpi E, Rodriguez-Revenga L. Reduced mtDNA Copy Number in the Prefrontal Cortex of C9ORF72 Patients. Mol Neurobiol 2022; 59:1230-1237. [PMID: 34978044 DOI: 10.1007/s12035-021-02673-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022]
Abstract
Hexanucleotide repeat expansion in C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Loss of C9ORF72 protein function and a toxic gain-of-function directly by the RNA or RAN translation have been proposed as triggering pathological mechanisms, along with the accumulation of TDP-43 protein. In addition, mitochondrial defects have been described to be a major driver of disease initiation. Mitochondrial DNA copy number has been proposed as a useful biomarker of mitochondrial dysfunction. The aim of our study was to determine the presence of mtDNA copy number alterations in C9ALS/FTD patients. Therefore, we assessed mtDNA copy number in postmortem prefrontal cortex from 18 C9ORF72 brain donors and 9 controls using digital droplet PCR. A statistically significant decrease of 50% was obtained when comparing C9ORF72 samples and controls. This decrease was independent of age and sex. The reduction of mtDNA copy number was found to be higher in patients' samples presenting abundant TDP-43 protein inclusions. A growing number of studies demonstrated the influence of mtDNA copy number reduction on neurodegeneration. Our results provide new insights into the role of mitochondrial dysfunction in the pathogenesis of C9ALS/FTD.
Collapse
Affiliation(s)
- Maria Isabel Alvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, C/Villarroel, 170, 08036, Barcelona, Spain.,CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Petar Podlesniy
- CIBER of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa Riazuelo
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, C/Villarroel, 170, 08036, Barcelona, Spain
| | - Laura Molina-Porcel
- Neurological Tissue Bank of the Biobank-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Laia Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, C/Villarroel, 170, 08036, Barcelona, Spain. .,CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain. .,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
33
|
Proulx J, Park IW, Borgmann K. Cal'MAM'ity at the Endoplasmic Reticulum-Mitochondrial Interface: A Potential Therapeutic Target for Neurodegeneration and Human Immunodeficiency Virus-Associated Neurocognitive Disorders. Front Neurosci 2021; 15:715945. [PMID: 34744606 PMCID: PMC8566765 DOI: 10.3389/fnins.2021.715945] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/10/2021] [Indexed: 01/21/2023] Open
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle and serves as the primary site for intracellular calcium storage, lipid biogenesis, protein synthesis, and quality control. Mitochondria are responsible for producing the majority of cellular energy required for cell survival and function and are integral for many metabolic and signaling processes. Mitochondria-associated ER membranes (MAMs) are direct contact sites between the ER and mitochondria that serve as platforms to coordinate fundamental cellular processes such as mitochondrial dynamics and bioenergetics, calcium and lipid homeostasis, autophagy, apoptosis, inflammation, and intracellular stress responses. Given the importance of MAM-mediated mechanisms in regulating cellular fate and function, MAMs are now known as key molecular and cellular hubs underlying disease pathology. Notably, neurons are uniquely susceptible to mitochondrial dysfunction and intracellular stress, which highlights the importance of MAMs as potential targets to manipulate MAM-associated mechanisms. However, whether altered MAM communication and connectivity are causative agents or compensatory mechanisms in disease development and progression remains elusive. Regardless, exploration is warranted to determine if MAMs are therapeutically targetable to combat neurodegeneration. Here, we review key MAM interactions and proteins both in vitro and in vivo models of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We further discuss implications of MAMs in HIV-associated neurocognitive disorders (HAND), as MAMs have not yet been explored in this neuropathology. These perspectives specifically focus on mitochondrial dysfunction, calcium dysregulation and ER stress as notable MAM-mediated mechanisms underlying HAND pathology. Finally, we discuss potential targets to manipulate MAM function as a therapeutic intervention against neurodegeneration. Future investigations are warranted to better understand the interplay and therapeutic application of MAMs in glial dysfunction and neurotoxicity.
Collapse
Affiliation(s)
| | | | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center (HSC), Fort Worth, TX, United States
| |
Collapse
|
34
|
Sfera A, Osorio C, Maguire G, Rahman L, Afzaal J, Cummings M, Maldonado JC. COVID-19, ferrosenescence and neurodegeneration, a mini-review. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110230. [PMID: 33373681 PMCID: PMC7832711 DOI: 10.1016/j.pnpbp.2020.110230] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Exacerbation of cognitive, motor and nonmotor symptoms have been described in critically ill COVID-19 patients, indicating that, like prior pandemics, neurodegenerative sequelae may mark the aftermath of this viral infection. Moreover, SARS-CoV-2, the causative agent of COVID-19 disease, was associated with hyperferritinemia and unfavorable prognosis in older individuals, suggesting virus-induced ferrosenescence. We have previously defined ferrosenescence as an iron-associated disruption of both the human genome and its repair mechanisms, leading to premature cellular senescence and neurodegeneration. As viruses replicate more efficiently in iron-rich senescent cells, they may have developed the ability to induce this phenotype in host tissues, predisposing to both immune dysfunction and neurodegenerative disorders. In this mini-review, we summarize what is known about the SARS-CoV-2-induced cellular senescence and iron dysmetabolism. We also take a closer look at immunotherapy with natural killer cells, angiotensin II receptor blockers ("sartans"), iron chelators and dipeptidyl peptidase 4 inhibitors ("gliptins") as adjunct treatments for both COVID-19 and its neurodegenerative complications.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, California, United States of America.
| | | | - Gerald Maguire
- University of California, Riverside, United States of America
| | - Leah Rahman
- Patton State Hospital, California, United States of America
| | - Jafri Afzaal
- Patton State Hospital, California, United States of America
| | | | | |
Collapse
|
35
|
Ambekar T, Pawar J, Rathod R, Patel M, Fernandes V, Kumar R, Singh SB, Khatri DK. Mitochondrial quality control: Epigenetic signatures and therapeutic strategies. Neurochem Int 2021; 148:105095. [PMID: 34111479 DOI: 10.1016/j.neuint.2021.105095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/08/2023]
Abstract
Mitochondria are semi-autonomous organelle staging a crucial role in cellular stress response, energy metabolism and cell survival. Maintaining mitochondrial quality control is very important for its homeostasis. Pathological conditions such as oxidative stress and neurodegeneration, disrupt this quality control, and involvement of genetic and epigenetic materials in this disruption have been reported. These regulatory factors trigger mitochondrial imbalance, as seen in many neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, and Huntington's disease. The dynamic regulatory pathways i.e. mitophagy, biogenesis, permeability pore transitioning, fusion-fission are affected as a consequence and have been reviewed in this article. Moreover, several epigenetic mechanisms such as DNA methylation and histone modulation participating in such neurological disorders have also been discussed. Apart from it, therapeutic approaches targeting mitochondrial quality control have been tremendously explored showing ameliorative effects for these diseases, and have been discussed here with a novel perspective.
Collapse
Affiliation(s)
- Tanuja Ambekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Jyoti Pawar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Ramdev Rathod
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Monica Patel
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Rahul Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
36
|
Li L, Xin Z, Okwong RO, OuYang Q, Che J, Zhou J, Tao N. Antofine inhibits postharvest green mold due to imazalil-resistant Penicillium digitatum strain Pdw03 by triggering oxidative burst. J Food Biochem 2021; 45:e13751. [PMID: 33949723 DOI: 10.1111/jfbc.13751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 01/05/2023]
Abstract
The emergence of imazalil (IMZ) resistance in Penicillium digitatum has become a great threat for controlling citrus green mold. In this paper, we investigated the antifungal efficiency and mechanism of an alkaloid antofine against an IMZ-resistant P. digitatum strain Pdw03. Results showed that antofine exhibited a strong antifungal activity against the mycelial growth of strain Pdw03, with a minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) of 1.56 × 10-3 and 1.25 × 10-2 g/L, respectively. In vivo application of antofine effectively delayed the disease progress and reduced the incidence of green mold in citrus fruit. The disease incidence of 10 × MFC antofine-treated fruit after 6 days of storage was only 11% ± 4%, which was significantly lower than that of the control (100% ± 0%). Antofine treatment altered mycelial morphology of strain Pdw03 without affecting the cell wall integrity. Although the ergosterol contents remained stable, a decrease in the total lipid content induced by lipid peroxidation was observed at 30 min of exposure, indicating disruption of cell membrane permeability of strain Pdw03. In addition, the mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) contents were also decreased at 60 min of exposure. These results indicated that antofine inhibited the growth of strain Pdw03 by disrupting cell membrane permeability and impairing energy metabolism induced by oxidative burst. PRACTICAL APPLICATIONS: One of the most economically important postharvest diseases of citrus fruit is green mold caused by Penicillium digitatum. The pathogen is mainly controlled by using imazalil, but the prolonged and extensive application of this chemical fungicide has led to emergence of numerous IMZ-resistant strains among P. digitatum isolates. Consequently, new and safe strategies for controlling citrus green mold caused by IMZ-resistant P. digitatum strains are urgently needed. In this study, an alkaloid antofine effectively inhibited the growth of IMZ-resistant P. digitatum strain Pdw03 and significantly decreased green mold incidence in the affected citrus fruits. Antofine induced membrane lipid peroxidation of Pdw03 mycelia, resulting in damage to the cell membrane and impairment of energy metabolism. Antofine is therefore a potential antifungal agent for the control of green mold, which provide theoretical guidance for the food industry.
Collapse
Affiliation(s)
- Lu Li
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Zhitong Xin
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | | | - Qiuli OuYang
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Jinxin Che
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Jia Zhou
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
37
|
Belkheir AM, Reunert J, Elpers C, van den Heuvel L, Rodenburg R, Seelhöfer A, Rust S, Jeibmann A, Frosch M, Marquardt T. Severe Form of ßIV-Spectrin Deficiency With Mitochondrial Dysfunction and Cardiomyopathy-A Case Report. Front Neurol 2021; 12:643805. [PMID: 33986717 PMCID: PMC8110827 DOI: 10.3389/fneur.2021.643805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
ßIV-spectrin is a protein of the spectrin family which is involved in the organization of the cytoskeleton structure and is found in high quantity in the axon initial segment and the nodes of Ranvier. Together with ankyrin G, ßIV-spectrin is responsible for the clustering of KCNQ2/3-potassium channels and NaV-sodium channels. Loss or reduction of ßIV-spectrin causes a destabilization of the cytoskeleton and an impairment in the generation of the action potential, which leads to neuronal degeneration. Furthermore, ßIV-spectrin has been described to play an important role in the maintenance of the neuronal polarity and of the diffusion barrier. ßIV-spectrin is also located in the heart where it takes an important part in the structural organization of ion channels and has also been described to participate in cell signaling pathways through binding of transcription factors. We describe two patients with a severe form of ßIV-spectrin deficiency. Whole-exome sequencing revealed the homozygous stop mutation c.6016C>T (p.R2006*) in the SPTBN4 gene. The phenotype of these patients is characterized by profound psychomotor developmental arrest, respiratory insufficiency and deafness. Additionally one of the patients presents with cardiomyopathy, optical nerve atrophy, and mitochondrial dysfunction. This is the first report of a severe form of ßIV-spectrin deficiency with hypertrophic cardiomyopathy and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Aziza Miriam Belkheir
- Department of General Paediatrics, Metabolic Diseases, University Children's Hospital Muenster, Münster, Germany
| | - Janine Reunert
- Department of General Paediatrics, Metabolic Diseases, University Children's Hospital Muenster, Münster, Germany
| | - Christiane Elpers
- Department of General Paediatrics, Metabolic Diseases, University Children's Hospital Muenster, Münster, Germany
| | - Lambert van den Heuvel
- Translational Metabolic Laboratory, Department of Paediatrics, Radboud Center for Mitochondrial Medicine, Radboud UMC, Nijmegen, Netherlands
| | - Richard Rodenburg
- Translational Metabolic Laboratory, Department of Paediatrics, Radboud Center for Mitochondrial Medicine, Radboud UMC, Nijmegen, Netherlands
| | - Anja Seelhöfer
- Department of General Paediatrics, Metabolic Diseases, University Children's Hospital Muenster, Münster, Germany
| | - Stephan Rust
- Department of General Paediatrics, Metabolic Diseases, University Children's Hospital Muenster, Münster, Germany
| | - Astrid Jeibmann
- Institute of Neuropathology, University Hospital Muenster, Münster, Germany
| | - Michael Frosch
- Department of Children's Pain Therapy and Paediatric Palliative Care, Faculty of Health-School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Thorsten Marquardt
- Department of General Paediatrics, Metabolic Diseases, University Children's Hospital Muenster, Münster, Germany
| |
Collapse
|
38
|
Duarte JN. Neuroinflammatory Mechanisms of Mitochondrial Dysfunction and Neurodegeneration in Glaucoma. J Ophthalmol 2021; 2021:4581909. [PMID: 33953963 PMCID: PMC8064803 DOI: 10.1155/2021/4581909] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/29/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The exact mechanism of retinal ganglion cell loss in the pathogenesis of glaucoma is yet to be understood. Mitochondrial damage-associated molecular patterns (DAMPs) resulting from mitochondrial dysfunction have been linked to Leber's hereditary optic neuropathy and autosomal dominant optic atrophy, as well as to brain neurodegenerative diseases. Recent evidence shows that, in conditions where mitochondria are damaged, a sustained inflammatory response and downstream pathological inflammation may ensue. Mitochondrial damage has been linked to the accumulation of age-related mitochondrial DNA mutations and mitochondrial dysfunction, possibly through aberrant reactive oxygen species production and defective mitophagy. The present review focuses on how mitochondrial dysfunction may overwhelm the ability of neurons and glial cells to adequately maintain homeostasis and how mitochondria-derived DAMPs trigger the immune system and induce neurodegeneration.
Collapse
Affiliation(s)
- Joao N. Duarte
- Neuroinflammation Unit, Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Balasubramanian N, Sagarkar S, Choudhary AG, Kokare DM, Sakharkar AJ. Epigenetic Blockade of Hippocampal SOD2 Via DNMT3b-Mediated DNA Methylation: Implications in Mild Traumatic Brain Injury-Induced Persistent Oxidative Damage. Mol Neurobiol 2021; 58:1162-1184. [PMID: 33099744 DOI: 10.1007/s12035-020-02166-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022]
Abstract
The recurrent events of mild trauma exacerbate the vulnerability for post-traumatic stress disorder; however, the underlying molecular mechanisms are scarcely known. The repeated mild traumatic brain injury (rMTBI) perturbs redox homeostasis which is primarily managed by superoxide dismutase 2 (SOD2). The current study investigates the role of DNA methylation in SOD2 gene regulation and its involvement in rMTBI-induced persistent neuropathology inflicted by weight drop injury paradigm. The oxidative damage, neurodegenerative indicators, and SOD2 function and its regulation in the hippocampus were analyzed after 48 h and 30 days of rMTBI. The temporal and episodic increase in ROS levels (oxidative stress) heightened 8-hydroxyguanosine levels indicating oxidative damage after rMTBI that was concomitant with decline in SOD2 function. In parallel, occupancy of DNMT3b at SOD2 promoter was higher post 30 days of the first episode of rMTBI causing hypermethylation at SOD2 promoter. This epigenetic silencing of SOD2 promoter was sustained after the second episode of rMTBI causing permanent blockade in SOD2 response. The resultant oxidative stress further culminated into the increasing number of degenerating neurons. The treatment with 5-azacytidine, a pan DNMT inhibitor, normalized DNA methylation levels and revived SOD2 function after the second episode of rMTBI. The release of blockade in SOD2 expression by DNMT inhibition also normalized the post-traumatic oxidative consequences and relieved the neurodegeneration and deficits in learning and memory as measured by novel object recognition test. In conclusion, DNMT3b-mediated DNA methylation plays a critical role in SOD2 gene regulation in the hippocampus, and the perturbations therein post rMTBI are detrimental to redox homeostasis manifesting into neurological consequences.
Collapse
Affiliation(s)
| | - Sneha Sagarkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
- Department of Zoology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Amit G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India.
| |
Collapse
|
40
|
Liu K, Zhou Z, Pan M, Zhang L. Stem cell-derived mitochondria transplantation: A promising therapy for mitochondrial encephalomyopathy. CNS Neurosci Ther 2021; 27:733-742. [PMID: 33538116 PMCID: PMC8193690 DOI: 10.1111/cns.13618] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial encephalomyopathies are disorders caused by mitochondrial and nuclear DNA mutations which affect the nervous and muscular systems. Current therapies for mitochondrial encephalomyopathies are inadequate and mostly palliative. However, stem cell‐derived mitochondria transplantation has been demonstrated to play an key part in metabolic rescue, which offers great promise for mitochondrial encephalomyopathies. Here, we summarize the present status of stem cell therapy for mitochondrial encephalomyopathy and discuss mitochondrial transfer routes and the protection mechanisms of stem cells. We also identify and summarize future perspectives and challenges for the treatment of these intractable disorders based on the concept of mitochondrial transfer from stem cells.
Collapse
Affiliation(s)
- Kaiming Liu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijian Zhou
- Department of Neurology, Shaoxing Hospital of Traditional Chinese Medicine, Affiliated with Zhejiang Chinese Medical University, Shaoxing, China
| | - Mengxiong Pan
- Department of Neurology, First People's Hospital of Huzhou, Huzhou, China
| | - Lining Zhang
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Iravanpour F, Dargahi L, Rezaei M, Haghani M, Heidari R, Valian N, Ahmadiani A. Intranasal insulin improves mitochondrial function and attenuates motor deficits in a rat 6-OHDA model of Parkinson's disease. CNS Neurosci Ther 2021; 27:308-319. [PMID: 33497031 PMCID: PMC7871791 DOI: 10.1111/cns.13609] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Aims Experimental and clinical evidences demonstrate that common dysregulated pathways are involved in Parkinson’s disease (PD) and type 2 diabetes. Recently, insulin treatment through intranasal (IN) approach has gained attention in PD, although the underlying mechanism of its potential therapeutic effects is still unclear. In this study, we investigated the effects of insulin treatment in a rat model of PD with emphasis on mitochondrial function indices in striatum. Methods Rats were treated with a daily low dose (4IU/day) of IN insulin, starting 72 h after 6‐OHDA‐induced lesion and continued for 14 days. Motor performance, dopaminergic cell survival, mitochondrial dehydrogenases activity, mitochondrial swelling, mitochondria permeability transition pore (mPTP), mitochondrial membrane potential (Δψm), reactive oxygen species (ROS) formation, and glutathione (GSH) content in mitochondria, mitochondrial adenosine triphosphate (ATP), and the gene expression of PGC‐1α, TFAM, Drp‐1, GFAP, and Iba‐1 were assessed. Results Intranasal insulin significantly reduces 6‐OHDA‐induced motor dysfunction and dopaminergic cell death. In parallel, it improves mitochondrial function indices and modulates mitochondria biogenesis and fission as well as activation of astrocytes and microglia. Conclusion Considering the prominent role of mitochondrial dysfunction in PD pathology, IN insulin as a disease‐modifying therapy for PD should be considered for extensive research.
Collapse
Affiliation(s)
- Farideh Iravanpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Haghani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Pradeepkiran JA, Reddy AP, Yin X, Manczak M, Reddy PH. Protective effects of BACE1 inhibitory ligand molecules against amyloid beta-induced synaptic and mitochondrial toxicities in Alzheimer's disease. Hum Mol Genet 2020; 29:49-69. [PMID: 31595293 DOI: 10.1093/hmg/ddz227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/25/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Amyloid-β (Aβ) peptides are the major drivers of Alzheimer's disease (AD) pathogenesis, and are formed by successive cleavage of the amyloid precursor protein (APP) by the beta and gamma secretases. Mounting evidence suggests that Aβ and mitochondrial structural and functional abnormalities are critically involved in the loss of synapses and cognitive decline, in patients with AD. In AD brain, state the sequential proteolytic cleavage of APP by beta secretase 1 enzyme (BACE1) and γ-secretase leads to the production and release of Aβ40 and 42. BACE1 expression and activity increased in the brains of AD patients. Structurally, β-secretase has a very large binding site (1000 Å) with fewer hydrophobic domains that makes a challenge to identify the specific targets/binding sites of BACE1. In the present study, we constructed a BACE1 pharmacophore with pepstatin and screened through molecular docking studies. We found one potential candidate (referred as ligand 1) that binds to the key catalytic residues of BACE1 and predicts to inhibit abnormal APP processing and reduce Aβ levels in AD neurons. Using biochemical, molecular, transmission electron microscopy, immunoblotting and immunofluorescence analyses, we studied the protective effects of ligand 1 against Aβ-induced synaptic and mitochondrial toxicities in mouse neuroblastoma (N2a) cells that express mutant APP. We found interaction between ligand 1 and BACE1 and this interaction decreased BACE1 activity, Aβ40 and 42 levels. We also found increased mitochondrial biogenesis, mitochondrial fusion and synaptic activity and reduced mitochondrial fission in ligand 1-treated mutant APP cells. Based on these results, we cautiously conclude that ligand 1 reduces Aβ-induced mitochondrial and synaptic toxicities, and maintains mitochondrial dynamics and neuronal function in AD.
Collapse
Affiliation(s)
- Jangampalli Adi Pradeepkiran
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Xiangling Yin
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, Lubbock, TX 79413, USA
| | - Maria Manczak
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, Lubbock, TX 79413, USA
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.,Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, Lubbock, TX 79413, USA.,Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.,Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.,Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.,Public Health Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| |
Collapse
|
43
|
Goyal S, Chaturvedi RK. Mitochondrial Protein Import Dysfunction in Pathogenesis of Neurodegenerative Diseases. Mol Neurobiol 2020; 58:1418-1437. [PMID: 33180216 DOI: 10.1007/s12035-020-02200-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play an essential role in maintaining energy homeostasis and cellular survival. In the brain, higher ATP production is required by mature neurons for communication. Most of the mitochondrial proteins transcribe in the nucleus and import in mitochondria through different pathways of the mitochondrial protein import machinery. This machinery plays a crucial role in determining mitochondrial morphology and functions through mitochondrial biogenesis. Failure of this machinery and any alterations during mitochondrial biogenesis underlies neurodegeneration resulting in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD) etc. Current knowledge has revealed the different pathways of mitochondrial protein import machinery such as translocase of the outer mitochondrial membrane complex, the presequence pathway, carrier pathway, β-barrel pathway, and mitochondrial import and assembly machinery etc. In this review, we have discussed the recent studies regarding protein import machinery, beyond the well-known effects of increased oxidative stress and bioenergetics dysfunctions. We have elucidated in detail how these types of machinery help to import and locate the precursor proteins to their specific location inside the mitochondria and play a major role in mitochondrial biogenesis. We further discuss their involvement in mitochondrial dysfunctioning and the induction of toxic aggregates in neurodegenerative diseases like AD and PD. The review supports the importance of import machinery in neuronal functions and its association with toxic aggregated proteins in mitochondrial impairment, suggesting a critical role in fostering and maintaining neurodegeneration and therapeutic response.
Collapse
Affiliation(s)
- Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
44
|
Li W, Kui L, Demetrios T, Gong X, Tang M. A Glimmer of Hope: Maintain Mitochondrial Homeostasis to Mitigate Alzheimer's Disease. Aging Dis 2020; 11:1260-1275. [PMID: 33014536 PMCID: PMC7505280 DOI: 10.14336/ad.2020.0105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/05/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are classically known to be cellular energy producers. Given the high-energy demanding nature of neurons in the brain, it is essential that the mitochondrial pool remains healthy and provides a continuous and efficient supply of energy. However, mitochondrial dysfunction is inevitable in aging and neurodegenerative diseases. In Alzheimer’s disease (AD), neurons experience unbalanced homeostasis like damaged mitochondrial biogenesis and defective mitophagy, with the latter promoting the disease-defining amyloid β (Aβ) and p-Tau pathologies impaired mitophagy contributes to inflammation and the aggregation of Aβ and p-Tau-containing neurotoxic proteins. Interventions that restore defective mitophagy may, therefore, alleviate AD symptoms, pointing out the possibility of a novel therapy. This review aims to illustrate mitochondrial biology with a focus on mitophagy and propose strategies to treat AD while maintaining mitochondrial homeostasis.
Collapse
Affiliation(s)
- Wenbo Li
- 1State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, China
| | - Ling Kui
- 2Dana-Farber Cancer Institute, Harvard Medical School, United States
| | | | - Xun Gong
- 4Department of Rheumatology & Immunology, The First Affiliated Hospital of Anhui Medical University, China
| | - Min Tang
- 5Institute of Life Sciences, Jiangsu University, China.,6Center for Innovation in Brain Science, University of Arizona, United States
| |
Collapse
|
45
|
Stacchiotti A, Corsetti G. Natural Compounds and Autophagy: Allies Against Neurodegeneration. Front Cell Dev Biol 2020; 8:555409. [PMID: 33072744 PMCID: PMC7536349 DOI: 10.3389/fcell.2020.555409] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Prolonging the healthy life span and limiting neurological illness are imperative goals in gerontology. Age-related neurodegeneration is progressive and leads to severe diseases affecting motility, memory, cognitive function, and social life. To date, no effective treatments are available for neurodegeneration and irreversible neuronal loss. Bioactive phytochemicals could represent a natural alternative to ensure active aging and slow onset of neurodegenerative diseases in elderly patients. Autophagy or macroautophagy is an evolutionarily conserved clearing process that is needed to remove aggregate-prone proteins and organelles in neurons and glia. It also is crucial in synaptic plasticity. Aberrant autophagy has a key role in aging and neurodegeneration. Recent evidence indicates that polyphenols like resveratrol and curcumin, flavonoids, like quercetin, polyamine, like spermidine and sugars, like trehalose, limit brain damage in vitro and in vivo. Their common mechanism of action leads to restoration of efficient autophagy by dismantling misfolded proteins and dysfunctional mitochondria. This review focuses on the role of dietary phytochemicals as modulators of autophagy to fight Alzheimer's and Parkinson's diseases, fronto-temporal dementia, amyotrophic lateral sclerosis, and psychiatric disorders. Currently, most studies have involved in vitro or preclinical animal models, and the therapeutic use of phytochemicals in patients remains limited.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdepartmental University Center of Research "Adaptation and Regeneration of Tissues and Organs (ARTO)," University of Brescia, Brescia, Italy
| | - Giovanni Corsetti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
46
|
Escobar-Henriques M, Anton V. Mitochondrial Surveillance by Cdc48/p97: MAD vs. Membrane Fusion. Int J Mol Sci 2020; 21:E6841. [PMID: 32961852 PMCID: PMC7555132 DOI: 10.3390/ijms21186841] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
Cdc48/p97 is a ring-shaped, ATP-driven hexameric motor, essential for cellular viability. It specifically unfolds and extracts ubiquitylated proteins from membranes or protein complexes, mostly targeting them for proteolytic degradation by the proteasome. Cdc48/p97 is involved in a multitude of cellular processes, reaching from cell cycle regulation to signal transduction, also participating in growth or death decisions. The role of Cdc48/p97 in endoplasmic reticulum-associated degradation (ERAD), where it extracts proteins targeted for degradation from the ER membrane, has been extensively described. Here, we present the roles of Cdc48/p97 in mitochondrial regulation. We discuss mitochondrial quality control surveillance by Cdc48/p97 in mitochondrial-associated degradation (MAD), highlighting the potential pathologic significance thereof. Furthermore, we present the current knowledge of how Cdc48/p97 regulates mitofusin activity in outer membrane fusion and how this may impact on neurodegeneration.
Collapse
Affiliation(s)
- Mafalda Escobar-Henriques
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany;
| | | |
Collapse
|
47
|
Özdinler PH. Expanded access: opening doors to personalized medicine for rare disease patients and patients with neurodegenerative diseases. FEBS J 2020; 288:1457-1461. [PMID: 32805742 DOI: 10.1111/febs.15529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/05/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
In neurodegenerative diseases, a select set of neuron population displays early vulnerability and undergoes progressive degeneration. The heterogeneity of the cerebral cortex and the heterogeneity of patient populations diagnosed with the same disease offer many challenges for developing effective and long-term treatment options. Currently, patients who are considered to have a 'rare' disease are left with no hopes for cure, and many of the neurodegenerative diseases progress fast without any effective solutions. However, as our understanding of disease mechanisms evolve, we begin to realize that the boundaries between diseases are not as sharp as once believed. There are many patients who develop disease due to common underlying causes and mechanisms. As we move forward with drug discovery effort, it becomes obvious that we will have to shift our focus from finding a cure for a disease, to finding solutions to the disease-causing cellular mechanisms so that patients can be treated by mechanism-based strategies. This paradigm shift will lay the foundation for personalized medicine approaches for neurodegenerative disease patients and patients diagnosed with a rare disease.
Collapse
Affiliation(s)
- P Hande Özdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, Evanston, IL, USA.,Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Les Turner ALS Center at Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
48
|
Lin ZH, Zheng R, Ruan Y, Gao T, Jin CY, Xue NJ, Dong JX, Yan YP, Tian J, Pu JL, Zhang BR. The lack of association between ubiquinol-cytochrome c reductase core protein I (UQCRC1) variants and Parkinson's disease in an eastern Chinese population. CNS Neurosci Ther 2020; 26:990-992. [PMID: 32666668 PMCID: PMC7415203 DOI: 10.1111/cns.13436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Zhi-Hao Lin
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ran Zheng
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Ruan
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Gao
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chong-Yao Jin
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Nai-Jia Xue
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jia-Xian Dong
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ya-Ping Yan
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Tian
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jia-Li Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Bao-Rong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Ugrumov M. Development of early diagnosis of Parkinson's disease: Illusion or reality? CNS Neurosci Ther 2020; 26:997-1009. [PMID: 32597012 PMCID: PMC7539842 DOI: 10.1111/cns.13429] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
The fight against neurodegenerative diseases, Alzheimer disease and Parkinson's disease (PD), is a challenge of the 21st century. The low efficacy of treating patients is due to the late diagnosis and start of therapy, after the degeneration of most specific neurons and depletion of neuroplasticity. It is believed that the development of early diagnosis (ED) and preventive treatment will delay the onset of specific symptoms. This review evaluates methodologies for developing ED of PD. Since PD is a systemic disease, and the degeneration of certain neurons precedes that of nigrostriatal dopaminergic neurons that control motor function, the current methodology is based on searching biomarkers, such as premotor symptoms and changes in body fluids (BF) in patients. However, all attempts to develop ED were unsuccessful. Therefore, it is proposed to enhance the current methodology by (i) selecting among biomarkers found in BF in patients at the clinical stage those that are characteristics of animal models of the preclinical stage, (ii) searching biomarkers in BF in subjects at the prodromal stage, selected by detecting premotor symptoms and failure of the nigrostriatal dopaminergic system. Moreover, a new methodology was proposed for the development of ED of PD using a provocative test, which is successfully used in internal medicine.
Collapse
Affiliation(s)
- Michael Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Institute of Developmental Biology RAS, Moscow, Russia
| |
Collapse
|
50
|
Johnson SC, Kayser EB, Bornstein R, Stokes J, Bitto A, Park KY, Pan A, Sun G, Raftery D, Kaeberlein M, Sedensky MM, Morgan PG. Regional metabolic signatures in the Ndufs4(KO) mouse brain implicate defective glutamate/α-ketoglutarate metabolism in mitochondrial disease. Mol Genet Metab 2020; 130:118-132. [PMID: 32331968 PMCID: PMC7272141 DOI: 10.1016/j.ymgme.2020.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 02/08/2023]
Abstract
Leigh Syndrome (LS) is a mitochondrial disorder defined by progressive focal neurodegenerative lesions in specific regions of the brain. Defects in NDUFS4, a subunit of complex I of the mitochondrial electron transport chain, cause LS in humans; the Ndufs4 knockout mouse (Ndufs4(KO)) closely resembles the human disease. Here, we probed brain region-specific molecular signatures in pre-symptomatic Ndufs4(KO) to identify factors which underlie focal neurodegeneration. Metabolomics revealed that free amino acid concentrations are broadly different by region, and glucose metabolites are increased in a manner dependent on both region and genotype. We then tested the impact of the mTOR inhibitor rapamycin, which dramatically attenuates LS in Ndufs4(KO), on region specific metabolism. Our data revealed that loss of Ndufs4 drives pathogenic changes to CNS glutamine/glutamate/α-ketoglutarate metabolism which are rescued by mTOR inhibition Finally, restriction of the Ndufs4 deletion to pre-synaptic glutamatergic neurons recapitulated the whole-body knockout. Together, our findings are consistent with mTOR inhibition alleviating disease by increasing availability of α-ketoglutarate, which is both an efficient mitochondrial complex I substrate in Ndufs4(KO) and an important metabolite related to neurotransmitter metabolism in glutamatergic neurons.
Collapse
Affiliation(s)
- Simon C Johnson
- Department of Neurology, University of Washington, Seattle, WA 98105, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98105, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Ernst-Bernhard Kayser
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Rebecca Bornstein
- Department of Pathology, University of Washington, Seattle, WA 98105, USA
| | - Julia Stokes
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98105, USA
| | - Alessandro Bitto
- Department of Pathology, University of Washington, Seattle, WA 98105, USA
| | - Kyung Yeon Park
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Amanda Pan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Grace Sun
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98105, USA; Department of Chemistry, University of Washington, Seattle, WA 98109, United States
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98105, USA
| | - Margaret M Sedensky
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98105, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Philip G Morgan
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98105, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| |
Collapse
|