1
|
Llibre A, Kucuk S, Gope A, Certo M, Mauro C. Lactate: A key regulator of the immune response. Immunity 2025; 58:535-554. [PMID: 40073846 DOI: 10.1016/j.immuni.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
Lactate, the end product of both anaerobic and aerobic glycolysis in proliferating and growing cells-with the latter process known as the Warburg effect-is historically considered a mere waste product of cell and tissue metabolism. However, research over the past ten years has unveiled multifaceted functions of lactate that critically shape and impact cellular biology. Beyond serving as a fuel source, lactate is now known to influence gene expression through histone modification and to function as a signaling molecule that impacts a wide range of cellular activities. These properties have been particularly studied in the context of both adaptive and innate immune responses. Here, we review the diverse roles of lactate in the regulation of the immune system during homeostasis and disease pathogenesis (including cancer, infection, cardiovascular diseases, and autoimmunity). Furthermore, we describe recently proposed therapeutic interventions for manipulating lactate metabolism in human diseases.
Collapse
Affiliation(s)
- Alba Llibre
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Salih Kucuk
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Atrayee Gope
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Michelangelo Certo
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Claudio Mauro
- College of Medicine and Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
2
|
Liu Y, Yang G, Liu M, Zhang Y, Xu H, Mazhar M. Cinnamaldehyde and its combination with deferoxamine ameliorate inflammation, ferroptosis and hematoma expansion after intracerebral hemorrhage in mice. J Neuroinflammation 2025; 22:45. [PMID: 39985048 PMCID: PMC11846400 DOI: 10.1186/s12974-025-03373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025] Open
Abstract
Intracerebral hemorrhage (ICH) is a most serious type of hemorrhagic stroke with a continuously rising incidence globally, without effective cure available. The underlying mechanisms driving brain injury are complex and include inflammation, oxidative stress, glutamate excitotoxicity, membrane damage, lipid peroxidation, ferroptosis and other cellular death modes. Hematoma clearance is the key to limit brain damage and foster the recovery process. The quest for effective ICH remedies is continuing and strategically evolving with the expansion of knowledge and understanding of target mechanisms and novel lead compounds. In this study, we have investigated the effects of cinnamaldehyde after ICH as an individual treatment as well as in combination with deferoxamine. The autologous blood injection model was employed using C57BL/6 mice. Following 2 h of ICH induction, animals received IP injection once per day for three days; normal saline in ICH model group, cinnamaldehyde, deferoxamine, and combined cinnamaldehyde and deferoxamine in respective groups. Measurement of neurobehavioral scoring, markers of inflammation NFкB, TNFα, IL-1, IL6, iNOS; oxidative stress and ferroptosis GSH, TBARS, glutamate, choline containing phospholipids, GPX4, SLC7A11, SLC40A1, ACSL4; and hematoma clearance hemoglobin, haptoglobin, hemopexin, zonulin, CD163, LRP1, HO1, CD36, CD206, were investigated using ELISA, PCR, and western blot. Immunofluorescence for NeuN/SLC40A1, GFAP/GPX4, NeuN/HO1, Iba1/HO1 was also performed. We have found that cinnamaldehyde possess anti-inflammatory, antioxidant, anti-ferroptotic and hematoma limiting properties that were comparable to those obtained with deferoxamine. However, combination of cinnamaldehyde and deferoxamine demonstrated remarkable effectiveness in restoration of these parameters indicating their synergistic effect in ICH model.
Collapse
Affiliation(s)
- Yulin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
- National Traditional Chinese Medicine Service Export Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Guoqiang Yang
- Department of Acupuncture and Rehabilitation, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Mengnan Liu
- Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yuwei Zhang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Houping Xu
- Department of Geriatrics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.
- National Traditional Chinese Medicine Service Export Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Zhang Y, Li CH, Yan YZ, Lin JY, Zhu SS, Tan SJ, Zeng P. Network pharmacology to unveil the blood components and mechanisms of Tongmai Yangxin Pills in treating elderly coronary heart disease. Front Cardiovasc Med 2025; 12:1475546. [PMID: 40017515 PMCID: PMC11865046 DOI: 10.3389/fcvm.2025.1475546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
Background Tongmai Yangxin Pills (TMYXP) is a well-known traditional Chinese medicine compound to treat coronary heart disease (CHD). Aging is a key immutable independent risk factor for CHD. Currently, there are few gene expression profiles of patients treated with traditional Chinese medicine (TCM) or TCM compound. However, the chemical composition and underlying mechanisms of TMYXP against elderly CHD need to be elucidated. Objective Exploring the mechanism of TMYXP in treating elderly CHD based on human gene expression profiles, and find the key pharmacodynamic ingredients of TMYXP in treating elderly CHD based on plasma pharmacochemistry and network pharmacology. Methods A strength of this study is the use of network pharmacology analysis of gene expression profiles in elderly CHD patients before and after TMYXP treatment. This study focused on peripheral blood mononuclear cell samples from 6 elderly patients with CHD over 60 years old (GSE142008). A total of 40 blood components of TMYXP identified by UPLC/Q-TOF-MS method in the plasma of SD rats. Then, we collected literature-validated TMYXP blood component targets for further network pharmacology analysis. Results All blood components of TMYXP exhibited non-toxic properties. By retrieving validated TMYXP blood components's targets, 15 blood components correspond to a total of 4,789 targets. Genistein, emodin, isoliquiritigenin, glycyrrhizic acid, gallic acid, verbascoside, calycosin, rhein, formononetin and ephedrine were the most potential anti-CHD blood components in TMYXP. The above 10 key blood components of TMYXP mainly regulate hub genes CASP3, TGFB1, PTGS2, CXCL8, FAS and JAK2, mediating multiple mechanisms to treat elderly CHD. TMYXP exerts anti-CHD effects on the TNF signaling pathway, PI3K-Akt signaling pathway, p53 signaling pathway, MAPK signaling pathway, lipid and atherosclerosis, NOD-like receptor signaling pathway, diabetic cardiomyopathy and cytokine-cytokine receptor interaction. We further used molecular docking technology to verify the direct interaction of TMYXP blood components with its hub target for treating elderly CHD. Conclusion This study builds a bridge connecting TMYXP blood components and its confirmed clinical efficacy, identifies a series of anti-CHD lead compounds, and analyzes their possible mechanisms for treating CHD. The research strategy of this study has the potential to promote the modernization and transformation of TCM and promote the drug development.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Chao-Hui Li
- Logistics Service Center Medical Office, University of South China, Hengyang, China
| | - Yi-Zhi Yan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Jie-Yun Lin
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Shan-Shan Zhu
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Si-Jie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Peng Zeng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Tang F, Xiao D, Li X, Qiao L. The roles of lactate and the interplay with m 6A modification in diseases. Cell Biol Toxicol 2024; 40:107. [PMID: 39617813 PMCID: PMC11609124 DOI: 10.1007/s10565-024-09951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
Lactate exhibits various biological functions, including the mediation of histone and non-histone lactylation to regulate gene transcription, influencing the activity of T lymphocytes, NK cells, and macrophages in immune suppression, activating G protein-coupled receptor 81 for signal transduction, and serving as an energy substrate. The m6A modification represents the most prevalent post-transcriptional epigenetic alteration. It is regulated by m6A-related regulatory enzymes (including methyltransferases, demethylases, and recognition proteins) that control the transcription, splicing, stability, and translation of downstream target RNAs. Lactate-mediated lactylation at histone H3K18 can modulate downstream target m6A modifications by enhancing the transcriptional expression levels of m6A-related regulatory enzymes. These enzymes play a crucial role in the progression of diseases such as cancer, fibrosis (in both liver and lung), myocardial ischemia, cerebral hemorrhage, and sepsis. Furthermore, m6A-related regulatory enzymes are also subject to lactylation by lactate. In turn, these regulatory enzymes can influence key glycolytic pathway enzymes or modify lactate transporter MCT4 via m6A alterations to impact lactate levels and subsequently affect lactylation processes.
Collapse
Affiliation(s)
- Fajuan Tang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Lina Qiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Zhang G, Zhao A, Zhang X, Zeng M, Wei H, Yan X, Wang J, Jiang X, Dai Y. Glycolytic reprogramming in microglia: A potential therapeutic target for ischemic stroke. Cell Signal 2024; 124:111466. [PMID: 39419195 DOI: 10.1016/j.cellsig.2024.111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Ischemic stroke is currently the second leading cause of mortality worldwide, with limited treatment options available. As resident immune cells, microglia promptly respond to cerebral ischemic injury, influencing neuroinflammatory damage and neurorepair. Studies suggest that microglia undergo metabolic reprogramming from mitochondrial oxidative phosphorylation to glycolysis in response to ischemia, significantly impacting their function during ischemic stroke. Therefore, this study aims to investigate the roles and regulatory mechanisms involved in this process, aiming to identify a new therapeutic target or potential drug candidate.
Collapse
Affiliation(s)
- Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
6
|
Liu X, Bao Q, Liu Z, Wang J, Otikovs M, Zhang Z, Cheng X, Wang J, Frydman L, Zhou X, Liu M, Liu C. Exploring Metabolic Aberrations after Intracerebral Hemorrhage In Vivo with Deuterium Metabolic Spectroscopy Imaging. Anal Chem 2024; 96:15563-15571. [PMID: 39295127 DOI: 10.1021/acs.analchem.4c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Aberrations in metabolism after intracerebral hemorrhage (ICH), particularly lactate metabolism, play a crucial role in the pathophysiology and patient outcome. To date, the evaluation of metabolism relies heavily on invasive methods such as microdialysis, restricting a comprehensive understanding of the metabolic mechanisms associated with ICH. This study proposes a noninvasive metabolic imaging method based on 2H magnetic resonance spectroscopy and imaging (2H-MRS/MRSI) to detect metabolic changes after ICH in vivo. To overcome the low-sensitivity limitation of 2H, we designed a new 1H-2H double-resonance coil with 2H-channel active detuning and proposed chemical shift imaging based on the balanced steady-state free precession method (CSI-bSSFP). Compared with the volume coil, the signal-to-noise ratio (SNR) of the new coil was increased by 4.5 times. In addition, the SNR of CSI-bSSFP was 1.5 times higher than that of conventional CSI. These two technologies were applied to measure lactate metabolic flux at different phases of ICH. The results show a higher lactate concentration in ICH rats than in control rats, which is in line with the increased expression of lactate dehydrogenase measured via immunohistochemistry staining (AUCLac_area/Glc_area: control, 0.08 ± 0.02 vs ICH-3d, 0.39 ± 0.05 vs ICH-7d, 0.18 ± 0.02, P < 0.01; H-score: control, 126.4 ± 5.03 vs ICH-3d, 168.4 ± 5.71 vs ICH-7d,133.6 ± 7.70, P < 0.05). A higher lactate signal also appeared near the ICH region than in normal brain tissue. In conclusion, 2H-MRS/MRSI shows potential as a useful method for in vivo metabolic imaging and noninvasive assessment of ICH.
Collapse
Affiliation(s)
- Xinjie Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Qingjia Bao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Zhuang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Martins Otikovs
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | - Zhi Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Xin Cheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Jiazheng Wang
- Clinical & Technical Support, Philips Healthcare, Beijing 100600, China
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Chaoyang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
7
|
Lan Z, Lv S, Ge Z, Zhao B, Li L, Li C. Lactic acid regulates lipid droplet aggregation through a microglia-neuron axis in neuroinflammation. J Lipid Res 2024; 65:100629. [PMID: 39182605 PMCID: PMC11437955 DOI: 10.1016/j.jlr.2024.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024] Open
Abstract
Neuroinflammation, marked by the release of proinflammatory cytokines and resulting neuronal death, is a multifaceted process extending beyond traditional inflammatory pathways. Microglia, primary cells in the inflammatory response, rapidly activate during neuroinflammation and produce proinflammatory and cytotoxic factors that affect neuronal function. Recent evidence highlights the significant role of abnormal lipid droplet (LD) deposition in the pathogenesis of neuroinflammation. While microglia are known to influence LD aggregation during neuroinflammation, the regulatory mechanism within neurons is not well understood. Our study demonstrates that lipopolysaccharide-activated microglia induce the accumulation of LD in neurons, identifying microglial-derived lactic acid as a key mediator in this process. Excessive lipid accumulation threatens neuronal function, a phenomenon reversed by eliminating microglia. Our study demonstrates that lipopolysaccharide-activated microglia induce the accumulation of LD in neurons, identifying microglial-derived lactic acid as a key mediator in this process. Excessive lipid accumulation threatens neuronal function, a phenomenon reversed by eliminating microglia.
Collapse
Affiliation(s)
- Zhuoqing Lan
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Shukai Lv
- Department of General Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Ziyi Ge
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Zhao
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Leilei Li
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Caixia Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Pu J, Han J, Yang J, Yu L, Wan H. Anaerobic Glycolysis and Ischemic Stroke: From Mechanisms and Signaling Pathways to Natural Product Therapy. ACS Chem Neurosci 2024; 15:3090-3105. [PMID: 39140296 DOI: 10.1021/acschemneuro.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Ischemic stroke is a serious condition that results in high rates of illness and death. Anaerobic glycolysis becomes the primary means of providing energy to the brain during periods of low oxygen levels, such as in the aftermath of an ischemic stroke. This process is essential for maintaining vital brain functions and has significant implications for recovery following a stroke. Energy supply by anaerobic glycolysis and acidosis caused by lactic acid accumulation are important pathological processes after ischemic stroke. Numerous natural products regulate glucose and lactate, which in turn modulate anaerobic glycolysis. This article focuses on the relationship between anaerobic glycolysis and ischemic stroke, as well as the associated signaling pathways and natural products that play a therapeutic role. These natural products, which can regulate anaerobic glycolysis, will provide new avenues and perspectives for the treatment of ischemic stroke in the future.
Collapse
Affiliation(s)
- Jia Pu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jin Han
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, Zhejiang 310053, China
| | - Haitong Wan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
9
|
Liu S, Zhou S. Lactate: A New Target for Brain Disorders. Neuroscience 2024; 552:100-111. [PMID: 38936457 DOI: 10.1016/j.neuroscience.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Lactate in the brain is produced endogenously and exogenously. The primary functional cells that produce lactate in the brain are astrocytes. Astrocytes release lactate to act on neurons, thereby affecting neuronal function, through a process known as the astrocyte-neuron shuttle. Lactate affects microglial function as well and inhibits microglia-mediated neuroinflammation. Lactate also provides energy, acts as a signaling molecule, and promotes neurogenesis. This article summarizes the role of lactate in cells, animals, and humans. Lactate is a protective molecule against stress in healthy organisms and in the early stages of brain disorders. Thus, lactate may be a potential therapeutic target for brain disorders. Further research on the role of lactate in microglia may have great prospects. This article provides a new perspective and research direction for the study of lacate in brain disorders.
Collapse
Affiliation(s)
- Shunfeng Liu
- College of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Shouhong Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Basic Medical College, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
10
|
Jiang X, Gao J, Fei X, Geng Y, Yue X, Shi Z, Cheng X, Zhao T, Fan M, Wu H, Zhao M, Zhu L. Global profiling of protein lactylation in microglia in experimental high-altitude cerebral edema. Cell Commun Signal 2024; 22:374. [PMID: 39054523 PMCID: PMC11271010 DOI: 10.1186/s12964-024-01748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND High-altitude cerebral edema (HACE) is considered an end-stage acute mountain sickness (AMS) that typically occurs in people after rapid ascent to 2500 m or more. While hypoxia is a fundamental feature of the pathophysiological mechanism of HACE, emerging evidence suggests that inflammation serves as a key risk factor in the occurrence and development of this disease. However, little is known about the molecular mechanism underlying their crosstalk. METHODS A mouse HACE model was established by combination treatment with hypobaric hypoxia exposure and lipopolysaccharides (LPS) stimulation. Lactylated-proteomic analysis of microglia was performed to reveal the global profile of protein lactylation. Molecular modeling was applied to evaluate the 3-D modeling structures. A combination of experimental approaches, including western blotting, quantitative real-time reverse transcriptionpolymerase chain reaction (qRT-PCR), and enzyme-linked immunosorbent assay (ELISA), confocal microscopy and RNA interference, were used to explore the underlying molecular mechanisms. RESULTS We found that hypoxia exposure increased the lactate concentration and lactylation in mouse HACE model. Moreover, hypoxia aggravated the microglial neuroinflammatory response in a lactate-dependent manner. Global profiling of protein lactylation has shown that a large quantity of lysine-lactylated proteins are induced by hypoxia and preferentially occur in protein complexes, such as the NuRD complex, ribosome biogenesis complex, spliceosome complex, and DNA replication complex. The molecular modeling data indicated that lactylation could affect the 3-D theoretical structure and increase the solvent accessible surface area of HDAC1, MTA1 and Gatad2b, the core members of the NuRD complex. Further analysis by knockdown or selectively inhibition indicated that the NuRD complex is involved in hypoxia-mediated aggravation of inflammation. CONCLUSIONS These results revealed a comprehensive profile of protein lactylation in microglia and suggested that protein lysine lactylation plays an important role in the regulation of protein function and subsequently contributes to the neuroinflammatory response under hypoxic conditions.
Collapse
Affiliation(s)
- Xiufang Jiang
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Jiayue Gao
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Xuechao Fei
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yanan Geng
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Xiangpei Yue
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Zibi Shi
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Xiang Cheng
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Tong Zhao
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Ming Fan
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Haitao Wu
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian District, Beijing, 100850, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Ming Zhao
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Lingling Zhu
- Beijing Institute of Basic Medical Sciences, #27 Taiping Road, Haidian District, Beijing, 100850, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- School of Pharmaceutical Sciences, University of South China, Hengyang, 421001, China.
| |
Collapse
|
11
|
Zhang YZ, Zhang CY, Tian YN, Xiang Y, Wei JH. Cerebral arterial blood flow, attention, and executive and cognitive functions in depressed patients after acute hypertensive cerebral hemorrhage. World J Clin Cases 2024; 12:3815-3823. [PMID: 38994304 PMCID: PMC11235463 DOI: 10.12998/wjcc.v12.i19.3815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Intracerebral hemorrhage mainly occurs in middle-aged and elderly patients with hypertension, and surgery is currently the main treatment for hypertensive cerebral hemorrhage, but the bleeding caused by surgery will cause damage to the patient's nerve cells, resulting in cognitive and motor dysfunction, resulting in a decline in the patient's quality of life. AIM To investigate associations between cerebral arterial blood flow and executive and cognitive functions in depressed patients after acute hypertensive cerebral hemorrhage. METHODS Eighty-nine patients with depression after acute hypertensive cerebral hemorrhage who were admitted to our hospital between January 2019 and July 2021 were selected as the observation group, while 100 patients without depression who had acute hypertensive cerebral hemorrhage were selected as the control group. The attention span of the patients was assessed using the Paddle Pin Test while executive function was assessed using the Wisconsin Card Sorting Test (WCST) and cognitive function was assessed using the Montreal Cognitive Assessment Scale (MoCA). The Hamilton Depression Rating Scale (HAMD-24) was used to evaluate the severity of depression of involved patients. Cerebral arterial blood flow was measured in both groups. RESULTS The MoCA score, net scores I, II, III, IV, and the total net score of the scratch test in the observation group were significantly lower than those in the control group (P < 0.05). Concurrently, the total number of responses, number of incorrect responses, number of persistent errors, and number of completed responses of the first classification in the WCST test were significantly higher in the observation group than those in the control group (P < 0.05). Blood flow in the basilar artery, left middle cerebral artery, right middle cerebral artery, left anterior cerebral artery, and right anterior cerebral artery was significantly lower in the observation group than in the control group (P < 0.05). The basilar artery, left middle cerebral artery, right middle cerebral artery, left anterior cerebral artery, and right anterior cerebral artery were positively correlated with the net and total net scores of each part of the Paddle Pin test and the MoCA score (P < 0.05), and negatively correlated with each part of the WCST test (P < 0.05). In the observation group, the post-treatment improvement was more prominent in the Paddle Pin test, WCST test, HAMD-24 score, and MoCA score compared with those in the pre-treatment period (P < 0.05). Blood flow in the basilar artery, left middle cerebral artery, right middle cerebral artery, left anterior cerebral artery, and right anterior cerebral artery significantly improved in the observation group after treatment (P < 0.05). CONCLUSION Impaired attention, and executive and cognitive functions are correlated with cerebral artery blood flow in patients with depression after acute hypertensive cerebral hemorrhage and warrant further study.
Collapse
Affiliation(s)
- Ya-Zhao Zhang
- Department of Neurosurgery, Hengshui People's Hospital, Hengshui 053000, Hebei Province, China
| | - Cong-Yi Zhang
- Department of Ultrasound, Second People's Hospital of Hengshui City, Hengshui 053000, Hebei Province, China
| | - Ya-Nan Tian
- Department of Neurology, Hengshui People's Hospital, Hengshui 053000, Hebei Province, China
| | - Yi Xiang
- Department of Neurosurgery, Hengshui People's Hospital, Hengshui 053000, Hebei Province, China
| | - Jian-Hui Wei
- Department of Neurosurgery, Hengshui People's Hospital, Hengshui 053000, Hebei Province, China
| |
Collapse
|
12
|
Ai Y, Kong Y, Zou Z, Chen L, Liang G. Long non-coding RNA MIR17HG impedes FOSL2-mediated transcription activation of HIC1 to maintain a pro-inflammatory phenotype of microglia during intracerebral haemorrhage. Eur J Neurosci 2023; 58:4107-4122. [PMID: 37846812 DOI: 10.1111/ejn.16163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023]
Abstract
Activation and polarization of microglia play decisive roles in the progression of intracerebral haemorrhage (ICH), and lactate exposure correlates with microglia polarization. This study explores molecules influencing lactate production and microglia phenotype alteration following ICH. A murine model of ICH was induced by intracerebral injection of collagenase. The mice experienced autonomous neurological function recovery, haematoma resolution and rapid lactate production, along with a gradual increase in angiogenesis activity, neuronal recovery and an M1-to-M2 phenotype change of microglia. Galloflavin, a lactate dehydrogenase antagonist, suppressed this phenotype change and the functional recovery in mice. FOS like 2 (FOSL2) was significantly upregulated in the brain tissues from day 7 post-ICH. Overexpression of FOSL2 induced an M1-to-M2 phenotype shift in microglia and accelerated lactate production in vivo and in haemoglobin-treated microglia in vitro. Long non-coding RNA MIR17HG impeded FOSL2-mediated transcription activation of hypermethylated in cancer 1 (HIC1). MIR17HG overexpression induced pro-inflammatory activation of microglia in mice, which was blocked by further HIC1 overexpression. Overall, this study demonstrates that MIR17HG maintains a pro-inflammatory phenotype of microglia during ICH progression by negating FOSL2-mediated transcription activation of HIC1. Specific inhibition of MIR17HG or upregulation of FOSL2 or HIC1 may favour inflammation inhibition and haematoma resolution in ICH.
Collapse
Affiliation(s)
- Yunzheng Ai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Ying Kong
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Zheng Zou
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Ligang Chen
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
13
|
Lepiarz-Raba I, Gbadamosi I, Florea R, Paolicelli RC, Jawaid A. Metabolic regulation of microglial phagocytosis: Implications for Alzheimer's disease therapeutics. Transl Neurodegener 2023; 12:48. [PMID: 37908010 PMCID: PMC10617244 DOI: 10.1186/s40035-023-00382-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Microglia, the resident immune cells of the brain, are increasingly implicated in the regulation of brain health and disease. Microglia perform multiple functions in the central nervous system, including surveillance, phagocytosis and release of a variety of soluble factors. Importantly, a majority of their functions are closely related to changes in their metabolism. This natural inter-dependency between core microglial properties and metabolism offers a unique opportunity to modulate microglial activities via nutritional or metabolic interventions. In this review, we examine the existing scientific literature to synthesize the hypothesis that microglial phagocytosis of amyloid beta (Aβ) aggregates in Alzheimer's disease (AD) can be selectively enhanced via metabolic interventions. We first review the basics of microglial metabolism and the effects of common metabolites, such as glucose, lipids, ketone bodies, glutamine, pyruvate and lactate, on microglial inflammatory and phagocytic properties. Next, we examine the evidence for dysregulation of microglial metabolism in AD. This is followed by a review of in vivo studies on metabolic manipulation of microglial functions to ascertain their therapeutic potential in AD. Finally, we discuss the effects of metabolic factors on microglial phagocytosis of healthy synapses, a pathological process that also contributes to the progression of AD. We conclude by enlisting the current challenges that need to be addressed before strategies to harness microglial phagocytosis to clear pathological protein deposits in AD and other neurodegenerative disorders can be widely adopted.
Collapse
Affiliation(s)
- Izabela Lepiarz-Raba
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | - Ismail Gbadamosi
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Roberta Florea
- Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | | - Ali Jawaid
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
14
|
Mazhar M, Yang G, Xu H, Liu Y, Liang P, Yang L, Spáčil R, Shen H, Zhang D, Ren W, Yang S. Zhilong Huoxue Tongyu capsule attenuates intracerebral hemorrhage induced redox imbalance by modulation of Nrf2 signaling pathway. Front Pharmacol 2023; 14:1197433. [PMID: 37351503 PMCID: PMC10282143 DOI: 10.3389/fphar.2023.1197433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
Background: One of the severely debilitating and fatal subtypes of hemorrhagic stroke is intracerebral hemorrhage (ICH), which lacks an adequate cure at present. The Zhilong Huoxue Tongyu (ZLHXTY) capsule has been utilized effectively since last decade to treat ICH, in some provinces of China but the scientific basis for its mechanism is lacking. Purpose: To investigate the neuroprotective role of ZLHXTY capsules for ICH-induced oxidative injury through the regulation of redox imbalance with the Nrf2 signaling pathway. Methods: Autologous blood injection model of ICH in C57BL/6J mice was employed. Three treatment groups received ZLHXTY once daily through oral gavage at doses 0.35 g/kg, 0.7 g/kg, and 1.4 g/kg, started after 2 h and continued for 72 h of ICH induction. The neurological outcome was measured using a balance beam test. Serum was tested for inflammatory markers IL-1β, IL-6, and TNF-α through ELISA, oxidative stress through hydrogen peroxide content assay, and antioxidant status by total antioxidant capacity (T-AOC) assay. Nuclear extract from brain tissue was assayed for Nrf2 transcriptional factor activity. RT-qPCR was performed for Nfe2l2, Sod1, Hmox1, Nqo1, and Mgst1; and Western blotting for determination of protein expression of Nrf2, p62, Pp62, Keap, HO1, and NQO1. Fluoro-jade C staining was also used to examine neuronal damage. Results: ZLHXTY capsule treatment following ICH demonstrated a protective effect against oxidative brain injury. Neurological scoring showed improvement in behavioral outcomes. ELISA-based identification demonstrated a significant decline in the expression of serum inflammatory markers. Hydrogen peroxide content in serum was found to be reduced. The total antioxidant capacity was also reduced in serum, but the ZLHXTY extract showed a concentration-dependent increase in T-AOC speculating at its intrinsic antioxidant potential. Nrf2 transcriptional factor activity, mRNA and protein expression analyses revealed normalization of Nrf2 and its downstream targets, which were previously elevated as a result of oxidative stress induced by ICH. Neuronal damage was also reduced markedly after ZLHXTY treatment as revealed by Fluoro-jade C staining. Conclusion: ZLHXTY capsules possess an intrinsic antioxidant potential that can modulate the ICH-induced redox imbalance in the brain as revealed by the normalization of Nrf2 and its downstream antioxidant targets.
Collapse
Affiliation(s)
- Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine of Southwest Medical University, Luzhou, China
| | - Guoqiang Yang
- Research Center for Integrated Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Molecular Imaging and Therapy Research Unit, Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Houping Xu
- Preventive Treatment Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Liu
- Institute of Integrated Chinese and Western Medicine of Southwest Medical University, Luzhou, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine of Southwest Medical University, Luzhou, China
| | - Luyin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine of Southwest Medical University, Luzhou, China
| | - Roman Spáčil
- The Czech Center for Traditional Chinese Medicine, Olomouc, Czechia
| | - Hongping Shen
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine of Southwest Medical University, Luzhou, China
| | - Dechou Zhang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine of Southwest Medical University, Luzhou, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine of Southwest Medical University, Luzhou, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine of Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Zhang L, Wang X, Che W, Zhou S, Feng Y. METTL3 silenced inhibited the ferroptosis development via regulating the TFRC levels in the Intracerebral hemorrhage progression. Brain Res 2023; 1811:148373. [PMID: 37105375 DOI: 10.1016/j.brainres.2023.148373] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 04/29/2023]
Abstract
Intracerebral hemorrhage (ICH) refers to the hemorrhage caused by the increase and rupture of vascular brittleness in non traumatic brain parenchyma, which has been demonstrated to be closely related to ferroptosis. This study aimed to examine the effects of methyltransferase like 3 (METTL3) on the ferroptosis in the ICH progression. The PC12 cells was stimulated by hemin to establish a ICH model. The cell viability was tested by CCK8 assay. The Fe2+, reactive oxygen species (ROS), and malondialdehyde (MDA) levels were determined by the corresponding commercial kits. The cell death was analyzed by propidium Iodide (PI) staining. The lactylation levels were detected by western blot. M6A dot blot assay was performed to detected the total m6A levels and MeRIP assay was conducted to determine the m6A levels of transferrin receptor (TFRC). We found that the METTL3 and m6A levels were increased in the hemin treated PC12 cells. METTL3 knockdown increased the cell viability and decreased Fe2+, ROS and MDA levels in the hemin treated PC12 cells. The role of METTL3 knockdown in the hemin treated PC12 cells was reversed after TFRC overexpression. Mechanistically, the METTL3 lactylation was increased in the hemin treated PC12 cells, which further enhanced the protein stability and expression of METTL3. The up-regulated METTL3 increased the m6A levels and mRNA expressions of TFRC, which further induced the ferroptosis of the PC12 cells. In conclusion, the up-regulation of METTL3 lactylation enhanced the METTL3 protein stability and expression levels in hemin treated PC12 cells. METTL3 silenced suppressed the ferroptosis development through regulating the m6A levels of TFRC mRNA.
Collapse
Affiliation(s)
- Liu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University
| | - Xiangyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University
| | - Wenqiang Che
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University
| | - Shuoming Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University
| | - Yongjian Feng
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University.
| |
Collapse
|
16
|
Chen ZP, Wang S, Zhao X, Fang W, Wang Z, Ye H, Wang MJ, Ke L, Huang T, Lv P, Jiang X, Zhang Q, Li L, Xie ST, Zhu JN, Hang C, Chen D, Liu X, Yan C. Lipid-accumulated reactive astrocytes promote disease progression in epilepsy. Nat Neurosci 2023; 26:542-554. [PMID: 36941428 DOI: 10.1038/s41593-023-01288-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/20/2023] [Indexed: 03/23/2023]
Abstract
Reactive astrocytes play an important role in neurological diseases, but their molecular and functional phenotypes in epilepsy are unclear. Here, we show that in patients with temporal lobe epilepsy (TLE) and mouse models of epilepsy, excessive lipid accumulation in astrocytes leads to the formation of lipid-accumulated reactive astrocytes (LARAs), a new reactive astrocyte subtype characterized by elevated APOE expression. Genetic knockout of APOE inhibited LARA formation and seizure activities in epileptic mice. Single-nucleus RNA sequencing in TLE patients confirmed the existence of a LARA subpopulation with a distinct molecular signature. Functional studies in epilepsy mouse models and human brain slices showed that LARAs promote neuronal hyperactivity and disease progression. Targeting LARAs by intervention with lipid transport and metabolism could thus provide new therapeutic options for drug-resistant TLE.
Collapse
Affiliation(s)
- Zhang-Peng Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
| | - Suji Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiansen Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wen Fang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhengge Wang
- Department of Radiology, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Epilepsy Center, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Haojie Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Meng-Ju Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ling Ke
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tengfei Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Pin Lv
- Department of Radiology, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiaohong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Liang Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Chunhua Hang
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Xiangyu Liu
- Epilepsy Center, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
- Epilepsy Center, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, China.
| |
Collapse
|
17
|
Luo J, Chen Y, Tang G, Li Z, Yang X, Shang X, Huang T, Huang G, Wang L, Han Y, Zhou Y, Wang C, Wu B, Guo Q, Gong B, Li M, Wang R, Yang J, Cui W, Zhong J, Zhong LL, Guo J. Gut microbiota composition reflects disease progression, severity and outcome, and dysfunctional immune responses in patients with hypertensive intracerebral hemorrhage. Front Immunol 2022; 13:869846. [PMID: 36439158 PMCID: PMC9699794 DOI: 10.3389/fimmu.2022.869846] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/08/2022] [Indexed: 07/28/2023] Open
Abstract
OBJECTIVE In this study, we aimed to explore the alterations in gut microbiota composition and cytokine responses related to disease progression, severity, and outcomes in patients with hypertensive intracerebral hemorrhage (ICH). METHODS Fecal microbiota communities of 64 patients with ICH, 46 coronary heart disease controls, and 23 healthy controls were measured by sequencing the V3-V4 region of the 16S ribosomal RNA (16S rRNA) gene. Serum concentrations of a broad spectrum of cytokines were examined by liquid chips and ELISA. Relationships between clinical phenotypes, microbiotas, and cytokine responses were analyzed in the group with ICH and stroke-associated pneumonia (SAP), the major complication of ICH. RESULTS In comparison with the control groups, the gut microbiota of the patients with ICH had increased microbial richness and diversity, an expanded spectrum of facultative anaerobes and opportunistic pathogens, and depletion of anaerobes. Enterococcus enrichment and Prevotella depletion were more significant in the ICH group and were associated with the severity and functional outcome of ICH. Furthermore, Enterococcus enrichment and Prevotella depletion were also noted in the SAP group in contrast to the non-SAP group. Enterococci were also promising factors in the prognosis of ICH. The onset of ICH induced massive, rapid activation of the peripheral immune system. There were 12 cytokines (Eotaxin, GM-CSF, IL-8, IL-9, IL-10, IL-12p70, IL-15, IL-23, IL-1RA, IP-10, RANTES, and TNF-α) changed significantly with prolongation of ICH, and the Th2 responses correlated with the 90-day outcomes. Cytokines TNF-α, IP-10, IL-1RA, IL-8, IL-18, and MIP-1β in SAP group significantly differed from non-SAP group. Among these cytokines, only IP-10 levels decreased in the SAP group. Enterococcus was positively associated with IL-1RA and negatively associated with IP-10, while Prevotella was inversely associated in both the ICH and SAP groups. CONCLUSION This study revealed that gut dysbiosis with enriched Enterococcus and depleted Prevotella increased the risk of ICH and subsequently SAP. The altered gut microbiota composition and serum cytokine profiles are potential biomarkers that reflect the inciting physiologic insult/stress involved with ICH.
Collapse
Affiliation(s)
- Jielian Luo
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghai Tang
- Department of Neurology, Shenyang Second Hospital of Traditional Chinese Medicine, Shenyang, China
| | - Zhuo Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Genetic Testing Lab, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobo Yang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Xiaoxiao Shang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gan Huang
- Department of Neurology, Yangjiang Hospital of Traditional Chinese Medicine, Yangjiang, China
| | - Lixin Wang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Han
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuexiang Zhou
- Department of Community Healthcare Service, Shenzhen FuYong People’s Hospital, Shenzhen, China
| | - Chuyang Wang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Biological Resource Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Wu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Genetic Testing Lab, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qihua Guo
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Baoying Gong
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Mengzhen Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ruihua Wang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- The Fourth Affiliated Hospital of Guangzhou Medical University Research Team of Traditional Chinese Medicine for the Prevention and Treatment of Cerebral Hemorrhage, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiecong Yang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wanzhen Cui
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jianbin Zhong
- Department of Neurology, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linda Ld Zhong
- Hong Kong Chinese Medicine Clinical Study Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jianwen Guo
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
18
|
Yang J, Jing J, Chen S, Liu X, Tang Y, Pan C, Tang Z. Changes in Cerebral Blood Flow and Diffusion-Weighted Imaging Lesions After Intracerebral Hemorrhage. Transl Stroke Res 2022; 13:686-706. [PMID: 35305264 DOI: 10.1007/s12975-022-00998-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
Intracerebral hemorrhage (ICH) is a common subtype of stroke and places a great burden on the family and society with a high mortality and disability rate and a poor prognosis. Many findings from imaging and pathologic studies have suggested that cerebral ischemic lesions visualized on diffusion-weighted imaging (DWI) in patients with ICH are not rare and are generally considered to be associated with poor outcome, increased risk of recurrent (ischemic and hemorrhagic) stroke, cognitive impairment, and death. In this review, we describe the changes in cerebral blood flow (CBF) and DWI lesions after ICH and discuss the risk factors and possible mechanisms related to the occurrence of DWI lesions, such as cerebral microangiopathy, cerebral atherosclerosis, aggressive early blood pressure lowering, hyperglycemia, and inflammatory response. We also point out that a better understanding of cerebral DWI lesions will be a key step toward potential therapeutic interventions to improve long-term recovery for patients with ICH.
Collapse
Affiliation(s)
- Jingfei Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China
| | - Jie Jing
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China
| | - Xia Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China
| | - Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China.
| |
Collapse
|
19
|
Molecular, Pathological, Clinical, and Therapeutic Aspects of Perihematomal Edema in Different Stages of Intracerebral Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3948921. [PMID: 36164392 PMCID: PMC9509250 DOI: 10.1155/2022/3948921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2022] [Accepted: 09/03/2022] [Indexed: 02/07/2023]
Abstract
Acute intracerebral hemorrhage (ICH) is a devastating type of stroke worldwide. Neuronal destruction involved in the brain damage process caused by ICH includes a primary injury formed by the mass effect of the hematoma and a secondary injury induced by the degradation products of a blood clot. Additionally, factors in the coagulation cascade and complement activation process also contribute to secondary brain injury by promoting the disruption of the blood-brain barrier and neuronal cell degeneration by enhancing the inflammatory response, oxidative stress, etc. Although treatment options for direct damage are limited, various strategies have been proposed to treat secondary injury post-ICH. Perihematomal edema (PHE) is a potential surrogate marker for secondary injury and may contribute to poor outcomes after ICH. Therefore, it is essential to investigate the underlying pathological mechanism, evolution, and potential therapeutic strategies to treat PHE. Here, we review the pathophysiology and imaging characteristics of PHE at different stages after acute ICH. As illustrated in preclinical and clinical studies, we discussed the merits and limitations of varying PHE quantification protocols, including absolute PHE volume, relative PHE volume, and extension distance calculated with images and other techniques. Importantly, this review summarizes the factors that affect PHE by focusing on traditional variables, the cerebral venous drainage system, and the brain lymphatic drainage system. Finally, to facilitate translational research, we analyze why the relationship between PHE and the functional outcome of ICH is currently controversial. We also emphasize promising therapeutic approaches that modulate multiple targets to alleviate PHE and promote neurologic recovery after acute ICH.
Collapse
|
20
|
Li Y, Lu T, Wei W, Lin Z, Ding L, Li Z, Xue X. Swimming Training Mitigates Neurological Impairment of Intracerebral Haemorrhage in Mice via the Serine-Threonine Kinase/Glycogen Synthase Kinase 3β Signalling Pathway. Neuroscience 2022; 501:72-84. [PMID: 35961525 DOI: 10.1016/j.neuroscience.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 10/15/2022]
Abstract
Swimming training (ST) can mitigate functional disorders in neurological diseases, but the effect and mechanism of ST in improving the neurological function of intracerebral haemorrhage (ICH) have not been reported. Our study aimed to explore the protective effect of early ST on ICH mice and its relationship with the serine-threonine kinase (Akt)/glycogen synthase kinase 3β (GSK3β) pathway. Our findings showed that the ICH model mice had poor behavioural manifestations in the Y maze test and open field test compared to the ST group and sham group. The modified neurological severity score was increased in the ICH mice, and 7 days of ST intervention significantly attenuated the neurological deficits. The ratios of myo-inositol/creatine, lactate/creatine and glutamate/creatine were decreased, and the ratios of N-acetylaspartate/creatine and choline/creatine were increased in the ICH mice with ST intervention. ST intervention decreased the expression of Iba1 and GFAP. Seven days of ST significantly increased the expression of p-Akt/Akt compared to that in the ICH mice. Furthermore, the Akt kinase inhibitor GSK690693 exacerbated neurological impairment, increased the expression of Iba1, GFAP and Bax/Bcl-2, and reversed the anti-apoptotic effects and anti-glia activation of ST, which was associated with the inhibition of p-Akt/Akt and p-GSK3β/GSK3β expression. These results indicated that the protective role of ST in ICH was mediated via the Akt/GSK3β pathway. In conclusion, ST displayed neuroprotection by inhibiting apoptosis and glial activation in ICH mice by activating the Akt/GSK3β signalling pathway.
Collapse
Affiliation(s)
- Yongxu Li
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, China; College of Rehabilitation Medicine, Fujian University of Chinese Medicine, China
| | - Taotao Lu
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, China; College of Rehabilitation Medicine, Fujian University of Chinese Medicine, China
| | - Wei Wei
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, China
| | - Zhicheng Lin
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, China
| | - Linlin Ding
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, China
| | - Zhaohui Li
- Anxi County Hospital of Traditional Chinese Medicine, Quanzhou, Fujian Province, China.
| | - Xiehua Xue
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, China; Fujian Key Laboratory of Rehabilitation Technology and Cognition Rehabilitation, China.
| |
Collapse
|
21
|
Mazhar M, Yang G, Mao L, Liang P, Tan R, Wang L, Xu H, Yang L, Ren W, Yang S. Zhilong Huoxue Tongyu Capsules Ameliorate Early Brain Inflammatory Injury Induced by Intracerebral Hemorrhage via Inhibition of Canonical NFкβ Signalling Pathway. Front Pharmacol 2022; 13:850060. [PMID: 35431931 PMCID: PMC9008889 DOI: 10.3389/fphar.2022.850060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Intracerebral hemorrhage (ICH) is a debilitating and fatal condition with continuously rising incidence globally, without effective treatment available. Zhilong Huoxue Tongyu (ZLHXTY) capsule is a traditional Chinese medicine that is used for ICH treatment in China. However, the evidence based mechanism is not clear. Purpose: To study the protective effects of ZLHXTY capsules against ICH pathogenesis via targetting nuclear factor kappa β (NFкβ) canonical signalling pathway. Methods: C57BL/6 J mice ICH models using autologous blood injection were used to study the effect of ZLHXTY (1.4 g/kg P.O.) after 24 and 72 hrs of ICH induction. The neurological scoring, corner turn test and balance beam with scoring was performed to assess neurological damage. Hematoxylin/eosin and nissl staining was used for histopathological evaluation. Levels of TNFα, NFкB, iNOS, COX2, IL1, IL6 were measured using real time qPCR and western blotting. Protein levels of IKKβ and IкBα were analyzed through western blotting. Immunofluorescence for co-expression of NeuN/TNFα, NeuN/NFкB, Iba1/TNFα, and Iba1/NFкB was also performed. Results: Treatment with ZLHXTY capsules after ICH ameliorated inflammatory brain injury after 24 and 72 h; revealed by neurological scoring, hematoxylin/eosin and nissl staining. The qPCR and western blot analyses demonstrated significant downregulation of TNFα, NFкB, iNOS, COX2, IL1β and IL6. Further, the IKKβ and IкBα revealed significant downregulation and upregulation respectively in western blot. Immunofluorescence also revealed attenuated expression of TNFα and NFкB in neurons and also low expression of Iba1. Conclusion: ZLHXTY capsules elicit its neuroprotective effect by targetting the NFкβ canonical signalling pathway, thereby ameliorating the ICH induced brain injury.
Collapse
Affiliation(s)
- Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Sijin Yang, ; Wei Ren, ; Maryam Mazhar,
| | - Guoqiang Yang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Research Unit of Molecular Imaging Probes, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Linshen Mao
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ruizhi Tan
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Li Wang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Houping Xu
- Preventive Treatment Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Luyin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Sijin Yang, ; Wei Ren, ; Maryam Mazhar,
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Sijin Yang, ; Wei Ren, ; Maryam Mazhar,
| |
Collapse
|
22
|
Monsorno K, Buckinx A, Paolicelli RC. Microglial metabolic flexibility: emerging roles for lactate. Trends Endocrinol Metab 2022; 33:186-195. [PMID: 34996673 DOI: 10.1016/j.tem.2021.12.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022]
Abstract
Microglia, the resident macrophages of the central nervous system (CNS), play important functions in the healthy and diseased brain. In the emerging field of immunometabolism, progress has been made in understanding how cellular metabolism can orchestrate the key responses of tissue macrophages, such as phagocytosis and inflammation. However, very little is known about the metabolic control of microglia. Lactate, now recognized as a crucial metabolite and a central substrate in metabolic flexibility, is emerging not only as a novel bioenergetic fuel for microglial metabolism but also as a potential modulator of cellular function. Parallels with macrophages will help in understanding how microglial lactate metabolism is implicated in brain physiology and pathology, and how it could be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Katia Monsorno
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - An Buckinx
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Rosa C Paolicelli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
23
|
Gómez-de Frutos MC, García-Suárez I, Laso-García F, Diekhorst L, Otero-Ortega L, Alonso de Leciñana M, Fuentes B, Gutiérrez-Fernández M, Díez-Tejedor E, Ruíz-Ares G. B-Mode Ultrasound, a Reliable Tool for Monitoring Experimental Intracerebral Hemorrhage. Front Neurol 2022; 12:771402. [PMID: 35002926 PMCID: PMC8733327 DOI: 10.3389/fneur.2021.771402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Magnetic resonance imaging (MRI) is currently used for the study of intracerebral hemorrhage (ICH) in animal models. However, ultrasound is an inexpensive, non-invasive and rapid technique that could facilitate the diagnosis and follow-up of ICH. This study aimed to evaluate the feasibility and reliability of B-mode ultrasound as an alternative tool for in vivo monitoring of ICH volume and brain structure displacement in an animal model. Methods: A total of 31 male and female Sprague-Dawley rats were subjected to an ICH model using collagenase-IV in the striatum following stereotaxic references. The animals were randomly allocated into 3 groups: healthy (n = 10), sham (n = 10) and ICH (n = 11). B-mode ultrasound studies with a 13-MHz probe were performed pre-ICH and at 5 h, 48 h, 4 d and 1 mo post-ICH for the assessment of ICH volume and displacement of brain structures, considering the distance between the subarachnoid cisterns and the dura mater. The same variables were studied by MRI at 48 h and 1 mo post-ICH. Results: Both imaging techniques showed excellent correlation in measuring ICH volume at 48 h (r = 0.905) and good at 1 mo (r = 0.656). An excellent correlation was also observed in the measured distance between the subarachnoid cisterns and the dura mater at 1 mo between B-mode ultrasound and MRI, on both the ipsilateral (r = 0.870) and contralateral (r = 0.906) sides of the lesion. Conclusion: B-mode ultrasound imaging appears to be a reliable tool for in vivo assessment of ICH volume and displacement of brain structures in animal models.
Collapse
Affiliation(s)
- Mari Carmen Gómez-de Frutos
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Iván García-Suárez
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain.,Department of Emergency Service, San Agustín Hospital, University of San Agustin, Asturias, Spain
| | - Fernando Laso-García
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luke Diekhorst
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Otero-Ortega
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Alonso de Leciñana
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Blanca Fuentes
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Exuperio Díez-Tejedor
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Gerardo Ruíz-Ares
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
24
|
Zeng P, Wang XM, Su HF, Zhang T, Ning LN, Shi Y, Yang SS, Lin L, Tian Q. Protective effects of Da-cheng-qi decoction in rats with intracerebral hemorrhage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153630. [PMID: 34217968 DOI: 10.1016/j.phymed.2021.153630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/15/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH), the most fatal subtype of stroke, has no disease-modifying treatment. Da-cheng-qi decoction (DCQ), composed of rhubarb, is one of the most commonly used Chinese traditional decoctions in ICH treatment. But the mechanism is not clear. Emodin is an active compound found in rhubarb. PURPOSE To study the protective effects of DCQ on ICH and its possible mechanisms of action. METHODS The ICH model was reproduced by injecting collagenase-VII into the left caudate putamen (CPu) of rats. DCQ and emodin were used to treat the ICH rats for 7 days. Behavior tests, proteomic analysis, morphological studies, and western blotting were performed. RESULTS The neurological deficits in the ICH rats recovered with DCQ and emodin on the 14th day after ICH. The proteomics data revealed that DCQ significantly corrected the pathological signals in the CPu and hippocampus after ICH. The numbers of amoebic microglia in the CPu and M2 microglia in both CPu and hippocampus were significantly increased after DCQ and emodin treatment. The increase in GluN2B-containing NMDA receptor (NR2B) and postsynaptic density protein-95, activation of mitogen-activated protein kinase (MAPK) signals in the CPu, and secondary neurodegeneration (SND) in the hippocampus were significantly recovered in DCQ-treated rats. Inhibition of MAPK p38 (p38) in the hippocampus was observed after DCQ and emodin treatment. CONCLUSION The protective effects of DCQ on ICH were confirmed in this study, and its mechanism may be related to the inhibition of MAPK and activation of M2 microglia. These results are beneficial to the development of ICH therapeutic targets.
Collapse
Affiliation(s)
- Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-Ming Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong-Fei Su
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Teng Zhang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lin-Na Ning
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Shi
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shu-Sheng Yang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Traditional Chinese Medicine, Wuhan Red Cross Hospital, Wuhan 430015, China.
| | - Li Lin
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Huazhong University of Science and Technology, Wuhan 430030, China; Laboratory of Medical Molecular and Cellular Biology, College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
25
|
Hu Y, Wu J, Zhang X, Tian J, Lu Y, Guo T. Effects of Paired Associative Stimulation on Metabolites in Ischemia Stroke Rats Model as Studied by Nuclear Magnetic Resonance Spectrum. Neurochem Res 2021; 46:2495-2504. [PMID: 34231112 DOI: 10.1007/s11064-021-03388-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/10/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022]
Abstract
Paired associated stimulation (PAS) has been confirmed to play a role in motor recovery after stroke, but the underlying mechanism has not been fully elucidated. In this study, we employed a comprehensive battery of measurements, including behavioral test, electrophysiology and 1H-NMR approaches, to investigate the therapeutic effects of PAS in rat model of cerebral ischemia and its underlying mechanism. Rats were randomly divided into a transient middle cerebral artery occlusion group (tMCAO group), a tMCAO + PAS group (PAS group), and a sham group. PAS was applied over 7 consecutive days in PAS group. The behavioral function of rats was evaluated by modified Garcia Scores and Rota-rod test. Electrophysiological changes were measured by motor evoked potentials (MEP). Metabolic changes of ischemic penumbra were detected by 1H-NMR. After PAS intervention, the performances on Rota-rod test and Garcia test improved and the amplitude of MEP increased significantly. The gamma-aminobutyric acid (GABA) in penumbra cortex was decreased significantly, whereas the glutamate showed the opposite changes. The results suggested that post-stroke recovery promoted by PAS may be related to the metabolites alteration in ischemic penumbra and also regulate the excitability of motor cortex.
Collapse
Affiliation(s)
- Yan Hu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan City, 430000, Hubei Province, China
| | - Jinfeng Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
| | - Xiangyu Zhang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan City, 430000, Hubei Province, China
| | - Jun Tian
- Department of Rehabilitation Medicine, Zhongnan Hospital, Wuhan University, Wuhan, 430000, China
| | - Yinshan Lu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan City, 430000, Hubei Province, China
| | - Tiecheng Guo
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan City, 430000, Hubei Province, China.
| |
Collapse
|
26
|
Traxler L, Lagerwall J, Eichhorner S, Stefanoni D, D'Alessandro A, Mertens J. Metabolism navigates neural cell fate in development, aging and neurodegeneration. Dis Model Mech 2021; 14:dmm048993. [PMID: 34345916 PMCID: PMC8353098 DOI: 10.1242/dmm.048993] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An uninterrupted energy supply is critical for the optimal functioning of all our organs, and in this regard the human brain is particularly energy dependent. The study of energy metabolic pathways is a major focus within neuroscience research, which is supported by genetic defects in the oxidative phosphorylation mechanism often contributing towards neurodevelopmental disorders and changes in glucose metabolism presenting as a hallmark feature in age-dependent neurodegenerative disorders. However, as recent studies have illuminated roles of cellular metabolism that span far beyond mere energetics, it would be valuable to first comprehend the physiological involvement of metabolic pathways in neural cell fate and function, and to subsequently reconstruct their impact on diseases of the brain. In this Review, we first discuss recent evidence that implies metabolism as a master regulator of cell identity during neural development. Additionally, we examine the cell type-dependent metabolic states present in the adult brain. As metabolic states have been studied extensively as crucial regulators of malignant transformation in cancer, we reveal how knowledge gained from the field of cancer has aided our understanding in how metabolism likewise controls neural fate determination and stability by directly wiring into the cellular epigenetic landscape. We further summarize research pertaining to the interplay between metabolic alterations and neurodevelopmental and psychiatric disorders, and expose how an improved understanding of metabolic cell fate control might assist in the development of new concepts to combat age-dependent neurodegenerative diseases, particularly Alzheimer's disease.
Collapse
Affiliation(s)
- Larissa Traxler
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol 6020, Austria
| | - Jessica Lagerwall
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol 6020, Austria
| | - Sophie Eichhorner
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol 6020, Austria
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jerome Mertens
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol 6020, Austria
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
27
|
Zhang T, Yang C, Chu J, Ning LN, Zeng P, Wang XM, Shi Y, Qin BJ, Qu N, Zhang Q, Tian Q. Emodin Prevented Depression in Chronic Unpredicted Mild Stress-Exposed Rats by Targeting miR-139-5p/5-Lipoxygenase. Front Cell Dev Biol 2021; 9:696619. [PMID: 34381778 PMCID: PMC8350171 DOI: 10.3389/fcell.2021.696619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022] Open
Abstract
Background The use of medicinal plant ingredients is one of the goals of developing potential drugs for treating depression. Compelling evidence suggests that anti-inflammatory medicines may block the occurrence of depression. We studied the effect of a natural compound, emodin, on the development of psychosocial stress-induced depression and the underlying mechanisms. Methods Chronic unpredicted mild stress (CUMS) for 7 weeks was performed to replicate psychosocial stress in rats. The sucrose preference test, force swimming test, and open field test were used to evaluate their behaviors. The differentially expressed proteins in the hippocampus were analyzed using proteomics. Nissl staining and Golgi staining were used to detect the loss of neurons and synapses, immunohistochemical staining was used to detect the activation of microglia, and the enzyme-linked immunosorbent assay was used to detect the levels of pro-inflammatory cytokines. Western blotting, immunofluorescence, and quantitative polymerase chain reaction were also performed. Results Hippocampal inflammation with up-regulated 5-lipoxygenase (5-LO) was observed in the depressed rats after CUMS exposure. The upregulation of 5-LO was caused by decreased miR-139-5p. To observe the effect of emodin, we screened out depression-susceptible (DeS) rats during CUMS and treated them with emodin (80 mg/kg/day). Two weeks later, emodin prevented the depression behaviors in DeS rats along with a series of pathological changes in their hippocampi, such as loss of neurons and spines, microglial activation, increased interleukin-1β and tumor necrosis factor-α, and the activation of 5-LO. Furthermore, we demonstrated that emodin inhibited its excess inflammatory response, possibly by targeting miR-139-5p/5-LO and modulating glycogen synthase kinase 3β and nuclear factor erythroid 2-related factor 2. Conclusion These results provide important evidence that emodin may be a candidate agent for the treatment of depression and established a key role of miR-139-5p/5-LO in the inflammation of depression.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurology, Shanxian Central Hospital, the Affiliated Huxi Hospital of Jining Medical College, Heze, China
| | - Can Yang
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chu
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin-Na Ning
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathology, Gannan Medical University Pingxiang Hospital, Pingxiang, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ming Wang
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Shi
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bao-Jian Qin
- Department of Neurology, Shanxian Central Hospital, the Affiliated Huxi Hospital of Jining Medical College, Heze, China
| | - Na Qu
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Psychological Trauma, Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, China
| | - Qi Zhang
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Psychiatry, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Zeng P, Wang XM, Ye CY, Su HF, Fang YY, Zhang T, Tian Q. Mechanistic insights into the anti-depressant effect of emodin: an integrated systems pharmacology study and experimental validation. Aging (Albany NY) 2021; 13:15078-15099. [PMID: 34051074 PMCID: PMC8221295 DOI: 10.18632/aging.203072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
Depression is a complex neuropsychiatric disease involved multiple targets and signaling pathways. Systems pharmacology studies could potentially present a comprehensive molecular mechanism to delineate the anti-depressant effect of emodin (EMO). In this study, we investigated the anti-depressant effects of EMO in the chronic unpredictable mild stress (CUMS) rat model of depression and gained insights into the underlying mechanisms using systems pharmacology and molecular simulation analysis. Forty-three potential targets of EMO for treatment of depression were obtained. GO biological process analysis suggested that the biological functions of these targets mainly involve the regulation of reactive oxygen species metabolic process, response to lipopolysaccharide, regulation of inflammatory response, etc. KEGG pathway enrichment analysis showed that the PI3K-Akt signaling pathway, insulin resistance, IL-17 signaling pathway were the most significantly enriched signaling pathways. The molecular docking analysis revealed that EMO might have a strong combination with ESR1, AKT1 and GSK3B. Immunohistochemical staining and Western blotting showed that 2 weeks' EMO treatment (80 mg/kg/day) reduced depression related microglial activation, neuroinflammation and altered PI3K-Akt signaling pathway. Our findings provide a systemic pharmacology basis for the anti-depressant effects of EMO.
Collapse
Affiliation(s)
- Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-Ming Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chao-Yuan Ye
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong-Fei Su
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying-Yan Fang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi 435000, China
| | - Teng Zhang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Neurology, Shanxian Central Hospital, The Affiliated Huxi Hospital of Jining Medical College, Heze 274300, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
29
|
Liu Y, Yang S, Cai E, Lin L, Zeng P, Nie B, Xu F, Tian Q, Wang J. Functions of lactate in the brain of rat with intracerebral hemorrhage evaluated with MRI/MRS and in vitro approaches. CNS Neurosci Ther 2020; 26:1031-1044. [PMID: 32488963 PMCID: PMC7539841 DOI: 10.1111/cns.13399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction Lactate accumulation in the brain is caused by the anaerobic metabolism induced by ischemic damages, which always accompanies intracerebral hemorrhages (ICH). Our former findings showed that microglia's movement was always directly toward hemorrhagic center with the highest lactate concentration, and penumbra area has the largest density of compactly arrayed microglia. However, the relationship between microglia and lactate concentration has not been well documented. Methods Cerebral hemorrhage model was successfully achieved by injecting collagenase VII (causing stabile localized bleeding) in CPu (striatum) of SD rats. Emodin was used as a potential therapeutic for ICH. The function of the lactate was examined with in vitro culture studies. Then, the effect of lactate on the proliferation, cell survival, migration, and phagocytosis property of microglia was investigated by in vitro culture studies. Results Lactate accumulation was observed with in vivo MRS method, and its concentration was monitored during the recovery of ICH and treatment of emodin. Lactate concentration significantly increased in the core and penumbra regions of hemorrhagic foci, and it decreased after the treatment of emodin. The in vitro culture study was verified that lactate was beneficial for the proliferation, cell survival, migration, and phagocytosis property of the microglia. Conclusion Results from in vitro verification study, investigations from the recovery of ICH, and treatment of emodin verify that lactate plays an important role during the recovery of ICH. This could provide a novel therapeutic approach for ICH.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Shusheng Yang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Erli Cai
- Department of Pathology and Pathophysiology, School of Basic Medicine, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Department of Pathology and Pathophysiology, School of Basic Medicine, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Binbin Nie
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, 2nd Hospital of Shijiazhuang, Shijiazhuang, China
| |
Collapse
|